• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Temperature-free mass tracking of a levitated nanoparticle

    2023-09-05 08:48:04YuanTian田原YuZheng鄭瑜LyuHangLiu劉呂航GuangCanGuo郭光燦andFangWenSun孫方穩(wěn)
    Chinese Physics B 2023年7期
    關鍵詞:田原

    Yuan Tian(田原), Yu Zheng(鄭瑜),?, Lyu-Hang Liu(劉呂航),Guang-Can Guo(郭光燦), and Fang-Wen Sun(孫方穩(wěn))

    1CAS Key Laboratory of Quantum Information,University of Science and Technology of China,Hefei 230026,China

    2CAS Center for Excellence in Quantum Information and Quantum Physics,University of Science and Technology of China,Hefei 230026,China

    Keywords: optical levitation,nanoparticle,mass measurement,thermal desorption

    1.Introduction

    Nanoparticles are one of the most critical research systems in nanomaterials research.[1–3]Relying on their large surface-to-volume ratio and specialized surface morphology,[4,5]nanoparticles have a wide range of applications in areas including molecular adsorption,[6,7]surface functionalization,[8,9]and catalytic reaction.[10,11]The characterization of particle properties is an essential part of nanoparticle and microparticle research, including the weighing of their mass.[12–22]The mass of a nanoparticle is related to its density, size, fill rate, composition, and other properties that provide important criteria for the identification of nanoparticles.Conventionally,a nanoparticle’s mass is estimated using data on density, particle size analysis, and particle properties measured on a bunch of particle powder.[23–26]This approach gives less accurate information on the mass of nanoparticles.It also lacks information on the individual nanoparticles and does not allow for the analysis of differences in properties,such as density, between nanoparticles in the same batch of samples.

    Recently, a number of methods have been invented to measure the mass of individual nanoparticles.[15–17,27–29]Among these mass measurement methods, the scheme using optical levitation is the most promising.Using the calibrated or estimated electric or optical field as a reference, the optical levitation system achieves high-precision fg-level mass measurement of nanoparticles.[16,28,29]A significant reduction in the mass of silica nanoparticles is observed.[12,22,28,30]However,comprehensive investigations of this mass-changing process are still lacking.Considering that the mass of most materials changes with increasing temperature, simultaneous high-precision measurement of the mass and temperature of nanoparticles is essential for investigating their property transitions.Nevertheless, there is still no satisfactory solution for the simultaneous measurement of the mass and center-ofmass motion(COM)temperature.This is because the existing schemes depend on the statistical properties after interaction with a thermal bath of known temperature.Only one of the mass or temperature can be measured, while the other has to be known beforehand.[31,32]Although there are attempts to estimate the particle temperature by using the scattered light intensity and the gas pressure,[12]the accuracy and reliability of the temperature obtained by this method are very poor.

    Here we present a scheme for the temperature-free mass measurement of optically levitated nanoparticles with the assistance of a sinusoidal electrostatic driving force.By using a known AC driving force as a reference scale, the involvement of temperature as a known variable in the mass measurement process is no longer needed,thus enabling a temperatureindependent mass measurement scheme.With this scheme,we tracked in real time the variations in mass, COM temperature, and other properties of a 165 nm nominal diameter silica particle as the air pressure changed.Using this scheme,it is possible to investigate the dynamics of nanoparticle properties with temperature,[33,34]for example,the crystalline form transition temperature or melting temperature of the nanoparticles,[35–39]the temperature dependence of the reaction rate with gas molecules,[40]temperature-controlled drug release,[41]etc.

    2.Mass measurement method

    Consider an optically levitated oscillator driven by a sinusoidal forceFAC.Its mechanical energy variation can be divided into three parts:

    with

    where dEACrepresents the work done by the AC driving force.xis the position of the oscillator.dEdamprepresents the work done by air damping.Γ0is the air damping coefficient.mis the mass of the nanoparticle.vis the velocity of the oscillator.dEstorepresents the work done by the stochastic force.kBis the Boltzmann constant.T0is the effective temperature which is equal to the COM temperature when the external driving force’s heating(cooling)effect can be neglected.Wrepresents the Wiener process.

    Here, dEcan be calculated using the calibrated oscillator trajectory andE=m(v2+?20x2)/2,where?0is the eigenfrequency of the oscillator.The schematic diagram of mechanical energy variation dEand the work done by the AC driving force dEACvarying with timetis shown in Fig 1(c).Multiply both sides of Eq.(1)by dEACand integrate,which is

    Because the dWis independent of dEAC,dEACdEsto=0.Extracting massmfrom Eq.(3),we have

    For a realistic measured oscillator trajectory, the mass of the nanoparticle can be obtained by using the discrete form,which is

    where ?xis the difference of trajectories: ?x(t)=x(t+?t)?x(t),?tis the sampling interval.Γ0is obtained by fitting an exponential equation to the variance of trajectory ensembles.[24]?0is obtained during the calibration of the particle’s trajectory, which is shown below.According to the experiment and simulation result,(dEACdEdamp) is much smaller than(dEACdEAC).When the pressure is below 1 mbar,(dEACdEdamp) can be neglected when measuring the particle’s mass.

    Fig.1.(a)Schematic diagram of vacuum optical levitation.A 1064 nm laser beam is focused by an objective lens (NA = 0.9) to trap the nanoparticle.The forward scattered light is collected by an aspherical lens(NA=0.6)to detect the position of the particles.The driven electric field is generated by a pair of stainless steel rods that are connected to a signal generator.An additional high voltage electrode is used for charge control of the particle.(b) The schematic diagram of particle’s trajectory x (blue line) and driving voltage UAC (orange line) varying with time t.The units of x and UAC shown in the figure are not the same.(c) The schematic diagram of mechanical energy variation dE(blue line) and the work done by the AC driving force dEAC (orange line)varying with time t.(d)PSD of the trajectory of a particle under AC driving force at 1 mbar.The curve was obtained by averaging the PSD of eight trajectories of 1 s duration.The frequency of the driving force is 200 kHz.

    3.Experimental method

    3.1.Experiment setup

    The experimental schematic is shown in Fig.1(a).The nanoparticle to be weighed is optically trapped in a vacuum chamber,where the air pressure can be controlled from atmospheric pressure to high vacuum.The optical potential used to trap the nanoparticle is formed by a tightly focused linear polarization laser,whose wavelength is 1064 nm and the numerical aperture of the objective is 0.9.The forward scattering light is collected by an aspheric lens for the measurement of the particle’s translational movement.Stainless steel rods,which are mounted on both sides of the trapping potential, are used as electrodes for the implementation of the electric field.The distance between the two electrodes is approximately 2 mm.

    3.2.Calibration coefficient and oscillation frequency

    According to Eq.(5),the mass measurement requires the particle’s position calibration coefficientcto convert detected signalVto the particle’s positionx=cV.The calibration of the particle’s trajectory is achieved by the Duffing nonlinearity induced frequency shift analysis of trajectory fragments with different amplitudes.[28,42]First, we collect the detector’s electric signals that satisfyV0?dV

    where?x0is the eigen frequency atx-axis,andξxis nonlinear coefficient.Therefore, the frequency?x0and the calibration coefficientccan be obtained by fitting Eq.(6)to the averaged detection signal.Such a calibration method has high precision at air pressures below 10 mbar.When the pressure is below 10?3mbar, it is hard to levitate the nanoparticle stably without COM temperature cooling.The COM temperature cooling harms the precision of the calibration coefficient.[42]Thus,the applicable pressure range of this calibration method is 10?3mbar–10 mbar,limiting the pressure range of our mass measurement.

    3.3.Driving force and charge

    In the experiment, two principles are followed in the selection of parameters for the driving force.The first rule is the high signal-to-noise ratio(SNR)of the driven motion component, which can be inferred from a much higher drive PSD peak at the AC driving force frequency than the PSD from thermal motion.Second, the component of motion imposed by the driving force is negligible compared to the total thermal motion.Otherwise,the accuracy of the calibration method based on the Duffing nonlinear analysis of the motion trajectory will be significantly reduced.As shown in Fig.1(d), the frequency of the AC driving force is 75 kHz away from the oscillator’s eigenfrequency.The SNR of the driven motion is about 4.4×105in a trajectory of 1 s duration, and the power of the driven motion compared with the total thermal motion is〈〉/〈x2〉=7.1×10?4.The mass measurement also requires the knowledge of the driving force’s amplitudeFAC.There are two ways to determine the sinusoidal electrostatic driving force.The particle’s mass can be measured with the calibrated thermal equilibrium trajectory and the equipartition theorem.[23]The size of the AC driving force is obtained by the linear response function of the levitated harmonic oscillator[16](not adopted below 10 mbar due to nonlinearities)

    whereIis the integral of the PSD of the linear oscillator in an electric field at the driving frequency?dr.m10mbaris the particle’s mass measured at 10 mbar.At pressure above 10 mbar,the thermal conductivity is strong enough to keep the nanoparticle at the same temperature as room temperature.[28,31]The particle’s mass can be measured with the calibrated thermal equilibrium trajectory and the equipartition theorem.[23]m10mbar=kBTem/(c2〈V2〉),where〈V2〉is the mean square values of the detected signal,andTemis the room temperature.Γandare obtained from fitting Lorentz line to PSD.In advance,the electric field strength at the particle trapping position is obtained by the electric field force measurements of a particle with a known charge.The AC driving force would be the electric field strength multiplied by the charge.

    If the charge change occurs only once during the pressure drop and rise,then the changedFACcan be recalibrated when the pressure returns to 10 mbar.And if the charge change occurs multiple times during mass monitoring, we first assume that the mass of the particle remains constant after one charge change occurs and estimate the charge of the particle by the height of theFACpeak on the PSD.Since the charge can only be an integer multiple of the elementary charge and the mass can only decrease, the change in theFACdue to the charge change can be recovered.However,in the case of large charge changes, theFACestimation for multiple charge changes becomes unreliable.

    3.4.COM temperature

    After we finish the trajectories’ calibration and driving force estimation, we can get the particle’s mass based on Eq.(5).As we already have the particle’s mass, the particle’s COM temperature can be obtained with the equipartition theorem thatTCOM=m?〈x2〉/kB.

    4.Experimental results

    A nanoparticle,which is a silica nanosphere with a nominal diameter of 165±20 nm(model number: SS02000,Bangs Labs Inc.), is sent into the optical trapping potential by a nebulizer.The nanoparticles are stored in water and diluted with ethanol before delivery.After the nanoparticle has been trapped, the air pressure in the vacuum chamber is reduced to 10 mbar from the atmosphere.After measurement ofFAC,the mass tracking of the nanoparticle starts.Then, the reduction in air pressure in the vacuum chamber restarts at a very low speed.When the pressure reaches below 5×10?3mbar,the pumping stops,and a slow leak into the vacuum chamber begin to bring the air pressure back to 10 mbar.This pressure control process lasts approximately 14400 s.At the same time,the trajectory of the levitated nanoparticle along the electrode direction and the driving electric field signal are recorded.

    We notice that the charge change event happens once when the pressure is reduced to 2×10?2mbar.The particle’s charge changes from?5eto?27eas shown in Fig.2(e),which corresponds to an electric field of 6.38 kV/m.

    Fig.2.Property changes of the optically levitated nanoparticle during the first pressure pump down and venting cycle.(a)Mass m.(b)COM temperature TCOM.(c)Oscillation frequency ?0/2π.(d)Calibration coefficient c.(e)Electric charge q.The pressure is reduced from 10 mbar to 4×10?3 mbar for the first time after the particle is trapped and then back to 10 mbar.The blue dots represent the pressure drop process and the orange squares represent the pressure rise process.Each data point is obtained from the average of five 20 s segments of the trajectory.The shading represents the standard deviation of the data.

    With the calibrated trajectory and Eq.(4), the nanoparticle’s mass variation with air pressure is obtained,as shown in Fig.2(a).As the pressure is reduced below 1 mbar, the mass of the particle gradually decreases.However,at 0.02 mbar,the mass of the nanoparticle suddenly decreases when the charge change event happens.After that,there is no further significant change in the mass of the particle.The statistical error of the mass measurement,shown in Fig.2(a),mainly comes from the uncertainty of calibration.As the pressure drops, the nonlinear calibration requires a longer trajectory signal to maintain the precision of the calibration coefficients.[42]However,since data sampling of equal-length trajectories is used in the actual experiment, the statistical error of the calibration coefficients increases with decreasing air pressure.

    The COM temperature is influenced by both the internal temperature of the particle and the ambient temperature,usually between them.[31]It can be seen from Fig.2(b) that, at the beginning of the vacuum evacuation, the COM temperature rises as the air pressure decreases.This can be explained by the fact that thermal conductivity decreases with decreasing air pressure.However, at 0.02 mbar, where the mass and charge have dramatically changed,the particle’s COM temperature suddenly drops to near room temperature.

    Similar to charge, mass, and COM temperature, the calibration coefficient and the oscillation frequency of the nanoparticle change significantly as the air pressure decreases to the transition point(seen in Figs.2(c)and 2(d)).Such a transition pressure point only happens during the first decrease in the air pressure.No similar transition points are observed during subsequent pressure increases or repeated vacuum evacuations.

    Fig.3.Property changes of the other three nanoparticles at the first pressure drop.(a)Mass.(b)COM temperature.(c)Oscillation frequency.(d)Charge.The blue squares,orange dots,and yellow triangles represent particles 2,3,and 4,respectively.

    Figure 3 shows the results of tracking the changes in the properties of the other three particles during the first pressure decrease.The power of the trapping laser is approximately 350 mW for the particle in Fig.2 and particle 2,and is approximately 180 mW for particles 3 and 4.Although the transition pressure and the magnitude of change are different for different particles,most particles undergo a significant reduction in mass when the air pressure drops below a certain point.Such abrupt changes in mass are usually accompanied by significant changes in COM temperature,calibration coefficients,oscillation frequencies,and electrical charges.

    5.Discussion

    Since long trajectories are not required,the measurement of the particle frequency provides us with evidence of higher temporal resolution for the abrupt changes in particle properties.As shown in Fig.4(a),the duration of the abrupt change in the mass of the particles in Fig.2 does not exceed 1 s,which corresponds to a relative pressure change of about 0.5%.Since the heating of particles by the laser is inversely proportional to the air pressure in a vacuum environment,[12,28]by fitting the pressure–temperature data of the particle before the abrupt change point(shown in Fig.4(b)),we can obtain that the internal temperature increase of the particle does not exceed 2.5 K at the moment of the abrupt change.The internal temperature of the particle is obtained based on the method in Ref.[32].

    Fig.4.(a)Frequency tracking of the particle shown in Fig.2 near the abrupt change point.(b)Temperature difference ?T between the internal temperature of the particle shown in Fig.2 and the ambient temperature with decreasing pressure.The solid line is the fitting to the data before the abrupt change point.

    We can use the experimental results of nanoparticle mass tracking described above to provide a conjecture as to the reason for the changes in the properties of nanoparticles during the pressure decrease.As the silica nanospheres we used are synthesized with the St¨ober process,[43]there would be plenty of water molecules adsorbed on the particle’s surface.Moreover, as the chemically synthesized silica particles are typically amorphous and porous,[44]water molecules can be sealed inside the nanoparticles.As the pure silica’s absorption of 1064 nm laser light is negligible, the heating effect from the trapping laser on the nanoparticles comes mainly from the water molecules they contain.When the thermal conductivity of the system decreases with decreasing air pressure,the nanoparticle’s internal temperature is rising and the water molecules adsorbed on the particle surface is detaching from the particle,which results in a gentle decrease in the particle’s mass.However, as the water that is sealed inside the particle cannot be released,the particle’s temperature continues to rise with decreasing pressure.When the internal temperature of the particle exceeds the boiling point of water, the water inside the particle is boiled into vapor.As the temperature continues to rise, the vapor pressure inside the particle exceeds the upper limit that the particle’s sealing structure can tolerate.Water molecules are expelled from the particle’s crack in the form of steam.The blasted vapor rubs against the particle and brings more charge away with them.The loss of water could introduce a decrease in the oscillator’s eigenfrequency and calibration coefficient which has been confirmed by the experiment.[12,22,28,30]

    The sudden loss of the water molecules inside(or on the surface)of the silica nanoparticles cannot be explained by the loss of surface water layers.Because the water molecules are connected through hydrogen bonds which have a large range of bond energies and correspond to a wide range of desorption temperatures.Therefore,the commonly used Zhuravlev model,[45]which is based on hydrogen bond breaking to explain the dehydration process of silica particles, is unable to explain the abrupt mass loss phenomenon found in this work.Such a sudden change cannot be observed by conventional desorption analysis tools, such as thermal desorption spectrometry,[46]because they cannot work with an individual particle,and the properties of desorption vary considerably between different particles.

    6.Conclusion

    We demonstrate an electrostatic driving force assisted mass measurement method for an individual nanoparticle that does not require the knowledge of temperature.The method can be utilized in the investigation of temperature-dependent mass variation.For example, the observation of molecules desorption from a particle’s surface when the surface temperature is increased.With this method,we monitor the variation of the properties of optically levitated nanoparticles with air pressure,including mass,temperature,electric charge,calibration coefficient,and oscillation frequency.We find that there is a sudden loss of the nanoparticle’s mass when the pressure is decreased below a certain point.This phenomenon cannot be explained by the desorption of water molecules from the surface.This work provides a new tool for surface and structure analysis in nanomaterials science.

    Appendix A:Internal temperature measurement

    The internal temperature of the particle in Fig 4(b)is obtained based on the method in Ref.[32].When the particle is heated, the heat can be transferred to the colliding gas particle.This causes the difference between the temperature of impinging gas particleTimpand the temperature of the emerging gas particleTem.The relation betweenTimp,Temand the COM temperatureTCOMis

    TheTCOMis measured based on the energy equipartition theorem and the measurement result of the particle’s mass.The temperature of impinging gas particles equals the room temperature (293 K in our experiment).Thus, we can obtain the temperature of the emerging gas particle based on Eq.(A1).

    The relationship between the gas temperatures and the surface temperature of the particleTsuris given by the accommodation coefficient

    The accommodation coefficient is known and close to 0.777.[32]Thus, we can obtain the surface temperature of the particleTsurbased on Eq.(A2).Since the particle is in nano size,the internal temperature of the particleTintwould be the same as the surface temperature.Thus, we can obtain the internal temperature of particleTint.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant Nos.12104438 and 62225506),CAS Project for Young Scientists in Basic Research (Grant No.YSBR-049),and the Fundamental Research Funds for the Central Universities.

    猜你喜歡
    田原
    河流
    Efficient sampling for decision making in materials discovery*
    田原發(fā)表全新EP《2080》第二首單曲《WHY 2080》
    青年歌聲(2020年5期)2020-05-19 09:41:34
    處暑
    村上春樹的17歲
    田原:閱讀是私密的堡壘
    女友·花園(2015年5期)2015-05-30 10:48:04
    新干線上的暗戀計劃
    篆刻·書畫
    村上春樹的17歲
    尋找左紳
    色综合亚洲欧美另类图片| 日日爽夜夜爽网站| 久久久久性生活片| 少妇的丰满在线观看| 欧美日韩福利视频一区二区| 久久天躁狠狠躁夜夜2o2o| 天天添夜夜摸| 舔av片在线| 亚洲av第一区精品v没综合| 亚洲国产精品成人综合色| 99riav亚洲国产免费| 久久草成人影院| 在线国产一区二区在线| 日本黄色视频三级网站网址| 天堂动漫精品| 好男人在线观看高清免费视频| 丰满人妻熟妇乱又伦精品不卡| 亚洲欧美日韩东京热| av天堂在线播放| 黄色视频不卡| 麻豆国产av国片精品| 两个人看的免费小视频| 午夜亚洲福利在线播放| 国产精华一区二区三区| 婷婷丁香在线五月| 精品福利观看| 香蕉av资源在线| 男女视频在线观看网站免费 | 国产亚洲精品一区二区www| 久久久久久九九精品二区国产 | 脱女人内裤的视频| 久久久久久九九精品二区国产 | 无限看片的www在线观看| 又粗又爽又猛毛片免费看| 天堂√8在线中文| 久久午夜亚洲精品久久| 国产激情欧美一区二区| 999久久久国产精品视频| 国产私拍福利视频在线观看| 成年人黄色毛片网站| 成人18禁高潮啪啪吃奶动态图| 亚洲色图av天堂| 国产av在哪里看| 色综合站精品国产| 亚洲成a人片在线一区二区| 国产成人精品久久二区二区免费| 2021天堂中文幕一二区在线观| 欧美一区二区国产精品久久精品 | 女同久久另类99精品国产91| 国产成年人精品一区二区| 91国产中文字幕| 亚洲欧洲精品一区二区精品久久久| 亚洲最大成人中文| 亚洲片人在线观看| 日韩高清综合在线| 观看免费一级毛片| 少妇粗大呻吟视频| 99在线人妻在线中文字幕| 国模一区二区三区四区视频 | 午夜福利在线观看吧| 热99re8久久精品国产| 高潮久久久久久久久久久不卡| 999久久久精品免费观看国产| 久久精品国产清高在天天线| 欧美色视频一区免费| 精品久久久久久久久久免费视频| 久久国产精品影院| 99精品欧美一区二区三区四区| 国产黄a三级三级三级人| a在线观看视频网站| 久久午夜综合久久蜜桃| 一进一出抽搐gif免费好疼| 一二三四社区在线视频社区8| 给我免费播放毛片高清在线观看| 久久久精品大字幕| www.自偷自拍.com| 亚洲性夜色夜夜综合| 国产区一区二久久| 白带黄色成豆腐渣| 久久婷婷人人爽人人干人人爱| 亚洲国产欧美一区二区综合| 中文字幕久久专区| 午夜福利在线在线| 日本 欧美在线| 丰满人妻熟妇乱又伦精品不卡| 国产精品亚洲一级av第二区| 在线免费观看的www视频| 国产精华一区二区三区| 日韩欧美在线乱码| 巨乳人妻的诱惑在线观看| 日日干狠狠操夜夜爽| 成人三级做爰电影| av福利片在线观看| 男人舔女人下体高潮全视频| 在线观看午夜福利视频| 日日爽夜夜爽网站| 国产又色又爽无遮挡免费看| 男人的好看免费观看在线视频 | 叶爱在线成人免费视频播放| 女人被狂操c到高潮| 欧美性长视频在线观看| 欧美黄色片欧美黄色片| 免费在线观看亚洲国产| 成人国产综合亚洲| 国产成年人精品一区二区| 欧美日韩一级在线毛片| 夜夜夜夜夜久久久久| 怎么达到女性高潮| 欧美不卡视频在线免费观看 | 精品久久久久久久末码| 99热6这里只有精品| svipshipincom国产片| 国产精品亚洲美女久久久| 日本免费一区二区三区高清不卡| 日本a在线网址| 人妻久久中文字幕网| 777久久人妻少妇嫩草av网站| 国产高清激情床上av| 99riav亚洲国产免费| 中文字幕久久专区| 亚洲国产精品sss在线观看| 久久久久久久精品吃奶| 91大片在线观看| 亚洲电影在线观看av| 国产黄a三级三级三级人| 国产日本99.免费观看| 特级一级黄色大片| 久久中文看片网| 亚洲人成电影免费在线| 好看av亚洲va欧美ⅴa在| 男人舔女人下体高潮全视频| 午夜福利视频1000在线观看| 亚洲成av人片在线播放无| 巨乳人妻的诱惑在线观看| 久久精品成人免费网站| 亚洲中文日韩欧美视频| 日韩免费av在线播放| 亚洲美女视频黄频| 性色av乱码一区二区三区2| 69av精品久久久久久| x7x7x7水蜜桃| 精品一区二区三区av网在线观看| 757午夜福利合集在线观看| 两个人的视频大全免费| 在线观看66精品国产| 成人特级黄色片久久久久久久| 村上凉子中文字幕在线| 变态另类丝袜制服| 国产精品久久视频播放| 婷婷丁香在线五月| 岛国在线观看网站| 97人妻精品一区二区三区麻豆| 免费搜索国产男女视频| 日韩欧美在线二视频| 日韩精品中文字幕看吧| 少妇人妻一区二区三区视频| 变态另类丝袜制服| 美女扒开内裤让男人捅视频| 午夜福利高清视频| 久久天堂一区二区三区四区| 99国产综合亚洲精品| 操出白浆在线播放| 欧美3d第一页| 精品一区二区三区av网在线观看| 女同久久另类99精品国产91| av欧美777| 午夜亚洲福利在线播放| 性欧美人与动物交配| 国产精品98久久久久久宅男小说| 视频区欧美日本亚洲| 亚洲av电影不卡..在线观看| 老熟妇仑乱视频hdxx| 黄频高清免费视频| 免费一级毛片在线播放高清视频| 一级a爱片免费观看的视频| 日韩大码丰满熟妇| 亚洲一区二区三区不卡视频| 日韩欧美三级三区| 老司机午夜福利在线观看视频| 久久国产精品影院| 制服丝袜大香蕉在线| 99热这里只有精品一区 | 成人18禁在线播放| 亚洲自偷自拍图片 自拍| 久久久久亚洲av毛片大全| 女生性感内裤真人,穿戴方法视频| tocl精华| 精品久久久久久久久久免费视频| 熟女电影av网| 久久亚洲精品不卡| 亚洲无线在线观看| 国产成人aa在线观看| 黄色a级毛片大全视频| 国产亚洲av高清不卡| 欧美午夜高清在线| 久久久久久久精品吃奶| 1024手机看黄色片| 男女那种视频在线观看| 一级黄色大片毛片| 一a级毛片在线观看| 欧美性猛交╳xxx乱大交人| 99热6这里只有精品| 亚洲专区国产一区二区| 成在线人永久免费视频| 免费观看精品视频网站| 久久这里只有精品中国| 一边摸一边抽搐一进一小说| 最近最新中文字幕大全电影3| 久久香蕉精品热| 在线观看一区二区三区| 亚洲av第一区精品v没综合| 久久久久国产一级毛片高清牌| 欧美乱色亚洲激情| 无遮挡黄片免费观看| 午夜亚洲福利在线播放| 十八禁人妻一区二区| 91麻豆av在线| 欧美日本视频| 日本五十路高清| 久久久精品欧美日韩精品| 桃色一区二区三区在线观看| 国产免费男女视频| 十八禁网站免费在线| 老司机福利观看| 18禁观看日本| 嫁个100分男人电影在线观看| 在线观看舔阴道视频| 亚洲激情在线av| 欧美黄色淫秽网站| www.自偷自拍.com| 国产熟女午夜一区二区三区| 精品不卡国产一区二区三区| 免费观看人在逋| 中文字幕久久专区| 久久中文看片网| 久久久国产成人精品二区| 精品国产亚洲在线| 亚洲av第一区精品v没综合| 亚洲 欧美一区二区三区| 日韩 欧美 亚洲 中文字幕| 免费在线观看黄色视频的| 亚洲欧美精品综合一区二区三区| 黄频高清免费视频| 亚洲成av人片在线播放无| 99热只有精品国产| 亚洲国产精品久久男人天堂| 两个人的视频大全免费| 最近视频中文字幕2019在线8| 亚洲九九香蕉| 夜夜躁狠狠躁天天躁| 白带黄色成豆腐渣| 免费在线观看完整版高清| 听说在线观看完整版免费高清| 欧美大码av| 亚洲一区二区三区色噜噜| 国产精品一及| 亚洲人成电影免费在线| 男男h啪啪无遮挡| 大型黄色视频在线免费观看| a级毛片a级免费在线| 免费在线观看黄色视频的| 久久久久久久久中文| 久久久国产欧美日韩av| 午夜亚洲福利在线播放| 日韩欧美在线二视频| 久久精品91蜜桃| 男女做爰动态图高潮gif福利片| 久久午夜亚洲精品久久| 亚洲国产欧美网| 777久久人妻少妇嫩草av网站| 级片在线观看| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲成人久久爱视频| 亚洲中文日韩欧美视频| 午夜影院日韩av| 大型av网站在线播放| 久久午夜综合久久蜜桃| 悠悠久久av| 久久人妻福利社区极品人妻图片| 国产99久久九九免费精品| 久久精品aⅴ一区二区三区四区| aaaaa片日本免费| 国产午夜福利久久久久久| 69av精品久久久久久| 在线观看舔阴道视频| 99在线人妻在线中文字幕| 一本精品99久久精品77| 国产精品久久久av美女十八| 两人在一起打扑克的视频| 少妇粗大呻吟视频| 欧美在线黄色| 欧美日韩一级在线毛片| 午夜视频精品福利| 中国美女看黄片| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美另类亚洲清纯唯美| 搡老岳熟女国产| 在线看三级毛片| 久久久久久九九精品二区国产 | 2021天堂中文幕一二区在线观| 在线观看日韩欧美| 久久婷婷成人综合色麻豆| 中亚洲国语对白在线视频| 好看av亚洲va欧美ⅴa在| 91麻豆精品激情在线观看国产| 成年人黄色毛片网站| 黑人操中国人逼视频| 日本免费一区二区三区高清不卡| 舔av片在线| 色av中文字幕| 手机成人av网站| 国产欧美日韩一区二区三| 最近在线观看免费完整版| 成人永久免费在线观看视频| 国产精品久久久久久精品电影| 国产麻豆成人av免费视频| 国内精品一区二区在线观看| а√天堂www在线а√下载| 99久久99久久久精品蜜桃| 国产精品九九99| 久久久精品大字幕| 99精品欧美一区二区三区四区| 美女扒开内裤让男人捅视频| 国产高清激情床上av| 欧美成人免费av一区二区三区| 欧美日本亚洲视频在线播放| 首页视频小说图片口味搜索| 亚洲成人精品中文字幕电影| 久久草成人影院| 亚洲美女黄片视频| 久久草成人影院| 亚洲自拍偷在线| 精品一区二区三区四区五区乱码| 12—13女人毛片做爰片一| 两性夫妻黄色片| 日本成人三级电影网站| 国内毛片毛片毛片毛片毛片| 99热这里只有是精品50| 免费看a级黄色片| 1024视频免费在线观看| 99精品在免费线老司机午夜| 国产精品影院久久| 99久久无色码亚洲精品果冻| 亚洲 欧美一区二区三区| 欧美在线黄色| 可以在线观看的亚洲视频| 国产黄片美女视频| av超薄肉色丝袜交足视频| 白带黄色成豆腐渣| 久久精品成人免费网站| 亚洲电影在线观看av| 嫁个100分男人电影在线观看| 精品少妇一区二区三区视频日本电影| 一本久久中文字幕| 手机成人av网站| 啪啪无遮挡十八禁网站| 在线a可以看的网站| 69av精品久久久久久| 欧美日韩瑟瑟在线播放| 亚洲一码二码三码区别大吗| 亚洲自偷自拍图片 自拍| 免费观看人在逋| 亚洲自偷自拍图片 自拍| 制服丝袜大香蕉在线| 高潮久久久久久久久久久不卡| 日韩成人在线观看一区二区三区| 桃色一区二区三区在线观看| 神马国产精品三级电影在线观看 | 亚洲国产精品sss在线观看| 国产成人aa在线观看| 国产精品一区二区三区四区免费观看 | 一区二区三区国产精品乱码| 久久久久久大精品| netflix在线观看网站| 90打野战视频偷拍视频| 韩国av一区二区三区四区| 国产精品精品国产色婷婷| 久久久久免费精品人妻一区二区| 性色av乱码一区二区三区2| 国产精品乱码一区二三区的特点| 男女之事视频高清在线观看| 岛国在线观看网站| 亚洲精华国产精华精| 久久国产精品影院| tocl精华| 97碰自拍视频| 亚洲免费av在线视频| 2021天堂中文幕一二区在线观| 成年免费大片在线观看| 美女大奶头视频| 亚洲av电影不卡..在线观看| 在线永久观看黄色视频| 久久久精品大字幕| 香蕉av资源在线| 精品午夜福利视频在线观看一区| 每晚都被弄得嗷嗷叫到高潮| 国产精品久久久久久人妻精品电影| 波多野结衣巨乳人妻| 啦啦啦免费观看视频1| 最近在线观看免费完整版| 在线观看66精品国产| 国产精品精品国产色婷婷| 九色国产91popny在线| 国内少妇人妻偷人精品xxx网站 | 波多野结衣巨乳人妻| 久久久久久大精品| 欧美性长视频在线观看| 精品久久久久久久末码| 亚洲精品中文字幕在线视频| 午夜激情福利司机影院| 最好的美女福利视频网| 欧美另类亚洲清纯唯美| 日韩欧美三级三区| 久久 成人 亚洲| 最近视频中文字幕2019在线8| 久久精品亚洲精品国产色婷小说| 一个人观看的视频www高清免费观看 | 香蕉久久夜色| 免费人成视频x8x8入口观看| 夜夜看夜夜爽夜夜摸| 麻豆国产av国片精品| 大型黄色视频在线免费观看| 国产单亲对白刺激| 国产精品久久久人人做人人爽| 午夜久久久久精精品| 亚洲国产欧洲综合997久久,| 精品久久久久久久人妻蜜臀av| or卡值多少钱| 色老头精品视频在线观看| 中亚洲国语对白在线视频| 亚洲国产高清在线一区二区三| 欧美人与性动交α欧美精品济南到| 亚洲全国av大片| 老司机午夜十八禁免费视频| 国产真人三级小视频在线观看| 国内久久婷婷六月综合欲色啪| 美女高潮喷水抽搐中文字幕| 黄色毛片三级朝国网站| 色综合站精品国产| www.熟女人妻精品国产| 黄色女人牲交| 久久久久久久久免费视频了| 91成年电影在线观看| 亚洲一区二区三区不卡视频| 亚洲国产精品成人综合色| 欧美成人午夜精品| 18禁黄网站禁片午夜丰满| 午夜福利18| 欧洲精品卡2卡3卡4卡5卡区| 亚洲熟妇中文字幕五十中出| 日韩欧美在线乱码| 亚洲国产精品成人综合色| 亚洲熟女毛片儿| 久9热在线精品视频| 神马国产精品三级电影在线观看 | 97人妻精品一区二区三区麻豆| 国产精品久久电影中文字幕| 中文字幕人妻丝袜一区二区| 国产精品野战在线观看| 日本a在线网址| 小说图片视频综合网站| 国产成人aa在线观看| 天天躁狠狠躁夜夜躁狠狠躁| svipshipincom国产片| www.999成人在线观看| 天堂av国产一区二区熟女人妻 | 亚洲中文日韩欧美视频| 大型av网站在线播放| 国产精品久久久久久久电影 | 久久香蕉国产精品| 精品欧美一区二区三区在线| 最新美女视频免费是黄的| av天堂在线播放| 国产熟女午夜一区二区三区| 久久久久久免费高清国产稀缺| 欧美成人一区二区免费高清观看 | 九色国产91popny在线| 久久婷婷人人爽人人干人人爱| 91麻豆av在线| 日本五十路高清| 无人区码免费观看不卡| 12—13女人毛片做爰片一| 成年人黄色毛片网站| 一进一出抽搐gif免费好疼| 欧美3d第一页| 久久中文看片网| 午夜日韩欧美国产| 亚洲五月天丁香| 欧美一区二区精品小视频在线| 久久精品国产99精品国产亚洲性色| 亚洲美女视频黄频| 丁香六月欧美| 人成视频在线观看免费观看| 亚洲电影在线观看av| 国产日本99.免费观看| 草草在线视频免费看| 午夜精品一区二区三区免费看| 久久久精品欧美日韩精品| 国语自产精品视频在线第100页| 午夜精品在线福利| 少妇人妻一区二区三区视频| 国产在线精品亚洲第一网站| 欧美性猛交╳xxx乱大交人| 一二三四在线观看免费中文在| 日韩有码中文字幕| av国产免费在线观看| 精品一区二区三区av网在线观看| 免费观看人在逋| 亚洲国产高清在线一区二区三| 欧美色欧美亚洲另类二区| 国产免费av片在线观看野外av| 真人做人爱边吃奶动态| 欧美黑人巨大hd| 亚洲专区中文字幕在线| 色av中文字幕| 麻豆国产97在线/欧美 | 十八禁网站免费在线| 国产精品电影一区二区三区| 波多野结衣高清作品| 99精品在免费线老司机午夜| 国产av不卡久久| 丁香六月欧美| 久久久久久国产a免费观看| 黑人操中国人逼视频| 久久人妻福利社区极品人妻图片| 无限看片的www在线观看| 欧美成人性av电影在线观看| 曰老女人黄片| 1024视频免费在线观看| 一二三四在线观看免费中文在| 日韩大码丰满熟妇| 欧美三级亚洲精品| 人成视频在线观看免费观看| 麻豆一二三区av精品| 国产亚洲精品久久久久5区| 在线观看www视频免费| 久久精品国产99精品国产亚洲性色| 亚洲精品色激情综合| 国产伦一二天堂av在线观看| 欧美乱妇无乱码| 五月伊人婷婷丁香| 国产av麻豆久久久久久久| 母亲3免费完整高清在线观看| 少妇粗大呻吟视频| 日韩欧美在线二视频| 亚洲无线在线观看| 国产视频一区二区在线看| 成年免费大片在线观看| 欧美黑人欧美精品刺激| 成人高潮视频无遮挡免费网站| 好男人在线观看高清免费视频| 99re在线观看精品视频| 看片在线看免费视频| 麻豆av在线久日| 女人高潮潮喷娇喘18禁视频| 国产在线精品亚洲第一网站| 国产高清有码在线观看视频 | 欧美在线一区亚洲| 熟女电影av网| 亚洲人与动物交配视频| 久久人人精品亚洲av| 国产v大片淫在线免费观看| 18禁黄网站禁片免费观看直播| 校园春色视频在线观看| 在线永久观看黄色视频| 50天的宝宝边吃奶边哭怎么回事| 色综合站精品国产| 特级一级黄色大片| 亚洲五月天丁香| 亚洲精品中文字幕在线视频| 99热6这里只有精品| 一级a爱片免费观看的视频| 黄色丝袜av网址大全| 久久精品影院6| 日韩欧美在线乱码| 亚洲精品久久国产高清桃花| 日韩成人在线观看一区二区三区| 国产99久久九九免费精品| 欧美黑人巨大hd| 男女午夜视频在线观看| 亚洲人成网站高清观看| 性色av乱码一区二区三区2| 欧美一区二区精品小视频在线| 成人18禁在线播放| 在线观看美女被高潮喷水网站 | 禁无遮挡网站| 色噜噜av男人的天堂激情| 色综合婷婷激情| 俺也久久电影网| 美女午夜性视频免费| 在线国产一区二区在线| 久久九九热精品免费| 男女下面进入的视频免费午夜| 亚洲午夜理论影院| 俺也久久电影网| 日韩 欧美 亚洲 中文字幕| 人人妻人人看人人澡| 香蕉国产在线看| 久久精品aⅴ一区二区三区四区| 99国产精品99久久久久| 欧美成人性av电影在线观看| 精品国产亚洲在线| 国产亚洲欧美98| 99久久精品热视频| 亚洲精品av麻豆狂野| 性色av乱码一区二区三区2| 精品国产超薄肉色丝袜足j| 亚洲国产中文字幕在线视频| 最近视频中文字幕2019在线8| 三级国产精品欧美在线观看 | 小说图片视频综合网站| 国产v大片淫在线免费观看| 久久久国产精品麻豆| 欧美精品亚洲一区二区| 亚洲成人久久爱视频|