• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Velocity Dispersion σaper Aperture Corrections as a Function of Galaxy Properties from Integral-field Stellar Kinematics of 10,000 MaNGA Galaxies

    2023-09-03 01:36:06KaiZhuRanLiXiaoyueCaoShengdongLuMicheleCappellariandShudeMao

    Kai Zhu,Ran Li,Xiaoyue Cao,Shengdong Lu,Michele Cappellari,and Shude Mao

    1 National Astronomical Observatories,Chinese Academy of Sciences,Beijing 100101,China;ranl@bao.ac.cn

    2 Institute for Frontiers in Astronomy and Astrophysics,Beijing Normal University,Beijing 102206,China

    3 School of Astronomy and Space Science,University of Chinese Academy of Sciences,Beijing 100049,China

    4 Department of Astronomy,Tsinghua University,Beijing 100084,China

    5 Sub-department of Astrophysics,Department of Physics,University of Oxford,Denys Wilkinson Building,Keble Road,Oxford,OX1 3RH,UK

    Abstract The second moment of the stellar velocity within the effective radius,denoted by ,is a crucial quantity in galaxy studies,as it provides insight into galaxy properties and their mass distributions.However,large spectroscopic surveys typically do not measure σe directly,instead providing σaper,the second moment of the stellar velocity within a fixed fiber aperture.In this paper,we derive an empirical aperture correction formula,given by σaperσe=(Raper Re)α,using spatially resolved stellar kinematics extracted from approximately 10,000 Sloan Digital Sky Survey–Mapping Nearby Galaxies at Apache Point Observatory integral field unit observations.Our analysis reveals a strong dependence of α on the r-band absolute magnitude Mr, g–i color,and Sérsic index nSer,where α values are lower for brighter,redder galaxies with higher Sérsic indices.Our results demonstrate that the aperture correction derived from previous literature on early-type galaxies cannot be applied to predict the aperture corrections for galaxies with intermediate Sérsic indices.We provide a lookup table of α values for different galaxy types,with parameters in the ranges of ?18>Mr>?24,0.4

    Key words: galaxies: evolution– galaxies: formation– galaxies: kinematics and dynamics– galaxies: structure

    1.Introduction

    Stellar kinematics provide crucial information for understanding the mass distributions of galaxies.The advent of integral field spectroscopy (IFS) surveys,such as the Spectroscopic Areal Unit for Research on Optical Nebulae(SAURON;de Zeeuw et al.2002),ATLAS3D(Cappellari et al.2011),Calar Alto Legacy Integral Field Area (CALIFA;Sánchez et al.2012),Sydney/AAO Multi-object Integral-field spectrograph(SAMI;Bryant et al.2015),and Mapping Nearby Galaxies at Apache Point Observatory (MaNGA;Bundy et al.2015),has allowed for spatially resolved stellar kinematics,which,when combined with well-established dynamical modeling methods,such as Schwarzschild modeling (Schwarzschild 1979) and Jeans Anisotropic Modeling (JAM;Cappellari 2008,2020),can provide accurate measurements of the mass distribution of galaxies(Cappellari et al.2006,2013;Scott et al.2015;Li et al.2018;Zhu et al.2018,Zhu et al.2023a).The scaling relations between the dynamical properties and the stellar populations of the galaxies can be explored in detail(e.g.,Cappellari 2016;Li et al.2018;Lu et al.2023).

    However,the high cost of obtaining spatially resolved kinematics limits the applicability of IFS to a significantly larger number of local galaxies,such as the millions of galaxies in the Sloan Digital Sky Survey (SDSS),or distant galaxies at high redshift that cannot be spatially resolved.Thus,the second moment of stellar velocity within an aperture σaper,which is measured using single-fiber spectroscopy,remains a fundamental quantity for understanding the dynamics of galaxies.Important scaling relations,such as fundamental plane(Djorgovski &Davis 1987;Dressler et al.1987;Jorgensen et al.1995)and mass plane(e.g.,Auger et al.2010;Cappellari et al.2013;Zhu et al.2023b),are derived with respect to σaperas well.However,galaxies have different angular sizes spanning a wide dynamic range,but the fiber size is fixed.As a result,velocity moments are not measured coherently for the entire galaxy sample.Therefore,researchers need to correct the measured velocity dispersion to a physically meaningful radius,which is typically the effective radius of a galaxy(Auger et al.2010;Chen et al.2019;de Graaff et al.2021).

    Earlier studies on velocity dispersion aperture corrections focused on early-type galaxies,with velocity dispersion profiles typically described as a power-law function of the form shown in Equation (2).Jorgensen et al.(1995) derived a power-law slope of α=?0.04 for the early-type galaxies in nine clusters,while Mehlert et al.(2003)found α=?0.063 for 35 early-type galaxies in the Coma cluster.A later study based on the SAURON IFS data analyzed 40 early-type galaxies and reported a slope of α=?0.066±0.035 (Cappellari et al.2006).The aperture corrections were extended to 300 CALIFA galaxies across the Hubble sequence (Falcón-Barroso et al.2017),which found a consistent power-law slope for the earlytype galaxies(α=?0.055±0.020)and a strong variation of α with magnitude (or stellar mass) for the late-type galaxies(α=0.047±0.021 forMr?20).Despite the α variation with magnitude,the non-negligible scatter in a givenMrbin(especially for the late-type galaxies ofMr>?20) indicates a potential secondary contributor to the variation of α.The unprecedently large sample of the MaNGA survey provides the ability to perform a further and more comprehensive analysis of the velocity dispersion aperture correction.Recently,de Graaff et al.(2021) derived α=?0.033±0.003 from the MaNGA data,but they only selected a subset of MaNGA sample (702 galaxies).

    In this work,we take advantage of the full sample(~10,000)of MaNGA IFS observations to perform a more detailed classification of galaxies and try to obtain more accurate aperture corrections for each type of galaxy.We investigate the relations between the shape of velocity dispersion profiles(quantified by a power-law form) and other properties,e.g.,magnitude,color,and Sérsic index (Sersic 1968).By selecting galaxies within a narrow parameter range,we aim to eliminate the effect of sample bias and provide a lookup table that can be applied to various types of galaxies,resulting in more precise aperture corrections.

    The organization of this paper is as follows.In Section 2,we provide a brief overview of the stellar kinematic data and the MaNGA sample.Our main results are presented in Section 3.Finally,we summarize our conclusions in Section 4.We adopt a standard cosmology with Ωm=0.3,ΩΛ=0.7,andH0=70 km s?1Mpc?1throughout this work.

    2.Data

    2.1.The MaNGA Survey

    As a part of the SDSS-IV,the MaNGA (Bundy et al.2015)is an integral field unit (IFU) survey that uses tightly packed arrays of optical fibers to obtain spectral measurements of approximately 10,000 nearby galaxies.Using the Baryon Oscillation Spectroscopic Survey spectrographs (Smee et al.2013;Drory et al.2015) on the Sloan 2.5 m telescope (Gunn et al.2006)at the Apache Point Observatory,this survey covers a radial range up to 1.5 effective radii (Re) for the primary+sample and up to 2.5Refor the secondary sample (Law et al.2015;Wake et al.2017).MaNGA provides spatially resolved spectra with a spaxel size of 0.5〞,and the averageg-band pointspread function (PSF) FWHM throughout the survey is about 2.54〞 (Law et al.2016).

    The spectral measurements across the wavelength range of 3600–10300 ? have a spectral resolution of σ=72 km s?1(Law et al.2016).The raw observational data require spectrophotometric calibration (Yan et al.2016),which is performed using the Data Reduction Pipeline(DRP)(Law et al.2016).The DRP processes the data to produce threedimensional data cubes that can be used to create spatially resolved maps of the galaxies under observation.

    2.2.Stellar Kinematics

    The Data Analysis Pipeline (DAP;Belfiore et al.2019;Westfall et al.2019) is responsible for producing higher-level products,such as stellar kinematics,nebular emission-line properties,and spectral indices of galaxies.The stellar kinematic information is derived from the IFU spectra using the PPXF software (Cappellari &Emsellem 2004;Cappellari 2017,2022),which fits absorption lines with a subset of the Medium resolution Isaac Newton Telescope Library of Empirical Spectra (MILES;Sánchez-Blázquez et al.2006;Falcón-Barroso et al.2011) stellar library,MILES-HC.The spectra are Voronoi binned (Cappellari &Copin 2003) to S/N=10 to ensure the reliability of the derived stellar velocity dispersions,which are presented as a combination of the intrinsic velocity dispersion of stars (σ*) and the quadrature difference between the instrumental dispersion of the galaxy template and the MaNGA data (σdiff).The velocity dispersion of the galaxy can be obtained using the equation,where σobsis the observed velocity dispersion (Westfall et al.2019).In this work,we make use of the maps of stellar velocity,stellar velocity dispersion,andg-band flux,which are taken from the DAP outputs6https://www.sdss.org/dr17/manga/manga-data/data-access/.

    2.3.Sample Selection

    We obtain 10,735 DAP outputs from SDSS DR17(Abdurro’uf &Aerts 2022),which includes 10,296 observations of galaxies and the ancillary program targets,such as the Coma,IC342,M31,and globular clusters.After excluding 151 flagged data cubes that have been identified as critical quality or unusual quality from 10,296 galaxy observations,there are 10,145 high-quality data cubes corresponding to 10,010 unique galaxies and 135 repeat observations.The sample has a nearly uniform distribution of stellar masses in the range of 109–6×1011M⊙and a median redshift of approximately 0.03 (Wake et al.2017).

    In this work,we use the stellar kinematics of 10,010 unique galaxies but remove the galaxies that have been identified as having bad stellar kinematics (Zhu et al.2023a).Finally,we obtain a sample of 9132 galaxies.The distribution of the whole sample is presented in Figure 1,in which the colorg–i,therband absolute magnitudeMr,and the Sérsic index are taken from the PyMorph catalog (Domínguez Sánchez et al.2022).As shown in Figure 1,the sample spans a wide range of galactic properties:from the faint(Mr=?18 mag)to the bright(Mr=?24 mag) and from the blue (g–i=0.4 mag) to the red(g–i=1.6 mag).The large sample and various types of galaxies (i.e.,the red sequence,the blue cloud,and the green valley)enable us to comprehensively study the aperture effects on the velocity dispersion.

    Figure 1.Color–magnitude diagram,with symbols color-coded by the Sérsic index.All the quantities(r-band absolute magnitude,g–i color,and Sérsic index nSer)are taken from the PyMorph catalog(Domínguez Sánchez et al.2022).The gray contours are the two-dimensional number density distributions,while the gray histograms on the top and right are the one-dimensional distributions (normalized to unity).

    3.Results

    3.1.Integrated Stellar Velocity Dispersion Profiles

    We derive the integrated stellar velocity dispersion within a set of apertures and obtain the aperture profiles for the whole sample.The integrated velocity dispersion is defined as the flux-weighted second velocity moments within a given elliptical aperture of areaπ=A,written as

    whereVk,σk,andFkare the stellar velocity,stellar velocity dispersion,andg-band flux in thekth spaxel,respectively.Following Cappellari et al.(2013,Section 3.3.3),we choose to use the elliptical aperture instead of the circular aperture to properly account for the inclination effects.Using elliptical apertures is also more appropriate for flat galaxies,which are typically dominated by rotation.If a circular aperture defined by the effective radius is used,the peak of rotation may be located outside the aperture,resulting in an underestimated σaper.Because theVand σ of DAP outputs are derived from the Voronoi binned spectra,we assign the binned values to each 0.5〞×0.5〞spaxel belonging to each Voronoi bin.We calculate σaperwithin the elliptical apertures with fixed ellipticity and position angle (PA),which are derived from the singlecomponent Sérsic fits (Domínguez Sánchez et al.2022).

    In Figure 2,we present an example to illustrate the calculation of integrated stellar velocity dispersion within a given elliptical aperture.In this figure,the pixels within the red ellipse of areaπ=Aare adopted to estimate the effective velocity dispersion σeusing Equation (1).The effective velocity dispersion σeis demonstrated to agree well with that measured from a single fit on the stacked spectra within the same aperture(Cappellari et al.2013).Moreover,we also calculate the integrated velocity dispersion within a circular aperture with a diameter of 3〞,like the SDSS single fibers using Equation(1).Then,we match the galaxies with the spectroscopic catalog of SDSS DR87https://www.sdss3.org/dr8/data_access.php(Aihara et al.2011) and compare the velocity dispersion values obtained with two methods in Figure 3.To ensure that the velocity dispersions derived from the SDSS single-fiber spectra are reliable,we only select the spectral measurements with median S/N>10.As shown in Figure 3,we perform a linear fit to the two quantities with the LTS_LINEFIT8https://pypi.org/project/ltsfit/software (Cappellari et al.2013),which combines the least-trimmed-squares robust technique of Rousseeuw&Driessen(2006)into a least-squares fitting algorithm and allows for the intrinsic scatter and errors in all coordinates.As shown in the figure,the slope(b=0.9784±0.0019)and the small rms scatter(Δ=11 km s?1)denote the high consistency between the two measurements,while most detected outliers are potential unreliable measurements with velocity dispersions below the resolution limit (100 km s?1) of the SDSS spectrograph.This justifies the accuracy of Equation (1) in estimating the integrated stellar velocity dispersion within a given aperture from the IFU kinematics.

    Figure 2.Illustration for the definition of σaper(MaNGA ID:12-180432).The panels from left to right are the maps of stellar velocity,stellar velocity dispersion,and g-band flux.The gray circle denotes the FWHMPSF/2.355,while the red ellipse is the half-light isophote of area π=A ,where Re is the effective radius.The Re,ellipticity,and PA are taken from the single Sérsic fits(Domínguez Sánchez et al.2022).The σe is calculated using Equation(1)and the pixels within the red ellipse,while σaper values are determined within the concentric ellipses of area π=A .

    Figure 3.Comparison of the stellar velocity dispersion derived from the MaNGA survey with the SDSS DR8 measurements(Aihara et al.2011)within the same circular aperture of 3〞diameter.The velocity dispersions of MaNGA are computed using Equation (1),while those from SDSS DR8 are from the single fit of the integrated spectra with the same aperture.The black solid,red dashed,and red dotted lines are the best-fitting,1σ,and 2.6σ lines obtained using the LTS_LINEFIT procedure(with clip=3).The coefficients of the bestfitting y=a+b×(x ?x0) are shown in the panel,while Δ is the observed rms scatter.The green symbols are the detected outliers of LTS_LINEFIT beyond 3σ confidence level.

    For each galaxy,we calculate the σaperwithin a set of elliptical apertures of areaA=.Raperranges from 0.1Reto 2.5Re,with a linear step of 0.1Re.We use theReand the effective velocity dispersion σeas normalization factors to rescale the integrated velocity dispersion profiles.The normalized profiles are presented in Figure 4,which are colored by the SDSSr-band (Stoughton et al.2002) absolute magnitudeMr(left panel),the colorg–i(middle panel),and the Sérsic indexnSer(right panel).As can be seen,the σaperprofiles vary significantly with different galactic properties: the brighter and redder galaxies with higher Sérsic index tend to have decreasing σaperprofiles,while the fainter and bluer galaxies with lower Sérsic index show increasing trends toward outside.The increasing (decreasing) trends of σaperprofiles are due to their differentV/σ profiles.The σaperof massive and red galaxies with higher Sérsic index tend to be dispersion dominated and the dispersions decrease with increasing radius,while the less massive and blue galaxies are rotation supported and the σaperprofiles increase in tandem with rotation curves.

    Figure 4.The stellar velocity dispersion integrated within elliptical apertures (the area equals π) as a function of radius.The profiles are normalized by the effective radius Re and the dispersion σe within an elliptical aperture of area A=πRe.The profiles are colored by r-band absolute magnitude Mr (left), g–i color(middle),and Sérsic index nSer (right).

    The dependencies of σaperprofiles on other galactic properties are consistent with the large variations of σaperprofiles across a wide range of morphological types observed in Falcón-Barroso et al.(2017),which analyzed the σaperprofiles for 300 CALIFA galaxies (Sánchez et al.2012).However,the significantly larger sample (approximately 10,000 galaxies) of MaNGA enables a more detailed analysis and provides more accurate aperture corrections for integrated velocity dispersion measurements for specific types of galaxies.

    3.2.Slopes of σaper Profiles for Different Types of Galaxies

    Following previous works in the literature (Jorgensen et al.1995;Cappellari et al.2006;Falcón-Barroso et al.2017),we use a power-law function to quantify the slopes of the normalized σaperprofiles as

    We fit the individual σaperprofiles for each galaxy within a range of [Rin,Rout] defined as

    where the FWHM is ing-band(from DAP),andRmaxis the largest radius of Voronoi bins,to avoid the PSF effects on the determination of α parameters.As discussed in Section 6 of Falcón-Barroso et al.(2017),beam smearing may affect the integrated velocity dispersion at the very center of galaxies and lead to potential bias in measuring α parameters.However,we argue here that α will not be clearly affected because most data points of the σaperprofiles are the integrated velocity dispersion within much larger apertures compared to the dispersion of PSF.Following Falcón-Barroso et al.(2017),we tried to convolve the MaNGA PSF to the model σaperprofiles when fitting them to the observed ones.In Figure 5,we present the comparison between the α with PSF deconvolved (fitting in a range of [0.1Re,Rmax]) and the α with PSF un-deconvolved (fitting in a range of [FWHM/2.355,Rmax]),and find the two values are in good agreement with a slope of 0.9637±0.0017 and a small rms scatter of Δ=0.018 using the LTS_LINEFIT procedure.Practically,aperture correction is usually applied to correct the velocity second moment measured within a fiber aperture that is comparable to or even larger than the effective radius of the galaxy,to the effective radius.The PSF smearing effect at the inner region of the MaNGA data is not expected to introduce a significant bias to this correction.In our project,we did not include the PSF effect in our fiducial analysis.

    Figure 5.Comparison of the power-law index α from fitting within FWHMPSF2.355

    We divide the full sample into different subsamples based on theirr-band absolute magnitudeMrandg–icolor.There are sixMrbins ranging from ?18 to ?24(from faint to bright)in a step of 1 mag and six bins ofg–icolor from 0.4 to 1.6(from blue to red).In Figure 6,we present the σaperprofiles color-coded by Sérsic index,which still show large variations in a given narrow bin of(Mr,g–i).Thus,in each (Mr,g–i) bin,we further split the galaxies into different Sérsic index groups,i.e.,nSer<2,2

    Figure 6.Normalized integrated velocity dispersion profiles in different Mr and g–i bins,where Mr is the r-band absolute magnitude and g–i color is the difference between g-band and i-band absolute magnitudes.The σaper profiles are colored by the Sérsic index nSer.In each panel within a given (Maper, g–i) bin,the biweight mean profiles for different nSer are shown as blue circles(nSer<2),green triangles(2

    We create a lookup table9A Python script is provided in https://github.com/kaizhu-astro/aperture_correction to obtain the correction factors from the lookup table.(Table 1) of aperture corrections for various types of galaxies by assuming a power-law function of σaperprofiles.The table lists the mean and standard deviation of α,which are determined from bootstrapping with 100 iterations,for galaxies within given (Mr,g–i,nSer) bins.

    Table 1Lookup Table for the Aperture Correction Factors of Integrated Stellar Velocity Dispersion

    In Figure 7,we investigate the relations between α parameters andMrfor galaxies with differentg–icolor and Sérsic index.Overall,the α values are smaller for brighter(smallerMr),redder(higherg–i)galaxies with highernSer.The smaller α parameters(i.e.,the galaxies have larger central σaper)for galaxies with highernSerare due to the fact that a largernSerimplies a greater concentration of central stellar mass,resulting in an increased central σaperand a steeper σaperprofile.

    Figure 7.Power-law index α of integrated velocity dispersion profiles as a function of r-band absolute magnitude Mr for different g–i color (see the legends in the right panel)and Sérsic index nSer(see the top of each panel).The horizontal black dashed line is α=?0.04 from Jorgensen et al.(1995),the horizontal black dashed–dotted line is α=?0.063 from Mehlert et al.(2003),and the black solid line is α=?0.066 from the SAURON project(Cappellari et al.2006).The value of MaNGA subset (brown horizontal line),α=?0.033,is taken from de Graaff et al.(2021),whose sample is dominated by the high Sérsic index galaxies but is not selected based on morphology.The gray-shaded squares are taken from the CALIFA survey (Falcón-Barroso et al.2017),which derived α for both early-type and late-type galaxies.

    The left panel of Figure 7 shows that for galaxies with 0Mr>?20 bin,as compared to the α values of CALIFA late-type galaxies(Falcón-Barroso et al.2017).In the brightest bin (?22>Mr>?24),the α values of MaNGA late-type galaxies tend to be slightly smaller than those in Falcón-Barroso et al.(2017),likely due to the latter deriving values from galaxies with positive α instead of selecting galaxies based on Sérsic index or morphology.

    Similar but weaker trends,where brighter and redder galaxies have smaller α,are also observed in the sample with 2

    Our results for the 4

    The results of this paper demonstrate that the aperture correction derived from previous literature on early-type galaxies cannot be applied to predict the aperture corrections for galaxies with intermediate Sérsic indices,regardless of their color.

    3.3.Corrections for the Velocity Dispersion Measured within a Circular Aperture

    The clear trends that α varies withMr,g–i,andnSerhighlight the enhanced accuracy of aperture corrections in this study.However,it is difficult to apply such aperture corrections in reality due to the fact of circular apertures in single-fiber observations.To further account for the effect of aperture shape,we also calculate the σaper,circ,which is also defined as Equation(1)but within a circular aperture with a radius ofRaper.We fit the σaper,circprofiles for each galaxy,which are normalized as

    to obtain the power-law index αcirc.The αcirccan be applied in real single-fiber observations to obtain the σe.

    In Figure 8,we show the αcirc?α as a function of axial ratioq≡b/a.As can be seen,the systematic difference between α and αcircis negligible for galaxies withq>0.4,while flat galaxies(q<0.4)tend to have smaller αcircthan α.Given the small fraction(~20%)of galaxies withq<0.4 in our sample,we do not present the αcircvalues in each (Mr,g–i,nSer),which are expected to be similar to α.As shown in the Appendix,similar trends can be seen if replacing α in Figure 7 with αcirc.However,we also found that the biweight mean σaper,circ/σeprofiles in some(Mr,g–i,nSer)bins cannot be well described by the function,especially for thenSer<2 galaxies that may suffer from strong inclination effects.This is likely due to the fact that the normalization of σaper,circ/σeis nonphysical and will bring uncertainties when stacking the normalized profiles in a given(Mr,g–i,nSer)bin.Thus,we choose to only present the α values and derive an empirical relation between α and αcirc,which relates to the axial ratioqin the form of

    Figure 8.The αcirc ?α as a function of axial ratio q.The α and αcirc are derived from Equations (2) and (4),respectively,while the q is derived from Sérsic fits (Domínguez Sánchez et al.2022).The black dashed curve and the gray-shaded region are the median value and [16th,84th] percentiles.The red curve is the best-fitting empirical relation for all galaxies.

    One can use Table 1 to obtain α in a given (Mr,g–i,nSer) bin and then use Equation (5) to obtain the αcircif necessary(q<0.4),but one should also be aware of the large scatter of(αcirc?α) for very flat galaxies.

    4.Conclusions

    We conducted a comprehensive analysis of the aperture corrections for the integrated stellar velocity dispersion σaperusing the full MaNGA sample.With a large sample size of approximately 10,000 galaxies,we were able to study aperture corrections in detail for a diverse range of galaxy types(Figure 1)for the first time.We derived the σaperprofiles for the entire sample (Figure 4) and used a power-law function(Equation (2)) to quantify the profiles of different subsamples based on theirr-band absolute magnitudeMr,g–icolor,and Sérsic indexnSer(Figure 6).The relationships between the power-law index α and the three properties (Mr,g–i,andnSer)are presented in Table 1 and Figure 7.

    Our analysis revealed several important findings regarding the aperture corrections of the integrated stellar velocity dispersion σaper.First,we observed decreasing trends of the power-law index α with increasingMr,redderg–icolor,and higher Sérsic indexnSer.While the α values of early-type galaxies with highnSer(4

    In addition,we established an empirical relation between the power-law index α and αcirc,as shown in Equation (5).Here,αcircis defined as the power-law index derived from the velocity dispersion profile measured within circular apertures,which can be used to calculate σefor circular apertures with any given radius defined by the size of observational fiber.We believe that our findings will enable more precise aperture corrections for single-fiber spectroscopic survey,such as those from the SDSS and Dark Energy Spectroscopic Instrument survey.However,our empirical relations are derived from the MaNGA sample with a median redshift ofz=0.03,and some care should be taken when extrapolated to higher redshift galaxies.A possible solution could be using the higher redshift IFS observations (e.g.,Multi Unit Spectroscopic Explorer) to calibrate the relations.

    Acknowledgments

    We acknowledge the support of the National Natural Science Foundation of China(Nos.11988101 and 12022306),National Key R&D Program of China(No.2022YFF0503403),Ministry of Science and Technology of China(No.2020SKA0110100),science research grants from the China Manned Space Project(Nos.CMS-CSST-2021-B01 and CMS-CSST-2021-A01),CAS Project for Young Scientists in Basic Research (No.YSBR-062),and K.C.Wong Education Foundation.

    Funding for the Sloan Digital Sky Survey (SDSS)-IV has been provided by the Alfred P.Sloan Foundation,the U.S.Department of Energy’s Office of Science,and the participating institutions.

    SDSS-IV acknowledges support and resources from the Center for High Performance Computing at the University of Utah.The SDSS website is www.sdss.org.

    SDSS-IV is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS Collaboration,including the Brazilian Participation Group;Carnegie Institution for Science;Carnegie Mellon University;Center for Astrophysics—Harvard and Smithsonian;the Chilean Participation Group;the French Participation Group;Instituto de Astrofísica de Canarias;The Johns Hopkins University;Kavli Institute for the Physics and Mathematics of the Universe/University of Tokyo;the Korean Participation Group;Lawrence Berkeley National Laboratory;Leibniz-Institut für Astrophysik Potsdam;Max-Planck-Institut für Astronomie (MPIA Heidelberg);Max-Planck-Institut für Astrophysik (MPA Garching);Max-Planck-Institut für Extraterrestrische Physik;National Astronomical Observatories of China;New Mexico State University;New York University;University of Notre Dame;Observatório Nacional/Ministério da Ciência,Tecnologia e Inova??es;The Ohio State University;Pennsylvania State University;Shanghai Astronomical Observatory;United Kingdom Participation Group;Universidad Nacional Autónoma de México;University of Arizona;University of Colorado Boulder;University of Oxford;University of Portsmouth;University of Utah;University of Virginia;University of Washington;University of Wisconsin;Vanderbilt University;and Yale University.

    Appendix Tests on Using αcirc to Predict σaper,circ Profiles

    We present two figures(Figures A1 and A2)that are similar to Figures 6 and 7,but σaperprofiles and α are replaced with σaper,circprofiles and αcirc,respectively.We do not recommend directly using αcircto predict σaper,circprofiles.See the text in Section 3.3 for a detailed discussion.

    Figure A1. The same as Figure 6,but replacing σaper with σaper,circ.

    Figure A2. The same as Figure 7,but replacing α with αcirc.

    ORCID iDs

    日本免费在线观看一区| 精品国产露脸久久av麻豆| 国产女主播在线喷水免费视频网站| 欧美bdsm另类| 综合色丁香网| 蜜桃亚洲精品一区二区三区| 久久久欧美国产精品| 夫妻性生交免费视频一级片| 亚洲欧洲国产日韩| 18禁在线无遮挡免费观看视频| 美女视频免费永久观看网站| 伊人久久精品亚洲午夜| 国产精品偷伦视频观看了| 一边亲一边摸免费视频| 精品人妻熟女av久视频| 国产又色又爽无遮挡免| 蜜臀久久99精品久久宅男| av国产精品久久久久影院| 嫩草影院入口| 欧美成人午夜免费资源| av在线亚洲专区| 精品熟女少妇av免费看| 久久99热这里只有精品18| 青青草视频在线视频观看| 国产人妻一区二区三区在| 高清毛片免费看| av在线亚洲专区| 久久热精品热| 我的女老师完整版在线观看| 视频中文字幕在线观看| 女人被狂操c到高潮| 午夜免费观看性视频| 国产精品久久久久久久电影| 在线观看一区二区三区| 亚洲aⅴ乱码一区二区在线播放| 久久久久性生活片| 成人欧美大片| 国产成人精品久久久久久| 一级毛片 在线播放| 久久精品久久精品一区二区三区| 免费黄网站久久成人精品| 色5月婷婷丁香| 日韩一本色道免费dvd| 精品午夜福利在线看| 午夜福利视频精品| 直男gayav资源| 国产欧美亚洲国产| 黄片wwwwww| 日本av手机在线免费观看| 亚洲欧美一区二区三区国产| 韩国高清视频一区二区三区| 欧美精品国产亚洲| 欧美人与善性xxx| 亚洲人与动物交配视频| 国产v大片淫在线免费观看| 乱码一卡2卡4卡精品| 人妻 亚洲 视频| 欧美日本视频| 波野结衣二区三区在线| 三级国产精品欧美在线观看| 午夜福利在线在线| 少妇人妻 视频| 在线观看三级黄色| av在线天堂中文字幕| 一二三四中文在线观看免费高清| 日本一二三区视频观看| 国产精品一区www在线观看| 一级av片app| 国产91av在线免费观看| 久久久久网色| 久久久久性生活片| 色婷婷久久久亚洲欧美| 美女cb高潮喷水在线观看| 亚洲国产最新在线播放| 色视频在线一区二区三区| 嫩草影院入口| 久久久久性生活片| 亚洲成人一二三区av| 欧美成人午夜免费资源| 国产大屁股一区二区在线视频| tube8黄色片| 午夜视频国产福利| 欧美激情久久久久久爽电影| 国产熟女欧美一区二区| 欧美亚洲 丝袜 人妻 在线| 久久影院123| a级毛色黄片| 高清视频免费观看一区二区| 99久久精品热视频| 成年人午夜在线观看视频| 男女无遮挡免费网站观看| 日韩一本色道免费dvd| 我要看日韩黄色一级片| 国产在线一区二区三区精| 亚洲成人av在线免费| 各种免费的搞黄视频| 日本欧美国产在线视频| 亚洲精华国产精华液的使用体验| 亚洲av成人精品一二三区| 一区二区三区免费毛片| 国产亚洲av片在线观看秒播厂| av.在线天堂| 亚洲内射少妇av| 久久精品夜色国产| 国产片特级美女逼逼视频| 麻豆成人午夜福利视频| 又爽又黄无遮挡网站| 麻豆成人av视频| 在线观看av片永久免费下载| 2022亚洲国产成人精品| 国产精品偷伦视频观看了| 免费不卡的大黄色大毛片视频在线观看| 精品一区在线观看国产| 成人漫画全彩无遮挡| 亚洲精品久久午夜乱码| 亚洲精品日本国产第一区| 国产精品久久久久久久久免| 免费人成在线观看视频色| www.av在线官网国产| 亚洲av中文av极速乱| 亚洲怡红院男人天堂| 91久久精品国产一区二区三区| 一区二区三区免费毛片| 免费看av在线观看网站| 欧美97在线视频| 亚洲av二区三区四区| 国产爱豆传媒在线观看| 91在线精品国自产拍蜜月| 丝瓜视频免费看黄片| 高清午夜精品一区二区三区| 成人漫画全彩无遮挡| 国产91av在线免费观看| 日本免费在线观看一区| 国产精品女同一区二区软件| 久久精品国产亚洲av涩爱| 精品久久久久久久久亚洲| 91精品伊人久久大香线蕉| videos熟女内射| 交换朋友夫妻互换小说| av国产精品久久久久影院| 国产精品蜜桃在线观看| 精品国产露脸久久av麻豆| 精品久久久久久久久av| 精品99又大又爽又粗少妇毛片| 美女脱内裤让男人舔精品视频| 国产成年人精品一区二区| 亚洲欧美一区二区三区国产| 夫妻性生交免费视频一级片| 综合色av麻豆| 亚洲人成网站在线播| 你懂的网址亚洲精品在线观看| 国产黄a三级三级三级人| 日本黄色片子视频| 熟女电影av网| 一级毛片久久久久久久久女| 国产色爽女视频免费观看| 国产精品久久久久久久电影| 亚洲欧洲国产日韩| 有码 亚洲区| 亚洲精品国产av成人精品| 中文字幕亚洲精品专区| 欧美日本视频| 国产精品.久久久| 亚洲真实伦在线观看| 欧美zozozo另类| 国产免费又黄又爽又色| 日本午夜av视频| 欧美日韩国产mv在线观看视频 | 亚洲欧美成人精品一区二区| 菩萨蛮人人尽说江南好唐韦庄| 一本一本综合久久| 免费看不卡的av| 26uuu在线亚洲综合色| 99久国产av精品国产电影| 精品久久久久久久人妻蜜臀av| eeuss影院久久| 国内精品宾馆在线| 99久久九九国产精品国产免费| 日韩三级伦理在线观看| 免费看av在线观看网站| 三级国产精品欧美在线观看| 亚洲aⅴ乱码一区二区在线播放| 国产日韩欧美在线精品| 日本午夜av视频| 性色avwww在线观看| 国产午夜精品一二区理论片| 亚洲一级一片aⅴ在线观看| 狂野欧美白嫩少妇大欣赏| 看免费成人av毛片| a级毛片免费高清观看在线播放| 又爽又黄无遮挡网站| 日本免费在线观看一区| 丝袜美腿在线中文| 看黄色毛片网站| 看非洲黑人一级黄片| 久久国内精品自在自线图片| 国产一区二区三区综合在线观看 | 春色校园在线视频观看| 亚洲,欧美,日韩| 久久久久久伊人网av| 亚洲精品第二区| 国产男女超爽视频在线观看| av在线天堂中文字幕| 中文在线观看免费www的网站| 男女边摸边吃奶| 国产成人免费无遮挡视频| 国产精品麻豆人妻色哟哟久久| 久久99蜜桃精品久久| 午夜老司机福利剧场| 国产又色又爽无遮挡免| 亚洲av福利一区| 亚洲精品456在线播放app| 在线天堂最新版资源| 国产精品精品国产色婷婷| 精品亚洲乱码少妇综合久久| 亚洲一区二区三区欧美精品 | 国内少妇人妻偷人精品xxx网站| 免费观看性生交大片5| 欧美一级a爱片免费观看看| 国产真实伦视频高清在线观看| 日韩免费高清中文字幕av| 麻豆成人av视频| 国产精品人妻久久久影院| 超碰97精品在线观看| 日本-黄色视频高清免费观看| 成人漫画全彩无遮挡| 国产精品麻豆人妻色哟哟久久| 深夜a级毛片| 亚洲四区av| 在线精品无人区一区二区三 | 国产淫片久久久久久久久| 国产精品一区二区三区四区免费观看| 国产高清国产精品国产三级 | 国产成人精品久久久久久| 久久精品久久精品一区二区三区| 欧美老熟妇乱子伦牲交| 国产男女内射视频| 在线观看一区二区三区激情| 国产高潮美女av| 搡女人真爽免费视频火全软件| 黄色日韩在线| 97超视频在线观看视频| 国精品久久久久久国模美| 国产 一区 欧美 日韩| 国产精品一区二区三区四区免费观看| 最新中文字幕久久久久| 色播亚洲综合网| 亚洲精品乱码久久久v下载方式| 夫妻性生交免费视频一级片| 在线观看三级黄色| 啦啦啦啦在线视频资源| 色综合色国产| 少妇被粗大猛烈的视频| 国产av不卡久久| 春色校园在线视频观看| av在线app专区| 我的老师免费观看完整版| 卡戴珊不雅视频在线播放| av专区在线播放| 亚洲av男天堂| 久久久久久久国产电影| 亚洲天堂av无毛| 国产成人aa在线观看| 国产有黄有色有爽视频| 久久韩国三级中文字幕| 国产欧美亚洲国产| 精品少妇久久久久久888优播| 日韩一区二区视频免费看| 国产精品秋霞免费鲁丝片| 美女高潮的动态| 国产高潮美女av| 精品久久久精品久久久| 欧美最新免费一区二区三区| 久久97久久精品| a级一级毛片免费在线观看| 亚洲怡红院男人天堂| 国产精品伦人一区二区| 交换朋友夫妻互换小说| 亚洲精品日本国产第一区| 三级男女做爰猛烈吃奶摸视频| av在线天堂中文字幕| 大话2 男鬼变身卡| 一个人观看的视频www高清免费观看| 成人综合一区亚洲| 日韩三级伦理在线观看| 婷婷色av中文字幕| 黄片无遮挡物在线观看| 精品一区二区三区视频在线| 你懂的网址亚洲精品在线观看| 日日摸夜夜添夜夜爱| kizo精华| 欧美少妇被猛烈插入视频| 国产色爽女视频免费观看| 亚洲欧洲国产日韩| 免费黄网站久久成人精品| 亚洲一区二区三区欧美精品 | 全区人妻精品视频| 久久韩国三级中文字幕| 久久鲁丝午夜福利片| 我要看日韩黄色一级片| 97超碰精品成人国产| 高清av免费在线| 国产乱人偷精品视频| 国产 一区精品| 狂野欧美激情性bbbbbb| 日韩一本色道免费dvd| 一本一本综合久久| 成年女人看的毛片在线观看| 听说在线观看完整版免费高清| 别揉我奶头 嗯啊视频| 国产精品熟女久久久久浪| 国产日韩欧美亚洲二区| 九九在线视频观看精品| 久久久久久久久大av| 欧美成人一区二区免费高清观看| av在线老鸭窝| 日韩人妻高清精品专区| 综合色丁香网| 国产在线一区二区三区精| 大话2 男鬼变身卡| 免费大片18禁| 欧美 日韩 精品 国产| 九九在线视频观看精品| 久久久久久久午夜电影| 亚洲精品中文字幕在线视频 | 九色成人免费人妻av| 99热全是精品| 国产成人精品久久久久久| 一区二区三区乱码不卡18| 国产精品一区二区三区四区免费观看| 国产成人免费无遮挡视频| 国产成人freesex在线| 激情 狠狠 欧美| 美女被艹到高潮喷水动态| 爱豆传媒免费全集在线观看| 精品久久久噜噜| 亚洲av免费在线观看| 乱码一卡2卡4卡精品| 精品一区二区免费观看| 老师上课跳d突然被开到最大视频| 日韩不卡一区二区三区视频在线| 久久精品国产a三级三级三级| 国产一区二区在线观看日韩| 免费黄网站久久成人精品| 看非洲黑人一级黄片| 如何舔出高潮| 搡女人真爽免费视频火全软件| 亚洲人成网站在线播| 少妇丰满av| 特大巨黑吊av在线直播| 国产一区二区在线观看日韩| 欧美成人午夜免费资源| 免费av毛片视频| 亚洲国产精品国产精品| 一级毛片 在线播放| 国产日韩欧美亚洲二区| 精品久久久久久电影网| av在线老鸭窝| 少妇的逼好多水| 成人一区二区视频在线观看| 国产av不卡久久| 亚洲三级黄色毛片| 国产亚洲午夜精品一区二区久久 | 校园人妻丝袜中文字幕| 国产欧美亚洲国产| 精品久久久久久久末码| 三级男女做爰猛烈吃奶摸视频| 王馨瑶露胸无遮挡在线观看| 欧美日韩一区二区视频在线观看视频在线 | 中国国产av一级| 日韩在线高清观看一区二区三区| 在线观看美女被高潮喷水网站| 97超碰精品成人国产| 我要看日韩黄色一级片| 日韩国内少妇激情av| 在线观看美女被高潮喷水网站| 麻豆成人av视频| 日韩成人av中文字幕在线观看| 国产探花极品一区二区| 女人十人毛片免费观看3o分钟| 不卡视频在线观看欧美| 免费观看无遮挡的男女| 国产老妇女一区| 亚洲精品国产av成人精品| 免费观看在线日韩| 熟女人妻精品中文字幕| 久久久午夜欧美精品| 一级黄片播放器| 一区二区三区精品91| 青春草国产在线视频| 国产精品福利在线免费观看| 午夜精品国产一区二区电影 | 国产亚洲一区二区精品| 少妇被粗大猛烈的视频| 国产日韩欧美亚洲二区| 一级片'在线观看视频| av专区在线播放| 国产av不卡久久| 日韩一区二区视频免费看| 丰满乱子伦码专区| 伦精品一区二区三区| 亚洲av一区综合| www.av在线官网国产| 国产精品久久久久久av不卡| 99视频精品全部免费 在线| 一区二区三区乱码不卡18| 午夜福利在线观看免费完整高清在| 好男人在线观看高清免费视频| 国产爱豆传媒在线观看| 美女高潮的动态| 欧美日韩精品成人综合77777| 国产欧美日韩一区二区三区在线 | 波多野结衣巨乳人妻| 我要看日韩黄色一级片| 国产成人精品福利久久| 97热精品久久久久久| 国产精品久久久久久久电影| 精品人妻熟女av久视频| 中文欧美无线码| 蜜桃亚洲精品一区二区三区| 少妇人妻久久综合中文| 亚洲人成网站高清观看| 国产精品爽爽va在线观看网站| 91精品一卡2卡3卡4卡| 在线观看美女被高潮喷水网站| 国产毛片a区久久久久| 男男h啪啪无遮挡| 欧美日韩综合久久久久久| 亚洲欧美清纯卡通| 亚洲精品自拍成人| 91精品国产九色| 久久99热这里只有精品18| 亚洲av成人精品一区久久| 日韩av免费高清视频| 欧美高清成人免费视频www| av在线天堂中文字幕| 国产欧美亚洲国产| 午夜福利视频1000在线观看| 国产爱豆传媒在线观看| 国产精品伦人一区二区| 七月丁香在线播放| 80岁老熟妇乱子伦牲交| 观看美女的网站| .国产精品久久| 色婷婷久久久亚洲欧美| 免费看a级黄色片| 蜜桃亚洲精品一区二区三区| 一级毛片 在线播放| 国产淫语在线视频| 色视频在线一区二区三区| 亚洲av二区三区四区| 国内精品宾馆在线| 只有这里有精品99| 亚洲av在线观看美女高潮| 亚洲av免费在线观看| 另类亚洲欧美激情| 亚洲国产精品成人综合色| 肉色欧美久久久久久久蜜桃 | 日韩精品有码人妻一区| tube8黄色片| 成人特级av手机在线观看| 18禁裸乳无遮挡免费网站照片| av.在线天堂| 亚洲欧美一区二区三区国产| 蜜臀久久99精品久久宅男| 亚洲国产成人一精品久久久| 最近最新中文字幕免费大全7| 欧美97在线视频| 亚洲av电影在线观看一区二区三区 | 亚洲av免费在线观看| 亚洲人成网站在线观看播放| 啦啦啦中文免费视频观看日本| 精品国产一区二区三区久久久樱花 | 91久久精品国产一区二区成人| 亚洲成人av在线免费| 国产人妻一区二区三区在| 免费看a级黄色片| 亚洲不卡免费看| 777米奇影视久久| 中文资源天堂在线| 亚洲高清免费不卡视频| 边亲边吃奶的免费视频| 蜜桃亚洲精品一区二区三区| 国产精品国产三级国产av玫瑰| 99久久精品一区二区三区| 日本爱情动作片www.在线观看| 色网站视频免费| 在线免费十八禁| 亚洲成人精品中文字幕电影| 久久久久久久国产电影| 精品国产三级普通话版| 国产精品久久久久久精品古装| 久久99蜜桃精品久久| 亚洲欧美一区二区三区国产| 大话2 男鬼变身卡| 成人无遮挡网站| 一个人看的www免费观看视频| 女人十人毛片免费观看3o分钟| 欧美激情国产日韩精品一区| 偷拍熟女少妇极品色| 亚洲精品一二三| 激情 狠狠 欧美| 欧美老熟妇乱子伦牲交| 日韩强制内射视频| 中文资源天堂在线| 偷拍熟女少妇极品色| 亚洲性久久影院| 观看美女的网站| 不卡视频在线观看欧美| 91在线精品国自产拍蜜月| 九草在线视频观看| 亚洲欧美日韩卡通动漫| 大香蕉久久网| 嫩草影院入口| 国产av码专区亚洲av| 一本久久精品| 国产精品偷伦视频观看了| 精品人妻一区二区三区麻豆| 久久久久久久午夜电影| 黄色日韩在线| 99热全是精品| 亚洲av.av天堂| 另类亚洲欧美激情| 97热精品久久久久久| 男人舔奶头视频| 欧美成人午夜免费资源| av一本久久久久| 国产精品一区二区在线观看99| 麻豆成人午夜福利视频| 99热国产这里只有精品6| 欧美潮喷喷水| 亚洲,一卡二卡三卡| 国产成人精品久久久久久| 婷婷色av中文字幕| 自拍欧美九色日韩亚洲蝌蚪91 | 波多野结衣巨乳人妻| 性插视频无遮挡在线免费观看| 男的添女的下面高潮视频| 国产爽快片一区二区三区| 男女边吃奶边做爰视频| 国产白丝娇喘喷水9色精品| 人妻少妇偷人精品九色| 26uuu在线亚洲综合色| 久久这里有精品视频免费| 91精品伊人久久大香线蕉| 男女啪啪激烈高潮av片| 又爽又黄a免费视频| 亚洲av电影在线观看一区二区三区 | 午夜免费鲁丝| 国产成人精品久久久久久| 国产精品蜜桃在线观看| 亚洲欧洲日产国产| 国产男女超爽视频在线观看| 久久99热6这里只有精品| 一本色道久久久久久精品综合| 99re6热这里在线精品视频| 老司机影院成人| 久久久久精品久久久久真实原创| 成年女人在线观看亚洲视频 | 在线看a的网站| 欧美极品一区二区三区四区| a级毛片免费高清观看在线播放| 三级男女做爰猛烈吃奶摸视频| 日韩一区二区三区影片| 亚洲精品色激情综合| 特级一级黄色大片| 日韩亚洲欧美综合| 国内揄拍国产精品人妻在线| 免费av观看视频| 高清欧美精品videossex| 五月伊人婷婷丁香| 国产欧美日韩精品一区二区| 精品久久久久久久末码| 国产精品成人在线| 国产成人精品一,二区| 日本爱情动作片www.在线观看| 成人毛片a级毛片在线播放| 精品99又大又爽又粗少妇毛片| 91久久精品国产一区二区三区| 在线天堂最新版资源| 91精品国产九色| 精品久久国产蜜桃| 最近中文字幕2019免费版| 国产精品伦人一区二区| 亚洲欧洲日产国产| 插逼视频在线观看| 晚上一个人看的免费电影| 久久久久久久午夜电影| 一级毛片黄色毛片免费观看视频| 久热久热在线精品观看| 欧美少妇被猛烈插入视频| 全区人妻精品视频| 国产欧美日韩一区二区三区在线 | 三级男女做爰猛烈吃奶摸视频| 国产69精品久久久久777片| 欧美精品国产亚洲| 成人亚洲精品一区在线观看 | 国产大屁股一区二区在线视频| 久久久久久久精品精品| 日韩一本色道免费dvd| 国产色爽女视频免费观看| 免费观看无遮挡的男女| 欧美亚洲 丝袜 人妻 在线| 夜夜爽夜夜爽视频| 王馨瑶露胸无遮挡在线观看| 深夜a级毛片| 国产在线男女| 国产亚洲av嫩草精品影院| 免费观看a级毛片全部| 国产午夜精品一二区理论片| 国产亚洲精品久久久com| 精品国产三级普通话版| 欧美日本视频| 亚洲欧美中文字幕日韩二区| 少妇人妻久久综合中文|