• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Gas Phase Hydrogenated and Deuterated Fullerene Cations

    2023-09-03 01:37:08XiaoyiHuZhenruDongYananGeJiaLiuYangChenJunfengZhenandLipingQin

    Xiaoyi Hu ,Zhenru Dong ,Yanan Ge ,Jia Liu ,Yang Chen ,Junfeng Zhen,4 ,and Liping Qin

    1 Deep Space Exploration Laboratory/CAS Key Laboratory of Crust-Mantle Materials and Environment,University of Science and Technology of China,Hefei 230026,China;jfzhen@ustc.edu.cn

    2 CAS Center for Excellence in Comparative Planetology,University of Science and Technology of China,Hefei 230026,China

    3 CAS Center for Excellence in Quantum Information and Quantum Physics,Hefei National Laboratory for Physical Sciences at the Microscale,and Department of Chemical Physics,University of Science and Technology of China,Hefei 230026,China

    4 CAS Key Laboratory for Research in Galaxies and Cosmology,Department of Astronomy,University of Science and Technology of China,Hefei 230026,China

    Abstract H/D accretion,especially onto ionized fullerenes,is expected to be very efficient in space.In this work,we study hydrogenated and deuterated fullerene cations and their photodissociation behavior in the gas phase.The experimental results show that hydrogenated fullerene cations (i.e.,[C60Hn]+ and [C70Hn]+, n up to 30) and deuterated fullerene cations(i.e.,[C60Dn]+and[C70Dn]+,n up to 21)are formed efficiently through the ion-atom collision reaction pathway.Upon irradiation,the hydrogenated and deuterated fullerene cations dissociate into fullerene cations and H/H2 or D/D2 species.The structures of the newly formed hydrogenated and deuterated fullerene cations(C58 and C60)and the bonding energies for these reaction pathways are investigated by means of quantum chemical calculations.The competition between hydrogenation and dehydrogenation is confirmed,and the hydrogenation-to-dehydrogenation ratio in the accretion processes in the gas phase is determined.We infer that the proportion of accreted hydrogen and deuterium atoms on the surface of fullerenes is similar to that of hydrogen and deuterium atoms in the interstellar environment where these fullerenes are located,especially when the interstellar environments are similar to our experimental conditions,i.e.,the hot environment.

    Key words: astrochemistry– methods: laboratory: molecular– ultraviolet: ISM– ISM: molecules– molecular processes

    1.Introduction

    The buckminsterfullerene (C60) molecule was first “discovered” in 1985 in a laboratory (Kroto et al.1985).An important breakthrough came in 2010,when the infrared spectra of circumstellar and interstellar sources revealed the presence of buckminsterfullerene (C60) in space (Cami et al.2010;Sellgren et al.2010).Importantly,several near-infrared diffuse interstellar bands(DIBs)were linked for the first time to the electronic transitions of(Campbell et al.2015;Walker et al.2015;Cordiner et al.2017).The confirmation of interstellar buckminsterfullerene represents a breakthrough in our understanding of chemical complexity in the interstellar medium (ISM),providing new understanding of the types of complex molecules that may be responsible for the remaining(unidentified) DIBs in space (Campbell &Maier 2018;Cordiner et al.2019).

    As an important component of the interstellar organic inventory,extensive experimental and theoretical investigations aiming at revealing the formation mechanism of C60in the interstellar environments have been performed (Berné &Tielens 2012;Zhen et al.2014;Omont 2016;Candian et al.2018).These studies have shown that the formation of C60may start from a simple carbon-rich seeded gas,following a bottomup route (J?ger et al.2009,2011),or proceed through the photodissociation of large polycyclic aromatic hydrocarbon(PAH) molecules,following a top-down route (Berné &Tielens 2012;Zhen et al.2014;Candian et al.2019).

    It is known that the carbon cage of fullerene is very difficult to destroy or modify,which is especially true for the buckminsterfullerene (C60) molecule (Zimmerman et al.1991;Handschuh et al.1995).Experiments and molecular dynamics simulations of low-energy(10–30 eV)H interactions with the C60molecule have been carried out to investigate the possible chemical combinations at these energies (Beardmore et al.1994).However,minor modifications that preserve the cage size and composition,such as ionization,isomerization,exohedral addition of atoms,and other chemical reactions including association with PAHs (Dunk et al.2013;García-Hernández &Díaz-Luis 2013;García-Hernández et al.2013;Sato et al.2013;Bohme 2016;Hu et al.2021a,2021b),are much easier.Therefore,fullerene species,such as C60,exist in different ionization or chemical states in the ISM.Based on these findings,to calculate the total abundance of each fullerene species,the abundances of all the different ionization and chemical states were added together rather than considering the abundance in only a single state (Tielens 2013).In addition,the different ionization and chemical states of fullerene species are affected by the physical and chemical conditions,so it is critical to understand the reactivity of fullerenes with other molecules(Omont 2016;Zhen et al.2019;Hu et al.2021a,2021b).

    Hydrogen and deuterium may be bound on the outer surface of fullerenes by opening their double bonds to form strong C-H or C-D alkane bonds (Petrie et al.1992;Bohme 2016;Omont 2016).A mass spectrometric study of the hydrogenation of pure C60in thin solid films was conducted,resulting in C60Hn(n=2 up to 24),with a wide distribution ofnvalues for a given exposure(Brühwiler et al.1993).In a study by Cataldo and Iglesias-Groth,when hydrogen atoms were mixed in solvents,C60was quickly hydrogenated to form C60H36(Cataldo &Iglesias-Groth 2009;Iglesias-Groth et al.2012),which have been recognized as major members of the fullerane family(Webster 1992;Le Page et al.2001;Iglesias-Groth 2006;Cataldo &Iglesias-Groth 2009).In particular,the vibrational IR spectrum of [C60H]+and [C70H]+was recently reported(Palotás et al.2020,2021).In C60and C70,which has a very sparse IR spectrum,all vibrational normal modes become IR allowed upon protonation,resulting in a rich spectrum for[C60H]+and[C70H]+(Palotás et al.2020,2021),in their work,an atmospheric pressure chemical ionization (APCI) is used to produce the gas-phase [C60H]+and [C70H]+.

    Interstellar PAHs,fullerene and their-related species are expected to be substantially influenced by their chemicalphysical conditions (Bakes &Tielens 1994;Le Page et al.2001).Interestingly,these hydrogenated fullerene species may also be candidates of interest for the IR interstellar bands that could motivate spectroscopic studies (Tielens 2013).To understand the co-evolution of interstellar fullerene chemistry,by tracking the H/D atoms accretion processes on fullerene cations,in this work,we present an investigation of the chemical reactivity of fullerene (C60and C70) cations and smaller fullerene (C56/58and C66/68) cations with hydrogen or deuterium atoms,as well as their photochemical behaviors in the gas phase.Experiments are carried out using a quadrupole ion trap in combination with time-of-flight mass spectrometry.Quantum chemical calculations are also performed to determine the molecular structures and the formation mechanisms.

    2.Methods

    2.1.Experimental Methods

    A brief description of the experiment is provided,and more detailed information on the experimental procedures is available in Zhen et al.(2019).First of all,fullerene (C60,or C70) containing13C and12C with a natural isotopic ratio is evaporated by heating the powder (J&K Scientific,with purity better than 99%) in oven at a temperature of ~613 K.Subsequently,evaporated C60or C70molecules are ionized using electron impact ionization and transported into the ion trap via an ion gate and a quadrupole mass filter.The third harmonic of an Nd: YAG laser (INDI,Spectra-Physics),355 nm,~6 ns,operated at 10 Hz,is used to irradiate the trapped cations.A beam shutter was used to determine the interaction time of the light with the trapped ions.The shutter is externally triggered to guarantee that the ion cloud is irradiated only for a specified amount of time during each cycle.A highprecision delay generator controls the full-timing sequence.

    A hydrogen atom beam source (HABS) (MBE-Komponenten GmbH) (Tschersich &von Bonin 1998) was installed on top of the ion trap,and used to produce the hydrogen or deuterium atoms.The hydrogen or deuterium atoms were formed by cracking D2and H2gas (with purity better than 99.99%) using a tungsten capillary at 1973 and 2113 K,respectively.The chamber pressure during the hydrogen atom beam exposure was ~1.2×10?6mbar with D2or H2flowing through the HABS (the typical background pressure in the chamber is ~6.0×10?7mbar with helium gas).The working distance from the end of tungsten capillary in the HABS to the ion trap was ~5.0 cm.The hydrogen and deuterium atom flux was incident into the ion trap through a 2.4 mm aperture in the ring electrode.The hydrogen and deuterium atoms were expected to have a flux of ~5.0×1014H atoms cm?2s?1,and~4.0×1014D atoms cm?2s?1based on the operating conditions.

    Two-time strategies are used here: (1) without laser irradiation: our setup operates with a frequency of 0.5,0.2,0.1,and 0.05 Hz,i.e.,one full measuring cycle lasts 2.0,5.0,10.0,and 20.0 s,respectively.At each experiment,the ion gate opens,allowing the ion trap to fill for a certain amount of ions.In the ion trap,the hydrogenated and deuterated fullerene cations are formed.During this procedure,helium gas is introduced continuously into the trap via a leaking valve to thermalize the ion cloud through collisions (~300 K).Adduct formation presumably occurs under our experimental operating conditions.At the end of each cycle,the resulting mass fragments are measured;(2) with laser irradiation: our setup operates with a frequency of 0.2 Hz,i.e.,one full measuring cycle lasts 5.0 s.At the leading edge of the master trigger,the ion gate is opened(0.0–4.6 s),allowing the ion trap to fill for a certain amount of ions.During this time,the trapped ion reacts with hydrogen or deuterium atoms to form new cations.Afterward,the beam shutter is opened that allowed the 355 nm laser to irradiate the ion cloud (4.6–4.9 s).At the end of irradiation,a negative square pulse is applied to the end cap of the ion trap to accelerate the ions moving out of the trap and diffusing into the field-free TOF region,where the mass fragments can be measured.

    2.2.Theoretical Chemistry Calculations Methods

    The theoretical chemistry calculations are carried out with density functional theory (DFT) with the hybrid density functional B3LYP (Lee et al.1988;Becke 1992) as implemented in the Gaussian 16 program (Frisch et al.2016).The basis set of 6-311++G(d,p) is used for all calculations.All species’ geometries were optimized at the local minimum of their potential energy surface in the calculation.The zeropoint energy and thermal corrections can be obtained from the frequency calculation to correct the molecular energy.

    3.Experimental Results

    In the experiments,the high energy of the impacting electrons(~82 eV)led to the formation of fullerene(C60and C70)cations and smaller fullerene(C56/58and C66/68)cations through C2loss(Handschuh et al.1995;Lifshitz 2000;Zhen et al.2014).The mass spectrum results are shown in Figures 1–5.

    3.1.The Hydrogenated and Deuterated Fullerene(C56/58 and C60) Cations

    Figure 3 shows the resulting mass spectrum of trapped hydrogenated and deuterated fullerene(C56/58,and C60)cations upon 355 nm irradiation at a laser energy of 0.9 mJ(irradiation times amounting to 0.3 s;i.e.,typically ~3 pulses):(A)with H atoms;(B)with D atoms.The intensity of the lower-mass peaks increased while that of the higher-mass peaks decreased upon laser irradiation(Figure 3,middle blue spectrum).For clarity,a difference spectrum was plotted for comparison(lowest trace in Figure 3),and it was found that only dehydrogenation products were formed,with no evidence of other fragmentation channels.In addition,H/H2,or D/D2loss channels exist,and we will discuss the adduct behavior with theoretical chemistry calculations in the next section.

    Figure 1.The mass spectrum of the evolution of hydrogenated and deuterated fullerene (C56/58 and C60) cations with increasing H/D exposure time: (A) with H atoms;(B) with D atoms.

    Figure 2.The zoom in mass spectrum of the evolution of hydrogenated and deuterated fullerene (C56/58) cations with increasing H/D exposure time: (A) with H atoms;(B) with D atoms.

    Figure 3.Mass spectrum of hydrogenated and deuterated fullerene (C56/58 and C60) cations trapped in QIT upon 355 nm irradiation at a laser energy of 0.9 mJ(irradiation times amounting to 0.3 s,from 4.6?4.9 s): without irradiation (red),with irradiation (blue),and the difference spectrum (black) of the irradiation and without irradiation experiments: (A) with H atoms;(B) with D atoms.

    Accordingly,we propose the following photodissociation pathway for the hydrogenated and deuterated fullerene(C56/58,and C60) cations:

    3.2.The Hydrogenated and Deuterated Fullerene(C66/68 and C70) Cations

    Similar to the fullerene (C56/58,and C60) cation system,the mass spectrum of the evolution of hydrogenated and deuterated fullerene (C66/68,and C70) cations with increasing H/D exposure time is shown in Figure 4: (A) with H atoms;(B)with D atoms.Clearly,a series of peaks attributed to hydrogenated and deuterated fullerene cations were observed.Upon H/D exposure,the m/z distribution exhibited the expected shift to higher masses,accompanied by a broadening of the distribution.By varying the exposure time (2.0,5.0,10.0,and 20.0 s),the degree of hydrogenation or deuteration of fullerene (C66/68,and C70) cations changed.In particular,at an exposure time of 20.0 s,the largest hydrogenated and deuterated fullerene cations,[C70H25]+,m/z=865,and [C70D21]+,m/z=882,were observed.The series of peaks shown in the mass spectrum (m/z >840 for) are composed of[12C70Hn]+and [13C12C70Hn?1]+.In addition,the experiments showed that smaller fullerene(C66/68)cations exhibited reaction behavior with H/D atoms very similar to that of.

    Figure 4.The mass spectrum of the evolution of hydrogenated and deuterated fullerene (C66/68 and C70) cations with increasing H/D exposure time: (A) with H atoms;(B) with D atoms.

    From the obtained mass spectrum,we can see that the degree of deuteration of fullerenes (C66/68,and C70) was lower than the hydrogenation at the same reaction timescale,which was attributed mainly to the flux of D atom being lower than the flux of H atom.Similarly,under natural conditions,the abundance of neutral12C is higher than13C;i.e.,the peak intensity of m/z=840 (12) was stronger than that of m/z=841 (13C12).However,we noted that the peak intensity of m/z=841 (13C12) was stronger than of m/z=840 (12),as shown in Figure 4,which is related to the natural carbon element abundance;i.e.,13C-containing species gave rise to a stronger peak intensity than pure12C species,possibly due to the experimental setup conditions.

    In terms of the hydrogenation and deuteration pathway of fullerene (C70) cations,similar to the fullerene (C60) cation system,these hydrogenated and deuterated fullerene cations were formed through ion-atom reaction pathways,i.e.,+H/D atoms.The reaction between fullerene cations and H/D atoms occurred through sequential steps with repeated addition of H/D atoms on the surface of the fullerene cages.Similarly,H2/D2also formed as a secondary product through[C70Hn]++H →[C70Hn?1]++H2or[C70Dn]++D →[C70Dn?1]++D2(Petrie et al.1992;Le Page et al.2001).

    Based on these findings,the reaction pathways between fullerene(C70)cations and H/D atoms are summarized as follows:

    Figure 5 shows the resulting mass spectrum of trapped hydrogenated and deuterated fullerene(C66/68,and C70)cations upon 355 nm irradiation at a laser energy of 0.9 mJ(irradiation times amounting to 0.3 s;i.e.,typically ~3 pulses):(A)with H atoms;(B)with D atoms.The intensity of the lower-mass peaks increased while that of the higher-mass peaks decreased upon laser irradiation(Figure 5,middle blue spectrum).For clarity,a difference spectrum was plotted for comparison(lowest trace in Figure 5),which showed that only dehydrogenation products are formed,with no evidence of other fragmentation channels.In addition,H/H2,or D/D2loss channels were found to exist.

    Figure 5.Mass spectrum of the hydrogenated and deuterated fullerene (C66/68 and C70) cations trapped in QIT upon 355 nm irradiation at a laser energy of 0.9 mJ(irradiation times amounting to 0.3 s,from 4.6?4.9 s): without irradiation (red),with irradiation (blue),and the difference spectrum (black) of the irradiation and without irradiation experiments: (A) with H atoms;(B) with D atoms.

    Accordingly,we propose the following photodissociation pathway for the hydrogenated and deuterated fullerene(C66/68,and C70) cations:

    4.Theoretical Chemistry Calculation Results

    To understand the obtained experimental results,we take the reaction pathway of+H/D,[C60H]++H or [C60D]++D,[C60H]++D or[C60D]++H,and+H/D,as a typical example to theoretically study the H/D accretion process.In addition,we note that all the calculation results are based on the electronic ground state.For PAH and fullerene molecules,it is commonly accepted that excitation to an excited electronic state is followed by internal conversion (IC) to a highly excited vibrational state of the electronic ground state.Intramolecular vibrational redistribution (IVR) then quickly equilibrates the excess energy among all available vibrational states.IC and IVR leave the PAH and fullerene molecules in the electronic ground state and available for further photon absorption through the same transition.IC occurs on a timescale of picoseconds.Studies on PAH molecules reveal an IVR timescale of less than 10–50 ps if the internal energy exceeds 1000 cm?1(Felker &Zewail 1988;Heikal et al.1991).

    We carried out the calculation for the fullerene (C60) cation system and defective fullerene (C58)cation system due to their similarity to other fullerene systems.The molecular geometry of C58was obtained by C2unit loss between two hexagons of C60,assuming that there is no carbon skeleton rearrangement(except for the C2loss at a local position) during the electron impact ionization and fragmentation process (Candian et al.2019;Zhen et al.2019).As shown in Figure 6,the energy for the reaction pathways was obtained.The molecular geometry and the truncated icosahedral graph of fullerene (C58and C60)cations are also presented in Figures 6,and the numbers indicating the carbon sites were categorized into the same groups.

    Figure 6.The energies for the reaction pathways of fullerene(C60)and defective fullerene(C58)cations with H/D atoms,and the red atoms represent carbon atoms on the seven C-ring.

    For the subsequent dissociation pathway initiated by laser irradiation,as shown in Figures 3 and 5,the hydrogenated and deuterated fullerene cations evolve toward breaking the C-H/C-D bonds.In the process of photolysis,if two CH/CD units are not adjacent,then the photolysis product will be H/D atoms.

    If two CH/CD units are adjacent,it is possible to have a sufficiently close distance during the continuous vibration of the C-H/C-D bonds,then the photolysis product will be H2/D2molecules (energy allowed;the endothermic energy is very small,lower than 1.0 eV).But it is difficult to have an impact on each other between two nonadjacent C-H/C-D bonds due to the relatively long distance between them,even though energy allowed.Two typical types of H2/D2molecule loss channels are obtained: forming groups of [C60H2]+(1,2) and [C60H2]+(1,5)and forming groups of[C60D2]+(1,2)and[C60D2]+(1,5).The calculation results are presented below:

    In the photolysis process,possible dynamical processes play an important role,and further studies will be required to address this issue.

    5.Discussion

    As presented in Figure 6,the occurrence of dehydrogenation(1-1 (+H2),?1.9 eV) or dedeuteration (1-1 (+D2),?1.9 eV) reactions has been proved in the H/D accretion process,and the exothermic energies of the hydrogenation and dehydrogenation reactions are similar.In addition,we also calculated the reaction pathway of[C60H]++D →+HD,?2.0 eV and [C60D]++H →+HD,?1.8 eV.

    Since both hydrogenation and dehydrogenation events are relatively independent and random,the chance of their occurrence is completely determined by the sites of the already hydrogenated and still unhydrogenated carbon sites on the fullerene surface (Tielens 2013;Omont 2016).The free H-D exchange (energy allowed) processes suggest that the proportion of accreted hydrogen and deuterium atoms on the surface of fullerenes is similar to that of hydrogen and deuterium atoms in the interstellar environment where these fullerenes are located (Le Page et al.2001;Montillaud et al.2013;Omont 2016).The flux density of H-atoms in our laboratory studies is expected ~105times higher than the photodissociation regions(PDRs,e.g.,NGC 7023),which means 20 s in our experiments,equals to the reaction time of ~20 days in PDRs(Tielens 2013).Nevertheless,in the present,we assume that the formation and photochemistry of hydrogenated and deuterated fullerene cations in space follow the similar mechanism with our experiments.

    A previous study indicated that the H2form from PAHs may be an important pathway for the formation of H2in PDRs(Boschman et al.2012;Montillaud et al.2013;Croiset et al.2016).In addition,in solvents,heat treatment of C60H36can cause dehydrogenation and easily release H2molecules(Cataldo &Iglesias-Groth 2009;Iglesias-Groth et al.2012).Given the results presented in this work,the potential for fullerene cations to react with H/D atoms to form hydrogenated and deuterated fullerene cations must also be considered,which provides a catalytic pathway for molecular H2/D2formation,and it is also important to consider the reaction between graphene molecules and H/D atoms(Pantazidis et al.2019;Thrower et al.2019).

    Overall,the theoretical chemistry calculation results are consistent with the experimental results.We can conclude that ion-atom reactions between fullerene cations and hydrogen or deuterium atoms readily occur,producing a large number of hydrogenated fullerene cations(i.e.,[C60Hn]+and[C70Hn]+,nup to 30) and deuterated fullerene cations (i.e.,[C60Dn]+and[C70Dn]+,nup to 21) in experiments,also resulting in a very large number of reaction pathways.These newly formed hydrogenated and deuterated fullerene cations can be quite stable (binding energy of ~2.0 eV).Smaller fullerene cations(e.g.,)have reactivity similar to that of larger fullerene cations (e.g.,) in the adduction process with hydrogen or deuterium atoms.Additionally,the competition between hydrogenation and dehydrogenation or between deuteration and dedeuteration was confirmed,and the hydrogenation and deuteration channel ratios of fullerene cations in the accretion reaction in the gas phase were determined.Subsequent photoprocessing (355 nm was used here) can diminish these cations to their most stable forms and convert them back to fullerene cations and H/H2or D/D2species again.We note that we did not perform all possible related theoretical chemistry calculations (this was not a full survey);when the amount of hydrogen or deuterium addition is higher(e.g.,[C60H30]+,and [C60D21]+),there may be some intramolecular interactions or other reaction formation pathways and photodissociation channels(Omont 2016;Zhen et al.2019).In addition,during the formation process,possible dynamical processes play an important role,and further studies will be required to address this issue.

    Furthermore,these hydrogenated and deuterated fullerene cations may also be promising candidates of interest for the IR interstellar bands (Zhang et al.2017).Because the structure of hydrogenated and deuterated fullerene cations initially formed is diverse,their contribution to the spectral profile and the spectral features for detections in the ISM should be investigated.

    6.Conclusions

    In summary,we have investigated the formation and photochemistry of hydrogenated and deuterated fullerene cations both experimentally and theoretically.Fullerene cations(e.g.,C56/58,C66/68and C60/70cations) form adducts with hydrogen or deuterium atoms much more readily;i.e.,hydrogenated fullerene cations (i.e.,[C60Hn]+and [C70Hn]+,nup to 30)and deuterated fullerene cations(i.e.,[C60Dn]+and[C70Dn]+,nup to 21) are formed efficiently through ion-atom reactions.Smaller fullerene cations (e.g.,)have reactivities similar to or higher than those of larger fullerene cations (e.g.,and) during the adduction with hydrogen or deuterium atoms.Hence,if these fullerenes are present in space,the formation of hydrogenated and deuterated fullerene could produce an extended family of large molecules.Likewise,these types of hydrogenated and deuterated fullerene may play a role in the IR spectral complexity of circumstellar environments where C60is prominent.

    Acknowledgments

    This work is supported by the National Natural Science Foundation of China (NSFC,grant Nos.41930216 and 12073027),the Pre-research Project on Civil Aerospace Technologies (D020202) of the Chinese National Space Administration,the Fundamental Research Funds for the Central Universities of China (WK3410000019),and the Frontier Scientific Research Program of Deep Space Exploration Laboratory under grant No.2022-QYKYJH-HXYF-019.The theoretical calculations were performed at the Supercomputing Center of University of Science and Technology of China.

    ORCID iDs

    日韩欧美精品v在线| 欧美成人a在线观看| 天天躁日日操中文字幕| 伊人久久国产一区二区| 欧美区成人在线视频| 五月伊人婷婷丁香| 国产av国产精品国产| 一级黄片播放器| 免费观看精品视频网站| 免费av不卡在线播放| 91av网一区二区| 舔av片在线| 亚洲国产精品成人久久小说| 精品久久久久久久人妻蜜臀av| 国内精品美女久久久久久| 99久久中文字幕三级久久日本| 久久6这里有精品| 美女高潮的动态| 欧美高清成人免费视频www| 日本-黄色视频高清免费观看| 日日摸夜夜添夜夜添av毛片| 日日干狠狠操夜夜爽| 成人毛片a级毛片在线播放| 建设人人有责人人尽责人人享有的 | 欧美丝袜亚洲另类| 97在线视频观看| 一级毛片久久久久久久久女| 国产精品伦人一区二区| 免费大片黄手机在线观看| 亚洲乱码一区二区免费版| 嫩草影院精品99| 非洲黑人性xxxx精品又粗又长| 成人欧美大片| 男的添女的下面高潮视频| xxx大片免费视频| 午夜福利视频1000在线观看| 国产成人精品一,二区| 全区人妻精品视频| 亚洲av福利一区| 婷婷色综合www| 精品亚洲乱码少妇综合久久| freevideosex欧美| 国产av在哪里看| 欧美另类一区| 少妇丰满av| 亚洲欧美日韩东京热| 伊人久久精品亚洲午夜| 一个人看的www免费观看视频| 少妇熟女aⅴ在线视频| 不卡视频在线观看欧美| 欧美最新免费一区二区三区| 亚洲第一区二区三区不卡| 国内少妇人妻偷人精品xxx网站| 日韩av不卡免费在线播放| 日韩av不卡免费在线播放| 亚洲av中文av极速乱| av一本久久久久| 非洲黑人性xxxx精品又粗又长| 久久久久久久久中文| 国内少妇人妻偷人精品xxx网站| 日韩av免费高清视频| 亚洲欧美中文字幕日韩二区| 久久久久久久久中文| 婷婷色麻豆天堂久久| a级毛片免费高清观看在线播放| av女优亚洲男人天堂| 美女被艹到高潮喷水动态| 天天躁夜夜躁狠狠久久av| 国产成人福利小说| 啦啦啦啦在线视频资源| 黄色日韩在线| 国产一区亚洲一区在线观看| 国产美女午夜福利| 伦精品一区二区三区| 日本午夜av视频| 亚洲国产精品成人综合色| 久久久久久久国产电影| 国产精品久久久久久久电影| 午夜激情久久久久久久| 熟女人妻精品中文字幕| 伊人久久精品亚洲午夜| 色综合亚洲欧美另类图片| 久久午夜福利片| 尤物成人国产欧美一区二区三区| 欧美日韩一区二区视频在线观看视频在线 | 国产精品一区二区三区四区免费观看| 亚洲欧洲国产日韩| 毛片女人毛片| 亚洲国产日韩欧美精品在线观看| 日本午夜av视频| 午夜福利视频精品| 精品久久久久久久久久久久久| 熟女电影av网| 亚洲精品国产成人久久av| 美女高潮的动态| 少妇熟女aⅴ在线视频| 热99在线观看视频| 成人无遮挡网站| 国产亚洲av片在线观看秒播厂 | av卡一久久| 午夜久久久久精精品| 欧美日韩一区二区视频在线观看视频在线 | 亚洲精品成人久久久久久| 在线观看免费高清a一片| 日韩欧美国产在线观看| 国内少妇人妻偷人精品xxx网站| 91久久精品国产一区二区三区| 天堂俺去俺来也www色官网 | 天美传媒精品一区二区| 精品久久久久久久久久久久久| 日本-黄色视频高清免费观看| 床上黄色一级片| 亚洲人与动物交配视频| 白带黄色成豆腐渣| 亚洲av成人av| 美女高潮的动态| 欧美不卡视频在线免费观看| 我的女老师完整版在线观看| 少妇熟女欧美另类| 色综合色国产| 国产成人免费观看mmmm| 久久精品国产亚洲网站| 色网站视频免费| 亚洲av福利一区| 三级毛片av免费| 99re6热这里在线精品视频| 热99在线观看视频| 国产美女午夜福利| 免费无遮挡裸体视频| 在线免费观看的www视频| 久久久久网色| 99re6热这里在线精品视频| 亚洲av成人精品一二三区| 日本欧美国产在线视频| 日韩国内少妇激情av| 久久久成人免费电影| 五月天丁香电影| 欧美日本视频| 久久久久久久久大av| 在线 av 中文字幕| 看免费成人av毛片| 免费不卡的大黄色大毛片视频在线观看 | 国产白丝娇喘喷水9色精品| 亚洲综合色惰| 久久99热6这里只有精品| 国产白丝娇喘喷水9色精品| 亚洲av免费在线观看| 亚洲成人久久爱视频| 久久久久久久久久成人| 日本wwww免费看| 亚洲国产色片| 亚洲色图av天堂| 777米奇影视久久| 三级国产精品片| 免费大片黄手机在线观看| 色吧在线观看| 国产精品伦人一区二区| 精品一区二区三区人妻视频| 深爱激情五月婷婷| 国产色爽女视频免费观看| 亚洲精品亚洲一区二区| 18禁在线无遮挡免费观看视频| 成人综合一区亚洲| 日韩中字成人| 简卡轻食公司| 欧美最新免费一区二区三区| 狂野欧美激情性xxxx在线观看| 如何舔出高潮| 欧美精品一区二区大全| 91久久精品国产一区二区成人| 国产成人a区在线观看| 亚洲精品视频女| 91久久精品国产一区二区成人| 男女那种视频在线观看| eeuss影院久久| 国内精品宾馆在线| 色综合色国产| 日韩欧美一区视频在线观看 | 午夜福利成人在线免费观看| 91午夜精品亚洲一区二区三区| 国产av国产精品国产| 观看免费一级毛片| 美女主播在线视频| 久久精品夜色国产| 99视频精品全部免费 在线| 男女国产视频网站| 一级爰片在线观看| 日韩中字成人| 一级黄片播放器| 欧美不卡视频在线免费观看| 男女下面进入的视频免费午夜| 亚洲av男天堂| 成人一区二区视频在线观看| 国产激情偷乱视频一区二区| 午夜福利网站1000一区二区三区| 欧美日韩在线观看h| 亚洲激情五月婷婷啪啪| 看黄色毛片网站| 国产精品人妻久久久久久| 国产av码专区亚洲av| 亚洲精品aⅴ在线观看| 国产精品无大码| 色哟哟·www| 毛片女人毛片| 18+在线观看网站| 日韩制服骚丝袜av| 日韩一区二区三区影片| 欧美区成人在线视频| 青春草亚洲视频在线观看| 日韩欧美国产在线观看| av在线观看视频网站免费| 国语对白做爰xxxⅹ性视频网站| 欧美日本视频| 黑人高潮一二区| 国产亚洲一区二区精品| av天堂中文字幕网| 成人漫画全彩无遮挡| 精品久久久久久久久久久久久| 蜜臀久久99精品久久宅男| 午夜福利在线观看吧| 少妇的逼水好多| 草草在线视频免费看| 午夜激情福利司机影院| 两个人的视频大全免费| 国产av国产精品国产| 精品国内亚洲2022精品成人| 日韩制服骚丝袜av| 特大巨黑吊av在线直播| 国产av在哪里看| 免费观看的影片在线观看| 免费看光身美女| 亚洲av福利一区| 午夜精品国产一区二区电影 | 国产精品一区二区性色av| 视频中文字幕在线观看| 天堂av国产一区二区熟女人妻| 日韩精品有码人妻一区| 久久人人爽人人片av| 全区人妻精品视频| 日韩av在线大香蕉| 久久这里有精品视频免费| 精品一区二区免费观看| 亚洲av电影不卡..在线观看| 神马国产精品三级电影在线观看| 国产亚洲精品久久久com| 少妇熟女aⅴ在线视频| 国国产精品蜜臀av免费| 日本一本二区三区精品| 国产成人91sexporn| 99热6这里只有精品| 欧美日韩综合久久久久久| 免费大片18禁| 欧美变态另类bdsm刘玥| av又黄又爽大尺度在线免费看| 亚洲av不卡在线观看| 亚洲激情五月婷婷啪啪| 成人性生交大片免费视频hd| 亚洲成人av在线免费| 欧美日韩视频高清一区二区三区二| 九九爱精品视频在线观看| av在线观看视频网站免费| 好男人在线观看高清免费视频| 三级经典国产精品| 久久精品久久精品一区二区三区| 国产伦在线观看视频一区| 床上黄色一级片| 天堂影院成人在线观看| 男人舔女人下体高潮全视频| 99久国产av精品| 久久久久久九九精品二区国产| 午夜福利视频精品| 亚洲欧美日韩东京热| 综合色av麻豆| 午夜视频国产福利| 亚洲熟妇中文字幕五十中出| 久久精品国产鲁丝片午夜精品| 国产真实伦视频高清在线观看| 男人爽女人下面视频在线观看| 在线a可以看的网站| 超碰av人人做人人爽久久| 美女被艹到高潮喷水动态| 美女黄网站色视频| 乱码一卡2卡4卡精品| 少妇被粗大猛烈的视频| 极品教师在线视频| 久久国产乱子免费精品| 国产亚洲一区二区精品| 日本与韩国留学比较| 国产精品一区www在线观看| 国产高清不卡午夜福利| 亚洲婷婷狠狠爱综合网| 亚洲av二区三区四区| 嫩草影院新地址| kizo精华| 我要看日韩黄色一级片| 亚洲精华国产精华液的使用体验| 淫秽高清视频在线观看| 亚洲人成网站在线观看播放| 一边亲一边摸免费视频| 欧美一级a爱片免费观看看| 色综合亚洲欧美另类图片| 中文字幕制服av| 蜜臀久久99精品久久宅男| 成人性生交大片免费视频hd| 91久久精品电影网| 国产精品一区www在线观看| 欧美日韩一区二区视频在线观看视频在线 | 麻豆国产97在线/欧美| 久久久a久久爽久久v久久| 亚洲美女视频黄频| 久久久久久久国产电影| 男人舔女人下体高潮全视频| 国产91av在线免费观看| 久久精品夜夜夜夜夜久久蜜豆| 亚洲精品中文字幕在线视频 | 国语对白做爰xxxⅹ性视频网站| 欧美3d第一页| 婷婷色av中文字幕| 在线免费十八禁| 亚洲精品国产av蜜桃| 久久久久久久久久成人| 人妻系列 视频| 简卡轻食公司| 国产午夜精品一二区理论片| av.在线天堂| 国产精品日韩av在线免费观看| 51国产日韩欧美| 一个人看视频在线观看www免费| 精华霜和精华液先用哪个| 日日摸夜夜添夜夜爱| 国产精品蜜桃在线观看| 欧美激情久久久久久爽电影| 日韩强制内射视频| 天堂网av新在线| 亚洲欧美日韩无卡精品| 丰满少妇做爰视频| 男插女下体视频免费在线播放| 2021少妇久久久久久久久久久| 青春草视频在线免费观看| 亚洲精品aⅴ在线观看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 久久久午夜欧美精品| 国产欧美另类精品又又久久亚洲欧美| 午夜精品在线福利| 精品久久久久久久人妻蜜臀av| 国产精品无大码| 69av精品久久久久久| 午夜久久久久精精品| 国产午夜福利久久久久久| 国产精品一区二区三区四区久久| 最近的中文字幕免费完整| 国产成人freesex在线| 国产一区亚洲一区在线观看| 麻豆av噜噜一区二区三区| 国产av码专区亚洲av| 免费观看性生交大片5| 特级一级黄色大片| 国内少妇人妻偷人精品xxx网站| 熟妇人妻久久中文字幕3abv| 亚洲自偷自拍三级| 日本三级黄在线观看| 汤姆久久久久久久影院中文字幕 | 久久久久久久久久黄片| 春色校园在线视频观看| 久久精品国产亚洲av涩爱| 2018国产大陆天天弄谢| 国产在视频线在精品| 成年女人看的毛片在线观看| av一本久久久久| 99久久精品一区二区三区| 有码 亚洲区| 亚洲三级黄色毛片| 97在线视频观看| 欧美变态另类bdsm刘玥| 久久久精品欧美日韩精品| 97超碰精品成人国产| 久久99热这里只有精品18| 免费在线观看成人毛片| 在线播放无遮挡| av国产免费在线观看| 日韩av免费高清视频| 2021少妇久久久久久久久久久| 国产精品一区二区三区四区免费观看| 18禁在线无遮挡免费观看视频| 老司机影院毛片| 精品久久久精品久久久| 免费观看在线日韩| 五月天丁香电影| 纵有疾风起免费观看全集完整版 | 免费大片黄手机在线观看| 一二三四中文在线观看免费高清| 女人久久www免费人成看片| 在线免费观看的www视频| 99久国产av精品国产电影| 午夜精品一区二区三区免费看| 人人妻人人看人人澡| 亚洲精品乱码久久久久久按摩| 欧美日韩国产mv在线观看视频 | 在线播放无遮挡| 免费大片18禁| 伊人久久精品亚洲午夜| 亚洲高清免费不卡视频| 免费观看在线日韩| 国产麻豆成人av免费视频| 国产av在哪里看| 99热6这里只有精品| 亚洲成人av在线免费| 99热网站在线观看| 一级毛片我不卡| 日本熟妇午夜| 男女边吃奶边做爰视频| 蜜桃久久精品国产亚洲av| 午夜福利高清视频| 青春草亚洲视频在线观看| 欧美3d第一页| 十八禁网站网址无遮挡 | 最近视频中文字幕2019在线8| 中文字幕亚洲精品专区| 两个人的视频大全免费| 国产亚洲最大av| 午夜精品国产一区二区电影 | 亚洲,欧美,日韩| 爱豆传媒免费全集在线观看| 欧美3d第一页| 亚洲欧美精品自产自拍| 精品一区在线观看国产| 99热这里只有是精品50| 中文字幕av成人在线电影| 久久97久久精品| 国产亚洲av片在线观看秒播厂 | 精品久久久久久电影网| 国产精品美女特级片免费视频播放器| 美女脱内裤让男人舔精品视频| 搡老妇女老女人老熟妇| 国产伦精品一区二区三区四那| 丰满人妻一区二区三区视频av| 女的被弄到高潮叫床怎么办| 日韩精品青青久久久久久| 亚洲av免费高清在线观看| 在线a可以看的网站| 久久97久久精品| 亚洲欧美成人精品一区二区| 国产欧美另类精品又又久久亚洲欧美| 国产久久久一区二区三区| 麻豆国产97在线/欧美| 99热全是精品| 免费观看在线日韩| 久久精品久久精品一区二区三区| 日本三级黄在线观看| 日韩av在线免费看完整版不卡| 白带黄色成豆腐渣| 精品久久国产蜜桃| av线在线观看网站| av播播在线观看一区| 亚洲精品日本国产第一区| av福利片在线观看| av在线天堂中文字幕| 国产免费福利视频在线观看| 91精品伊人久久大香线蕉| 国产亚洲精品av在线| 有码 亚洲区| 免费人成在线观看视频色| 最近最新中文字幕免费大全7| 欧美 日韩 精品 国产| 22中文网久久字幕| 日本欧美国产在线视频| 看十八女毛片水多多多| 一个人免费在线观看电影| 国产成人午夜福利电影在线观看| 国产一区亚洲一区在线观看| 中文字幕免费在线视频6| 精华霜和精华液先用哪个| 久久久久性生活片| 亚洲第一区二区三区不卡| 亚洲国产精品成人综合色| 亚洲性久久影院| 亚洲精品国产成人久久av| 亚洲丝袜综合中文字幕| 一级毛片久久久久久久久女| 色网站视频免费| 人妻少妇偷人精品九色| 婷婷色综合大香蕉| 国产综合懂色| 舔av片在线| 国产白丝娇喘喷水9色精品| 高清欧美精品videossex| 亚洲av中文av极速乱| 久久久久久久国产电影| 国产国拍精品亚洲av在线观看| 国产伦在线观看视频一区| 久久午夜福利片| 国内少妇人妻偷人精品xxx网站| 国产精品伦人一区二区| 亚州av有码| 国产亚洲精品av在线| 六月丁香七月| 男女边摸边吃奶| 中文字幕免费在线视频6| 中文精品一卡2卡3卡4更新| 国产伦在线观看视频一区| 丰满少妇做爰视频| 国产黄色免费在线视频| 伊人久久国产一区二区| 91久久精品国产一区二区三区| 女人久久www免费人成看片| 老司机影院成人| 深夜a级毛片| 久久久a久久爽久久v久久| 我要看日韩黄色一级片| 色网站视频免费| 少妇人妻精品综合一区二区| 亚洲怡红院男人天堂| 成人午夜精彩视频在线观看| 男女视频在线观看网站免费| 精品人妻偷拍中文字幕| 九九爱精品视频在线观看| 麻豆国产97在线/欧美| 黄色一级大片看看| 好男人在线观看高清免费视频| 国产 一区精品| 在线观看人妻少妇| 欧美性感艳星| 国产老妇女一区| 日韩一区二区三区影片| 一级毛片 在线播放| 国产亚洲精品av在线| 日韩欧美精品免费久久| 人人妻人人澡欧美一区二区| 在线观看人妻少妇| 欧美日韩视频高清一区二区三区二| 成人高潮视频无遮挡免费网站| 丝袜美腿在线中文| 欧美人与善性xxx| 精品一区二区三区人妻视频| 亚洲综合精品二区| 一级毛片黄色毛片免费观看视频| 亚洲国产最新在线播放| 全区人妻精品视频| 午夜老司机福利剧场| 一个人看的www免费观看视频| av在线播放精品| 亚洲,欧美,日韩| 国产亚洲最大av| 亚洲av中文字字幕乱码综合| 国产欧美另类精品又又久久亚洲欧美| 欧美成人午夜免费资源| 国产真实伦视频高清在线观看| 韩国av在线不卡| av网站免费在线观看视频 | 亚洲最大成人手机在线| 网址你懂的国产日韩在线| 色播亚洲综合网| 国产黄片美女视频| 午夜福利视频精品| 精品不卡国产一区二区三区| 日韩av在线大香蕉| ponron亚洲| 直男gayav资源| 中国国产av一级| 亚洲电影在线观看av| 国产69精品久久久久777片| 亚洲自偷自拍三级| 精品酒店卫生间| 免费黄色在线免费观看| 国产精品一及| 亚洲无线观看免费| 好男人在线观看高清免费视频| 3wmmmm亚洲av在线观看| a级一级毛片免费在线观看| 午夜福利在线观看吧| 国产精品福利在线免费观看| 精品久久久噜噜| 一二三四中文在线观看免费高清| 亚洲精品自拍成人| 又爽又黄a免费视频| 欧美日韩视频高清一区二区三区二| 国产精品一区二区性色av| 狠狠精品人妻久久久久久综合| 一级毛片电影观看| 一级毛片黄色毛片免费观看视频| 91精品国产九色| 亚洲欧洲日产国产| 精品国产一区二区三区久久久樱花 | 美女大奶头视频| 成年女人在线观看亚洲视频 | 精品久久久久久久久久久久久| 免费看美女性在线毛片视频| 午夜福利在线观看免费完整高清在| 亚洲精品456在线播放app| 国产精品三级大全| 国产精品1区2区在线观看.| 日本黄色片子视频| 高清av免费在线| 国产高清不卡午夜福利| 亚洲精品中文字幕在线视频 | 高清毛片免费看| 爱豆传媒免费全集在线观看| 18+在线观看网站| 久久6这里有精品| .国产精品久久| 18禁裸乳无遮挡免费网站照片| 纵有疾风起免费观看全集完整版 | 国产激情偷乱视频一区二区| 久久久精品欧美日韩精品| 欧美+日韩+精品| 六月丁香七月| 日本黄大片高清| 久99久视频精品免费| 免费高清在线观看视频在线观看| 成人亚洲精品av一区二区| 亚洲伊人久久精品综合| 黄色欧美视频在线观看| 国产亚洲最大av| 国产成人freesex在线| 一区二区三区免费毛片|