• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Potential for Constraining Propagation Parameters of Galactic Cosmic Rays with the High Energy Cosmic-radiation Detection Facility on Board China’s Space Station

    2023-09-03 01:37:02ZhiHuiXuQiangYuanZhiChengTangandXiaoJunBi

    Zhi-Hui Xu ,Qiang Yuan ,Zhi-Cheng Tang ,and Xiao-Jun Bi,4

    1 Key Laboratory of Dark Matter and Space Astronomy,Purple Mountain Observatory,Chinese Academy of Sciences,Nanjing 210023,China;yuanq@pmo.ac.cn

    2 School of Astronomy and Space Science,University of Science and Technology of China,Hefei 230026,China

    3 Key Laboratory of Particle Astrophysics,Institute of High Energy Physics,Chinese Academy of Sciences,Beijing 100049,China

    4 University of Chinese Academy of Sciences,Beijing 100049,China

    Abstract Precise measurements of the spectra of secondary and primary cosmic rays are crucial for understanding the origin and propagation of those energetic particles.The High Energy Cosmic-radiation Detection (HERD) facility on board China’s Space Station,which is expected to operate in 2027,will push the direct and precise measurements of cosmic-ray fluxes up to PeV energies.In this work,we investigate the potential of HERD for studying the propagation of cosmic rays using measurements of boron,carbon,and oxygen spectra.We find that,compared with the current results,the new HERD measurements can improve the accuracy of the propagation parameters by 8%–40%.The constraints on the injection spectra at high energies will also be improved.

    Key words: (ISM:) cosmic rays– instrumentation: detectors– The Galaxy

    1.Introduction

    The origin,acceleration,and propagation of cosmic rays(CRs)remain unresolved despite many years of studies.One of the most important approaches to solving this problem is to measure the energy spectra of various compositions of CRs precisely.Recent precise measurements by mainly direct detection experiments reveal interesting features of many nuclear species,including hardenings around a rigidity of a few hundred GV(Panov et al.2009;Adriani et al.2011,2019,2020;Aguilar et al.2015a,2015b,2017,2020;Yoon et al.2017;An et al.2019;Alemanno et al.2021) and softenings aroundO(10)TV(Atkin et al.2017;Yoon et al.2017;An et al.2019;Alemanno et al.2021;Albert et al.2022).For secondary nuclei,which are particularly important in understanding the propagation of CRs,hardening features at similar energies with primary nuclei are also found (Aguilar et al.2018,2021;Adriani et al.2022;Alemanno et al.2022).This progress in measurements triggered many theoretical studies to discuss new implications for the origin and propagation of CRs (e.g.,Ohira &Ioka 2011;Yuan et al.2011,2020,2021;Blasi et al.2012;Malkov et al.2012;Tomassetti 2012,2015;Vladimirov et al.2012;Thoudam &H?randel 2014;Cowsik &Madziwa-Nussinov 2016;Guo et al.2016;Guo&Yuan 2018;Yue et al.2020;Kawanaka &Lee 2021;Malkov &Moskalenko 2021,2022;Niu 2022;Ma et al.2023;Zhang et al.2023).

    The above-mentioned structures are found mainly at relatively low energies.At higher energies (e.g.,?10 TeV),our knowledge about precise spectral structures is still limited.To better understand the propagation properties of CRs,improved measurements in a wider energy range are crucial.The High Energy Cosmic-radiation Detection(HERD)facility,planned to be installed in China’s Space Station around 2027,is dedicated to measuring energy spectra of various CR species up to PeV energies(Zhang et al.2014).The core of the HERD detector is a three-dimensional,five-side active calorimeter(CALO) detector,surrounded by fiber trackers (FITs)for track measurements,plastic scintillator detectors covering the trackers for charge measurements and anticoincidence of γ rays,and silicon charge detectors enclosing all the above subdetectors for charge measurements (Kyratzis &HERD Collaboration 2023).A transition radiation detector is employed to provide energy calibration of nuclei.The geometric factor of HERD is about 2–3 m2sr for charged CR detection,and can thus extend the measurements of the spectra of major CR components to >PeV energies.The novel design of HERD makes it a powerful detector for measurements of CR nuclei and electrons/positrons,as well as γ rays in a wide energy range.HERD is expected to significantly advance our understanding of the fundamental problems in CR physics(e.g.,to reveal the nature of the knee),as well as to probe new physics such as the nature of dark matter particles (Huang et al.2016).

    In this work,we study the potential for constraining injection and propagation parameters of HERD,assuming a simple onezone homogeneous propagation model of CRs.We forecast the spectral measurements of boron,carbon,and oxygen CRs according to the latest designed performance of HERD(Kyratzis &HERD Collaboration 2023),and employ the numerical propagation model GALPROP (Strong &Moskalenko 1998,version 56) together with the Markov Chain Monte Carlo (MCMC) algorithm emcee5https://pypi.org/project/emcee/(Foreman-Mackey et al.2013) to constrain the model parameters.This paper is organized as follows.We describe the framework and setup of the propagation model in Section 2.In Section 3,we present the results of our analysis,focusing on the comparison with current results based on existing data.Finally,we summarize our results and discuss their implications in Section 4.

    2.Propagation Model of Cosmic Rays

    The propagation of CRs in the Milky Way,which involves a number of physical processes,can be described by the following equation (Ginzburg &Syrovatskii 1964;Strong et al.2007):

    where ψ is the differential density of CRs per momentum interval,Dxxis the spatial diffusion coefficient,Dppis the diffusion coefficient in momentum space,which is employed to describe the stochastic reacceleration of CRs,Vcis the convection velocity,is the momentum loss rate,τris the timescale of radioactive decay,τfis the timescale of fragmentation,andq(r,p) is the source function.

    We assume that the spatial diffusion coefficient,Dxx,is spatially homogeneous and depends on the rigidity of particles R with the power-law form

    where β=v/cis the velocity of the particle in units of the speed of light,R0≡ 4GV is a reference rigidity,η is introduced to tune the velocity dependence at low energies to better fit the data,and δ is the slope of the rigidity dependence,which reflects the property of interstellar turbulence(Berezinskii et al.1990;Schlickeiser 2002).The convective transport is described by a velocity Vc,which is the fluid velocity of gas containing relativistic particles.Fitting to the data shows that a high convection velocity is disfavored for reproducing the observed low-energy secondary-to-primary ratios such as B/C (Strong &Moskalenko 1998;Yuan et al.2017;Yuan 2019).We therefore ignore convection in this work.The scattering of particles off randomly moving magnetohydrodynamic (MHD) waves results in stochastic acceleration of CRs,which can be described by their diffusion in momentum space with the coefficient (Seo &Ptuskin 1994)

    wherevAis the Alfvén speed of magnetized disturbances;wis the ratio of the energy density of MHD waves to the energy density of the regular magnetic field,and it can be effectively absorbed intovA.

    The spatial distribution of CR sources is assumed to follow the distribution of supernova remnants or pulsars,which is parameterized as the cylindrically symmetric form

    where the unit of rigidity is MV.Note that the spectral hardening feature at several hundred GV is attributed to the injection spectrum of CRs in this work.Possible breaks in the rigidity dependence of the diffusion coefficient (Vladimirov et al.2012;Ma et al.2023) are not considered in the current work.For all primary CRs,the same spectral shape with different abundances is assumed.Finally,the solar modulation,which mainly affects CR spectra at low energies,is applied under the force-field approximation (Gleeson&Axford 1968).The force-field approximation is simplified.Since the solar modulation mainly affects low-energy (?20 GV) spectra of CRs,more complicated modulation models (Potgieter 2013)would have little effect on our conclusion.

    3.Analysis and Results

    3.1.Fitting to Existing Data

    We first run a fitting to existing data,which is used for comparison.The best-fit results of the spectra are also the basis of the prediction of HERD observations.The data used in this work include the spectra of boron,carbon,and oxygen measured by AMS-02 during its first seven years of operation(Aguilar et al.2021).The low-energy spectra of those species measured by ACE6http://www.srl.caltech.edu/ACE/ASC/level2/lvl2DATA_CRIS.htmlwithin the same time window as AMS-02 are extracted (Yuan 2019).Voyager 1 also measured spectra of boron,carbon,and oxygen outside the heliosphere (Cummings et al.2016),which are helpful in determining the solar modulation parameter.To break the degeneracy between the diffusion coefficient and the halo height,we use the10Be/9Be ratio measured by several experiments (Wiedenbeck &Greiner 1980;Simpson &Garcia-Munoz 1988;Connell 1998;Lukasiak 1999;Yanasak et al.2001;Hams et al.2004;Nozzoli &Cernetti 2021).The observational time periods of10Be/9Be vary,and thus there are large uncertainties in their solar modulation parameters.We use the modulation potential retrieved from the Cosmic Ray Database7https://lpsc.in2p3.fr/crdb(Maurin et al.2014,2020),based on the neutron monitor data (Ghelfi et al.2017).The data are summarized in Table 1.

    Table 1Data Used in the Fitting

    Our MCMC process involves 14 parameters,consisting of five propagation parameters (D0,δ,η,zh,andvA),six injection spectral parameters,two normalization parameters for carbon and oxygen,and one parameter for solar modulation.The CR nuclei withZ≤14 were included,with normalization parameters being set to the default values of GALPROP except for carbon and oxygen.

    The posterior mean and 1σ uncertainties of the propagation parameters and modulation parameter of the fitting are given in Table 2.The one-dimensional distributions and their twodimensional correlations are shown in the left panel of Figure 1.The best-fitting spectra of boron,carbon,and oxygen,compared with the data,are shown in Figure 2.We note that the derived model parameters are slightly different from those obtained previously,e.g.,Yuan et al.(2020).Specifically,the thickness of the propagation halo is smaller,the Alfvén speed is lower,and the parameter δ is bigger in this work than in Yuan et al.(2020).There are several possible reasons for such differences.First,the data of AMS-02 used in this work are the seven-year measurements(Aguilar et al.2021).Second,we use version 56 of GALPROP in this work,which includes an update of the gas model and results in slightly different production spectra of secondary particles.Third,different data sets used in these works may also result in different constraints on the model parameters.Our results are closer to those given in a recent work (Zhao et al.2023),where some of the abovementioned updates have been included.

    Figure 1.The one-dimensional (diagonal) and two-dimensional (off-diagonal) probability distributions of the propagation parameters.For units of the parameters please refer to Table 2.The left panel is for the fitting to the existing data and the right panel is for the fitting to existing data plus the HERD-predicted spectra.

    Figure 2.Spectra of boron(top left),carbon(top right),and oxygen(bottom).Lines are the best-fitting results obtained in Section 3.1,with solid(dashed)ones being the spectra after (before) the solar modulation.The HERD-predicted data points are shown by pink dots.

    Table 2Fitting Results and 1σ Uncertainties of the Transport and Solar Modulation Parameters

    3.2.Predicted Boron,Carbon,and Oxygen Spectra from HERD

    Based on the best-fitting spectra of boron,carbon,and oxygen CRs,we predict the HERD measurements.We choose a bin width of Δ logE=0.2for energy,and calculate the expected number of counts in each energy bin based on the simulated effective acceptance of the latest HERD design,for an operational time of 10 years.The effective acceptance takes into account both the geometric factor and the shower development in the CALO based on Monte Carlo simulations.Only the events with early developing showers with sufficient path lengths in the CALO are selected to ensure a good reconstruction quality.To enable a good flux measurement,we further require that the number of events in each energy bin is bigger than 10.Statistical uncertainties and the estimated systematic uncertainties of ~10% (An et al.2019;Alemanno et al.2021) are added in quadrature.We start the HERD spectra from ~8 TeV,since the spectrometer experiments such as AMS-02 have already measured the spectra with good precision at lower energies.The inclusion of low-energy data points,as long as they are consistent with those of AMS-02,is expected not to change our conclusion significantly.The predicted fluxes measured by HERD,together with other experimental data,are shown in Figure 2.

    3.3.Constraints on Model Parameters by Including HERD

    We redo the fitting in Section 3.1 to derive the constraints on the model parameters after including the HERD spectra on boron,carbon,and oxygen.The results are given in Table 2 and Figure 1.We find that adding the HERD data will reduce the errors of model parameters by about 8% to 40%.The improvement on the constraint of δ is the most significant.This is expected since HERD mainly improves the measurements at high energies.Note that new measurements of AMS-02 and DAMPE showed hardenings of the B/C and B/O ratios at high energies (Aguilar et al.2021;Alemanno et al.2022),which are not included in this work.However,it is expected that HERD can definitely give better measurements of such ratios above 1 TeV/nucleon,and can thus better constrain the energy dependence of the diffusion coefficient at high energies.There are slight improvements to other propagation parameters,which are mainly determined by low-energy data.Figure 3 compares the constraints on parameters δ,η,andvA,for the fittings without (blue) and with (red) HERD data.

    Figure 3.Comparison of the constraints on selected propagation parameters for the fitting without (blue) and with (red) HERD data.

    The inclusion of HERD data at high energies is expected to improve the constraints on the wide-band injection spectra of CRs.Figure 4 shows the comparison of the injection spectra of the two fittings.The shaded bands represent the 1σ spans of the fitting results.As can be seen,the uncertainties above 1 TV are smaller when adding the HERD data.

    Figure 4.The 1σ bands of injection spectra for the fitting without (blue) and with (red) HERD data.

    4.Summary and Discussion

    Precise measurements of spectra of primary and secondary CRs in a wide energy range are very important in probing the propagation of Galactic CRs.In this work we study the prospect of constraining CR propagation parameters with the planned HERD mission on board China’s Space Station.HERD is expected to measure precisely energy spectra of carbon and oxygen nuclei up to 100 TeV/nucleon and boron nuclei to>10 TeV/nucleon.These measurements are expected to be very helpful in understanding the energy dependence of the diffusion coefficient as well as the injection spectra above 1 TeV/nucleon,which are rarely constrained by existing data.

    Under a framework of a continuous source distribution and spatially homogeneous propagation with reacceleration,we fit the boron,carbon,and oxygen data to obtain the constraints on the model parameters.We focus on a comparison of the results for the fittings without and with the HERD data.It is shown that adding the HERD data improves the constraint on the slope parameter (δ) of the energy dependence of the diffusion coefficient significantly.Quantitatively,the error on δ decreases by about 40% after adding the HERD data.Slight improvements to other propagation parameters are also found.In addition,the HERD data are useful in improving the constraints on the injection spectra of primary CRs at high energies.

    The model assumption of the current work is simplified.Possible improvements of future works may include (1) study of more secondary (such as lithium,beryllium,fluorine,subiron)and primary(oxygen,neon,magnesium,silicon,iron)CR spectra by HERD and particularly the effects of different mass groups(Wu&Chen 2019;Ferronato Bueno et al.2022;Wang et al.2022;Zhao et al.2023),(2)discussion of spectral breaks in the diffusion coefficient (Vladimirov et al.2012;Ma et al.2023),and (3) investigation of spatially inhomogeneous propagation as indicated by recent observations (Tomassetti 2012;Guo &Yuan 2018;Zhao et al.2021).

    Acknowledgments

    We thank Wei Jiang,Zhao-Qiang Shen,and Cheng-Rui Zhu for the helpful discussion.This work is supported by the National Key Research and Development Program of China(No.2021YFA0718404),the National Natural Science Foundation of China(No.12220101003),and the Project for Young Scientists in Basic Research of Chinese Academy of Sciences(No.YSBR-061).

    国产片内射在线| 热99re8久久精品国产| 高清黄色对白视频在线免费看| 嫁个100分男人电影在线观看| 国产区一区二久久| 久久人人爽av亚洲精品天堂| 50天的宝宝边吃奶边哭怎么回事| www日本在线高清视频| 亚洲一区中文字幕在线| 在线亚洲精品国产二区图片欧美| 国产精品影院久久| 国产日韩欧美在线精品| 他把我摸到了高潮在线观看 | 欧美变态另类bdsm刘玥| 成在线人永久免费视频| 亚洲性夜色夜夜综合| 国产av又大| 多毛熟女@视频| 一级毛片精品| 免费日韩欧美在线观看| 超碰97精品在线观看| 欧美 日韩 精品 国产| 欧美成人午夜精品| 日韩视频在线欧美| 欧美 日韩 精品 国产| 国产又色又爽无遮挡免| 在线看a的网站| av福利片在线| 大码成人一级视频| 两个人看的免费小视频| 欧美激情久久久久久爽电影 | 我的亚洲天堂| 国产1区2区3区精品| 搡老熟女国产l中国老女人| 动漫黄色视频在线观看| 日韩中文字幕欧美一区二区| 亚洲精品一区蜜桃| 国产91精品成人一区二区三区 | 国产av精品麻豆| 亚洲一码二码三码区别大吗| 视频在线观看一区二区三区| 日韩大码丰满熟妇| 1024视频免费在线观看| 国产精品av久久久久免费| 国产精品av久久久久免费| 一级片免费观看大全| 欧美人与性动交α欧美精品济南到| 女人精品久久久久毛片| 国产人伦9x9x在线观看| 黄色毛片三级朝国网站| 热99国产精品久久久久久7| 一边摸一边做爽爽视频免费| 亚洲 国产 在线| 久久狼人影院| 久久久久精品人妻al黑| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲国产欧美网| 99久久人妻综合| 久久久国产精品麻豆| 视频区图区小说| 国产1区2区3区精品| 18禁观看日本| 日韩欧美免费精品| 一级毛片电影观看| 老司机靠b影院| 亚洲精品美女久久av网站| 男人操女人黄网站| 看免费av毛片| 精品亚洲成国产av| 电影成人av| 夫妻午夜视频| 韩国高清视频一区二区三区| 成人免费观看视频高清| 亚洲精品乱久久久久久| 亚洲专区国产一区二区| 久久毛片免费看一区二区三区| 亚洲精华国产精华精| 久久久久精品国产欧美久久久 | 51午夜福利影视在线观看| 狂野欧美激情性xxxx| 免费在线观看视频国产中文字幕亚洲 | 女人久久www免费人成看片| 精品熟女少妇八av免费久了| 美国免费a级毛片| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲精华国产精华精| 成人18禁高潮啪啪吃奶动态图| 国产日韩欧美视频二区| 五月开心婷婷网| 视频区图区小说| 欧美日韩国产mv在线观看视频| 国产日韩欧美亚洲二区| 满18在线观看网站| 国产精品一区二区免费欧美 | 亚洲免费av在线视频| 欧美性长视频在线观看| 精品一品国产午夜福利视频| 欧美成狂野欧美在线观看| 久久青草综合色| 老熟妇仑乱视频hdxx| 成人亚洲精品一区在线观看| 国产精品亚洲av一区麻豆| 欧美激情久久久久久爽电影 | 亚洲五月婷婷丁香| 久久久久久久久免费视频了| 涩涩av久久男人的天堂| 人成视频在线观看免费观看| 人人澡人人妻人| 性色av一级| 亚洲精品美女久久av网站| 精品国产一区二区久久| www日本在线高清视频| 国产免费av片在线观看野外av| 亚洲五月婷婷丁香| 一本综合久久免费| 国产主播在线观看一区二区| 久9热在线精品视频| 在线观看免费高清a一片| av在线app专区| 亚洲欧美精品自产自拍| 黄色a级毛片大全视频| 久久久久久久国产电影| 高清黄色对白视频在线免费看| 高清在线国产一区| 婷婷成人精品国产| 中文字幕人妻丝袜制服| 亚洲情色 制服丝袜| 少妇粗大呻吟视频| 在线看a的网站| 亚洲精品国产色婷婷电影| 婷婷成人精品国产| 满18在线观看网站| 一级毛片精品| 国产又爽黄色视频| 免费av中文字幕在线| 久久久久国产精品人妻一区二区| 亚洲中文av在线| 国产97色在线日韩免费| 黄色视频在线播放观看不卡| 女人久久www免费人成看片| 亚洲免费av在线视频| 手机成人av网站| 18禁国产床啪视频网站| 操出白浆在线播放| 九色亚洲精品在线播放| 女性生殖器流出的白浆| 精品一区在线观看国产| 伊人久久大香线蕉亚洲五| 免费女性裸体啪啪无遮挡网站| 一级毛片电影观看| 日本五十路高清| 伊人亚洲综合成人网| 欧美日韩亚洲国产一区二区在线观看 | 午夜精品久久久久久毛片777| 精品高清国产在线一区| 少妇被粗大的猛进出69影院| 操美女的视频在线观看| 在线十欧美十亚洲十日本专区| 80岁老熟妇乱子伦牲交| 性少妇av在线| a 毛片基地| a级片在线免费高清观看视频| 欧美人与性动交α欧美精品济南到| 精品久久久精品久久久| 亚洲成av片中文字幕在线观看| 老司机午夜十八禁免费视频| 亚洲精品成人av观看孕妇| 啦啦啦 在线观看视频| 18禁裸乳无遮挡动漫免费视频| 一级a爱视频在线免费观看| 99re6热这里在线精品视频| 久久这里只有精品19| 国产老妇伦熟女老妇高清| 亚洲国产精品999| 日韩制服骚丝袜av| 黄色视频在线播放观看不卡| 最近中文字幕2019免费版| 午夜成年电影在线免费观看| 老司机靠b影院| 免费女性裸体啪啪无遮挡网站| 久久影院123| 亚洲 国产 在线| 永久免费av网站大全| 久久久久久久久免费视频了| 久久狼人影院| 性少妇av在线| 老司机靠b影院| 51午夜福利影视在线观看| 黑人欧美特级aaaaaa片| 日本91视频免费播放| 免费人妻精品一区二区三区视频| 国产精品久久久久成人av| 91麻豆精品激情在线观看国产 | 亚洲精品久久成人aⅴ小说| 久久香蕉激情| 97精品久久久久久久久久精品| 亚洲av日韩精品久久久久久密| 一级片'在线观看视频| 国产精品久久久久久精品古装| 久久中文字幕一级| 精品国产乱子伦一区二区三区 | 欧美精品av麻豆av| 99久久人妻综合| 午夜福利在线观看吧| 真人做人爱边吃奶动态| 18禁国产床啪视频网站| 777米奇影视久久| 999久久久精品免费观看国产| 免费观看人在逋| 国产精品一区二区免费欧美 | 久久午夜综合久久蜜桃| 国产精品久久久av美女十八| 黄色片一级片一级黄色片| 欧美激情久久久久久爽电影 | 久久久精品国产亚洲av高清涩受| 亚洲中文字幕日韩| 人成视频在线观看免费观看| 少妇猛男粗大的猛烈进出视频| 精品人妻在线不人妻| 精品国产一区二区久久| 麻豆乱淫一区二区| 亚洲精品中文字幕一二三四区 | 成年av动漫网址| 亚洲精华国产精华精| 亚洲av成人一区二区三| 国产在线视频一区二区| www.熟女人妻精品国产| 日本欧美视频一区| 国产极品粉嫩免费观看在线| 少妇 在线观看| 免费高清在线观看日韩| svipshipincom国产片| 伊人久久大香线蕉亚洲五| 亚洲一区二区三区欧美精品| 超碰成人久久| 午夜福利在线免费观看网站| 黄色怎么调成土黄色| 国产xxxxx性猛交| 69精品国产乱码久久久| 欧美精品亚洲一区二区| 性色av乱码一区二区三区2| 91老司机精品| 他把我摸到了高潮在线观看 | 在线十欧美十亚洲十日本专区| 欧美日本中文国产一区发布| 久久久国产一区二区| 亚洲全国av大片| 色精品久久人妻99蜜桃| 我要看黄色一级片免费的| 日韩三级视频一区二区三区| 9色porny在线观看| 国产淫语在线视频| 爱豆传媒免费全集在线观看| 12—13女人毛片做爰片一| 精品福利永久在线观看| 亚洲精品国产av成人精品| 中文字幕人妻丝袜一区二区| 高清在线国产一区| h视频一区二区三区| bbb黄色大片| 亚洲精品成人av观看孕妇| 国产伦人伦偷精品视频| 精品国产国语对白av| 在线精品无人区一区二区三| 正在播放国产对白刺激| 日韩电影二区| 精品欧美一区二区三区在线| 午夜福利视频在线观看免费| 亚洲国产av新网站| 91字幕亚洲| 一区二区三区精品91| 久久精品亚洲熟妇少妇任你| 欧美激情高清一区二区三区| 在线观看舔阴道视频| 中文字幕人妻丝袜一区二区| 青春草亚洲视频在线观看| tube8黄色片| 视频区图区小说| 激情视频va一区二区三区| 欧美精品一区二区大全| 欧美 亚洲 国产 日韩一| 国产一区二区激情短视频 | 国产成人精品在线电影| 久久久久久久精品精品| 久久亚洲国产成人精品v| 777米奇影视久久| av天堂在线播放| 国产熟女午夜一区二区三区| 最新在线观看一区二区三区| 亚洲精品一区蜜桃| 精品国产一区二区久久| 伊人久久大香线蕉亚洲五| 香蕉国产在线看| 国产精品1区2区在线观看. | 80岁老熟妇乱子伦牲交| 午夜久久久在线观看| 丝袜喷水一区| 国产精品亚洲av一区麻豆| 自线自在国产av| 欧美精品一区二区免费开放| 亚洲中文字幕日韩| a在线观看视频网站| 丝袜脚勾引网站| 俄罗斯特黄特色一大片| 精品国产国语对白av| 日韩三级视频一区二区三区| 免费在线观看日本一区| 十八禁网站免费在线| 国产高清国产精品国产三级| 国产在线观看jvid| 国产精品亚洲av一区麻豆| 黑人巨大精品欧美一区二区蜜桃| 一区二区av电影网| 天天躁夜夜躁狠狠躁躁| 日韩有码中文字幕| 悠悠久久av| 免费看十八禁软件| 久久久久国产精品人妻一区二区| 亚洲激情五月婷婷啪啪| 侵犯人妻中文字幕一二三四区| 99国产精品一区二区蜜桃av | 热re99久久国产66热| 老汉色av国产亚洲站长工具| 精品少妇久久久久久888优播| 久久久欧美国产精品| 久久久国产一区二区| 无遮挡黄片免费观看| 日本wwww免费看| 999久久久国产精品视频| 国产精品成人在线| 999精品在线视频| 国产色视频综合| 欧美成人午夜精品| 中文欧美无线码| 亚洲精品第二区| 国产精品 国内视频| 男人爽女人下面视频在线观看| 亚洲九九香蕉| 两性午夜刺激爽爽歪歪视频在线观看 | 午夜免费鲁丝| 日韩,欧美,国产一区二区三区| 黑人欧美特级aaaaaa片| 99re6热这里在线精品视频| 国产一区二区 视频在线| 他把我摸到了高潮在线观看 | 99热全是精品| 亚洲一区二区三区欧美精品| 国产日韩欧美视频二区| 香蕉国产在线看| 性色av一级| 亚洲五月婷婷丁香| 国产精品国产三级国产专区5o| 亚洲激情五月婷婷啪啪| 亚洲中文字幕日韩| 嫁个100分男人电影在线观看| 亚洲精品第二区| 麻豆av在线久日| 国产精品一区二区精品视频观看| 国产精品久久久久久人妻精品电影 | 午夜激情av网站| 交换朋友夫妻互换小说| 777久久人妻少妇嫩草av网站| 欧美xxⅹ黑人| 岛国在线观看网站| av超薄肉色丝袜交足视频| 97人妻天天添夜夜摸| 亚洲黑人精品在线| 久热爱精品视频在线9| 男女边摸边吃奶| 亚洲精品一卡2卡三卡4卡5卡 | 两性午夜刺激爽爽歪歪视频在线观看 | 黄色毛片三级朝国网站| 一个人免费在线观看的高清视频 | 精品少妇黑人巨大在线播放| 丁香六月欧美| 黑丝袜美女国产一区| 久久精品国产综合久久久| 国产精品自产拍在线观看55亚洲 | 亚洲精品av麻豆狂野| 国产在线视频一区二区| 亚洲成人手机| 99国产综合亚洲精品| 欧美日韩国产mv在线观看视频| 国产av精品麻豆| 亚洲av成人一区二区三| 免费女性裸体啪啪无遮挡网站| 欧美性长视频在线观看| 国产精品av久久久久免费| 久久国产精品人妻蜜桃| 免费在线观看完整版高清| 搡老乐熟女国产| 欧美av亚洲av综合av国产av| 人人妻人人澡人人看| 99国产极品粉嫩在线观看| 日韩制服骚丝袜av| 国产日韩欧美在线精品| 欧美另类亚洲清纯唯美| 精品人妻在线不人妻| 国产高清videossex| 热99久久久久精品小说推荐| 黄片播放在线免费| av有码第一页| 一本大道久久a久久精品| 免费女性裸体啪啪无遮挡网站| 色婷婷久久久亚洲欧美| 亚洲精品日韩在线中文字幕| 欧美亚洲日本最大视频资源| 女警被强在线播放| 精品亚洲成国产av| 午夜久久久在线观看| 国产又色又爽无遮挡免| 免费在线观看日本一区| 国产精品自产拍在线观看55亚洲 | 大片免费播放器 马上看| 精品国产一区二区三区久久久樱花| 高清欧美精品videossex| 天堂中文最新版在线下载| 一边摸一边抽搐一进一出视频| 日韩人妻精品一区2区三区| 亚洲欧美日韩另类电影网站| 久9热在线精品视频| www.自偷自拍.com| 91麻豆av在线| 国产一卡二卡三卡精品| av国产精品久久久久影院| 性高湖久久久久久久久免费观看| 夜夜骑夜夜射夜夜干| 在线看a的网站| 一级a爱视频在线免费观看| 国产精品偷伦视频观看了| 少妇粗大呻吟视频| 久久久久久亚洲精品国产蜜桃av| h视频一区二区三区| 成人18禁高潮啪啪吃奶动态图| 老汉色av国产亚洲站长工具| 日日摸夜夜添夜夜添小说| 日本精品一区二区三区蜜桃| 国产高清videossex| 黑人操中国人逼视频| 制服人妻中文乱码| 日韩欧美一区二区三区在线观看 | 一级a爱视频在线免费观看| 欧美精品一区二区大全| 岛国在线观看网站| 久久人妻熟女aⅴ| 男男h啪啪无遮挡| 99精品欧美一区二区三区四区| 日本猛色少妇xxxxx猛交久久| 久久久国产欧美日韩av| 制服诱惑二区| 亚洲熟女毛片儿| 满18在线观看网站| netflix在线观看网站| 精品乱码久久久久久99久播| 日本猛色少妇xxxxx猛交久久| 一本综合久久免费| 欧美黄色片欧美黄色片| 免费久久久久久久精品成人欧美视频| 男女午夜视频在线观看| 日本av免费视频播放| 亚洲中文字幕日韩| 最新的欧美精品一区二区| 国产精品99久久99久久久不卡| 高清黄色对白视频在线免费看| 国产免费视频播放在线视频| 男女免费视频国产| 动漫黄色视频在线观看| 少妇人妻久久综合中文| avwww免费| 久久久久久久久免费视频了| 成在线人永久免费视频| 亚洲专区国产一区二区| 久久精品久久久久久噜噜老黄| 欧美av亚洲av综合av国产av| 青春草亚洲视频在线观看| 女性生殖器流出的白浆| 美女国产高潮福利片在线看| 亚洲色图 男人天堂 中文字幕| 日韩制服丝袜自拍偷拍| 亚洲国产中文字幕在线视频| 91精品三级在线观看| 精品少妇内射三级| 纵有疾风起免费观看全集完整版| 欧美亚洲日本最大视频资源| 一本色道久久久久久精品综合| av视频免费观看在线观看| 免费在线观看日本一区| 日本a在线网址| 亚洲中文字幕日韩| 99热网站在线观看| kizo精华| 亚洲国产欧美网| 美女大奶头黄色视频| 老汉色∧v一级毛片| 欧美黄色淫秽网站| 蜜桃在线观看..| 99国产精品99久久久久| 亚洲av欧美aⅴ国产| 飞空精品影院首页| 自拍欧美九色日韩亚洲蝌蚪91| 人妻一区二区av| 久久精品国产综合久久久| 国产精品 国内视频| 老熟妇仑乱视频hdxx| 婷婷丁香在线五月| 亚洲成av片中文字幕在线观看| 女人爽到高潮嗷嗷叫在线视频| 1024视频免费在线观看| 黑人巨大精品欧美一区二区蜜桃| 国产精品欧美亚洲77777| 日本黄色日本黄色录像| 在线 av 中文字幕| 久久久国产成人免费| 搡老岳熟女国产| 国产精品一区二区免费欧美 | 日韩 亚洲 欧美在线| 精品国产乱码久久久久久小说| 久久国产精品男人的天堂亚洲| 黄色a级毛片大全视频| 少妇裸体淫交视频免费看高清 | 亚洲av国产av综合av卡| 日韩欧美国产一区二区入口| 欧美另类一区| 日韩熟女老妇一区二区性免费视频| 亚洲国产精品成人久久小说| 免费在线观看黄色视频的| 日韩电影二区| 91精品国产国语对白视频| 交换朋友夫妻互换小说| 18禁观看日本| 欧美另类一区| 黑丝袜美女国产一区| 99热全是精品| 国产97色在线日韩免费| 高清视频免费观看一区二区| av不卡在线播放| 亚洲天堂av无毛| 啦啦啦免费观看视频1| 久久久久久久精品精品| 99国产精品一区二区蜜桃av | 在线观看www视频免费| 18禁裸乳无遮挡动漫免费视频| 人妻一区二区av| 欧美 亚洲 国产 日韩一| 后天国语完整版免费观看| 亚洲国产毛片av蜜桃av| 久久青草综合色| cao死你这个sao货| 纯流量卡能插随身wifi吗| 熟女少妇亚洲综合色aaa.| 久久久水蜜桃国产精品网| 五月天丁香电影| 欧美日韩一级在线毛片| av欧美777| 国产1区2区3区精品| 色精品久久人妻99蜜桃| 极品少妇高潮喷水抽搐| 青青草视频在线视频观看| 狠狠狠狠99中文字幕| 老熟妇仑乱视频hdxx| 亚洲欧洲日产国产| 一个人免费在线观看的高清视频 | 亚洲av欧美aⅴ国产| 嫩草影视91久久| 91大片在线观看| 男女之事视频高清在线观看| 午夜视频精品福利| 免费av中文字幕在线| 大陆偷拍与自拍| 精品国产超薄肉色丝袜足j| 一本色道久久久久久精品综合| 精品人妻熟女毛片av久久网站| 曰老女人黄片| 老司机午夜十八禁免费视频| 免费在线观看完整版高清| 在线十欧美十亚洲十日本专区| 操出白浆在线播放| 国产欧美日韩一区二区三 | 亚洲中文av在线| 又紧又爽又黄一区二区| 国产成人欧美在线观看 | 欧美老熟妇乱子伦牲交| 国产成+人综合+亚洲专区| 成人手机av| 国产淫语在线视频| 王馨瑶露胸无遮挡在线观看| 中文欧美无线码| 国产淫语在线视频| 精品国产国语对白av| tocl精华| 亚洲精品久久成人aⅴ小说| 午夜91福利影院| 后天国语完整版免费观看| 欧美黑人精品巨大| 一区二区三区乱码不卡18| 成人黄色视频免费在线看| 巨乳人妻的诱惑在线观看| 久久 成人 亚洲| 免费看十八禁软件| 搡老岳熟女国产| 热re99久久国产66热| 久久九九热精品免费| 精品一品国产午夜福利视频| 在线观看舔阴道视频| 欧美人与性动交α欧美精品济南到| 午夜福利一区二区在线看| 无限看片的www在线观看| 在线观看免费午夜福利视频| 久久天堂一区二区三区四区| 亚洲自偷自拍图片 自拍| 人人妻人人澡人人看| 深夜精品福利| 曰老女人黄片| 最新在线观看一区二区三区| 国产在线免费精品|