張麗雅,李奇,史珊珊,馬雨夢(mèng),劉亞琪,趙超偉,王鶴如,操海群,廖敏,趙寧
稻田稗草對(duì)五氟磺草胺的抗性機(jī)制及其防治藥劑篩選
張麗雅1,李奇1,史珊珊1,馬雨夢(mèng)1,劉亞琪1,趙超偉1,王鶴如2,操海群1,廖敏1,趙寧1
1安徽農(nóng)業(yè)大學(xué)植物保護(hù)學(xué)院/作物有害生物綜合治理安徽省重點(diǎn)實(shí)驗(yàn)室,合肥 230036;2天長(zhǎng)市農(nóng)業(yè)科技中心植保站,安徽天長(zhǎng) 239300
【目的】稗草()是我國(guó)水稻田主要惡性雜草之一,五氟磺草胺等乙酰乳酸合成酶(acetolactate synthase,ALS)抑制劑類除草劑是防治稻田稗草的主要除草劑種類。本研究團(tuán)隊(duì)前期在安徽省天長(zhǎng)市水稻主產(chǎn)區(qū)發(fā)現(xiàn)疑似五氟磺草胺抗性稗草種群AHTC-01,明確其對(duì)稻田不同種類除草劑的抗性水平及可能的抗性分子機(jī)制,為抗性稗草有效防治、延緩其抗藥性進(jìn)一步發(fā)展提供理論依據(jù)?!痉椒ā坎捎脺厥遗柙苑ㄔ谡晁缴蠝y(cè)定稗草種群AHTC-01對(duì)五氟磺草胺的抗性水平及對(duì)不同除草劑的抗性模式,并通過靶標(biāo)基因測(cè)序和實(shí)時(shí)熒光定量PCR(real-time quantitative PCR,RT-qPCR)分析探索其靶標(biāo)抗性分子機(jī)制?!窘Y(jié)果】相比敏感稗草種群AHFY-01,疑似抗性稗草種群AHTC-01已對(duì)五氟磺草胺產(chǎn)生高水平抗性,抗性倍數(shù)(resistance index,RI)為620。靶標(biāo)抗性機(jī)制分析表明,AHTC-01種群基因拷貝2()第574位氨基酸由色氨酸(Trp)突變?yōu)榱涟彼幔↙eu),其種群突變頻率為100%;在五氟磺草胺處理后12 h,抗性稗草種群AHTC-01相對(duì)表達(dá)量為敏感稗草種群AHFY-01的2.26倍。AHTC-01同時(shí)對(duì)其他3種ALS抑制劑類除草劑雙草醚、嘧啶肟草醚、甲氧咪草煙產(chǎn)生不同水平交互抗性,抗性倍數(shù)分別為8.24、13.36、20.36;但是對(duì)乙酰輔酶A羧化酶(acetyl-CoA carboxylase,ACCase)抑制劑氰氟草酯、精噁唑禾草靈和烯草酮,4-羥基苯基丙酮酸雙氧化酶(4-hydroxyphenylpyruvate dioxygenase,HPPD)抑制劑三唑磺草酮,合成生長(zhǎng)素類(synthetic auxin mimic)氯氟吡啶酯等其他作用機(jī)制除草劑依舊較為敏感?!窘Y(jié)論】稗草種群AHTC-01靶標(biāo)基因第574位氨基酸突變和過量表達(dá)是其對(duì)五氟磺草胺產(chǎn)生抗性的主要原因之一,該抗性機(jī)制同時(shí)賦予其對(duì)不同ALS抑制劑的交互抗性。農(nóng)田生產(chǎn)實(shí)際中,可輪換使用其他作用機(jī)制除草劑對(duì)其進(jìn)行有效防治。
稗草;五氟磺草胺;乙酰乳酸合成酶;基因突變;基因過量表達(dá);抗性模式
【研究意義】稗草()是世界性惡性禾本科雜草之一,廣泛分布在全球各水稻生產(chǎn)區(qū)[1]。在我國(guó),稗草主要危害水稻()、玉米()等秋熟作物,嚴(yán)重發(fā)生時(shí)可導(dǎo)致顯著減產(chǎn)。有研究表明,9株/m2稗草發(fā)生密度可導(dǎo)致水稻減產(chǎn)57%左右[2-4]。乙酰乳酸合成酶(acetolactate synthase,ALS)抑制劑類除草劑是水稻田常用除草劑類別之一,其主要通過抑制靶標(biāo)雜草體內(nèi)ALS活性,影響支鏈氨基酸合成并干擾有絲分裂,進(jìn)而導(dǎo)致植物死亡[5]。目前,ALS抑制劑類除草劑主要包括5大類別:磺酰脲類(sulfonylurea,SU)、咪唑啉酮類(imidazolinone,IMI)、三唑并嘧啶磺酰胺類(triazolopyrimidine sulfonanilide,TP)、嘧啶硫代苯甲酸酯類(pyrimidinyl thiobenzoate,PTB)、磺酰胺基羰基三唑啉酮類(sulfonylaminocarbonyl- triazolinone,SCT)[6],其中五氟磺草胺(penoxsulam)是TP類除草劑的典型代表[7],其于2008年在我國(guó)首次登記,主要用于水稻田防除稗草、莎草和闊葉類等一年生惡性雜草。然而已有研究表明,作用位點(diǎn)單一的除草劑長(zhǎng)期、頻繁、超量使用極易誘導(dǎo)雜草產(chǎn)生抗性[8]。在其登記過后僅7年,王瓊等就報(bào)道采集自黑龍江、安徽、江蘇、寧夏等地水稻田的稗草種群對(duì)五氟磺草胺產(chǎn)生了不同水平的抗性[9],隨后我國(guó)水稻主產(chǎn)區(qū)五氟磺草胺抗性稗草案例頻發(fā)[10-17],給水稻安全生產(chǎn)構(gòu)成嚴(yán)重威脅。明確稗草抗性發(fā)展情況及其內(nèi)在抗性分子機(jī)制,對(duì)于科學(xué)防治抗性稗草以及緩解稗草抗性發(fā)展具有重要意義?!厩叭搜芯窟M(jìn)展】靶標(biāo)抗性(target-site based resistance,TSR)和非靶標(biāo)抗性(non-target-site based resistance,NTSR)是雜草對(duì)除草劑產(chǎn)生抗性的兩個(gè)主要機(jī)制[18]。靶標(biāo)抗性主要涉及靶標(biāo)基因突變和過量表達(dá),二者分別通過改變靶標(biāo)蛋白構(gòu)象或者增加靶標(biāo)蛋白含量而賦予雜草對(duì)除草劑的抗性[19]。目前已證實(shí),不同雜草物種存在Domain A—E 5個(gè)高度保守區(qū),其中在與ALS抑制劑結(jié)合過程中,有8個(gè)具有關(guān)鍵作用的氨基酸位點(diǎn)可能發(fā)生突變,分別為Ala122、Pro197、Ala205、Asp376、Arg377、Trp574、Ser653和Gly654,而且這些氨基酸位點(diǎn)的突變通常導(dǎo)致雜草對(duì)同一作用機(jī)制的藥劑產(chǎn)生交互抗性[20]。針對(duì)ALS抗性稗草,多數(shù)案例是由于靶標(biāo)基因一個(gè)或者多個(gè)決定ALS蛋白構(gòu)象的關(guān)鍵氨基酸發(fā)生了非同義突變[21]。此外,靶標(biāo)基因過量表達(dá)也是某些雜草產(chǎn)生ALS抗性的分子機(jī)制之一。比如,Sen等[22]發(fā)現(xiàn)過量表達(dá)可能是貧育雀麥()對(duì)啶磺草胺產(chǎn)生抗性的原因之一,Zhao等[23]也報(bào)道了抗甲基二磺隆的看麥娘()發(fā)生過量表達(dá)。黃啟超等[24]發(fā)現(xiàn)抗性稗草種群18-WJJ-Ec表達(dá)量是敏感稗草種群18-NJ的8.72倍,進(jìn)而推測(cè)過量表達(dá)參與了稗草的抗藥性表型。相比之下,非靶標(biāo)抗性則幾乎包括所有可以影響除草劑到達(dá)靶標(biāo)作用位點(diǎn)的機(jī)制,比如減少對(duì)除草劑吸收或轉(zhuǎn)運(yùn)、增加對(duì)除草劑屏蔽和隔離、增強(qiáng)對(duì)除草劑解毒代謝等[25]。其中,代謝抗性也是多種雜草對(duì)ALS抑制劑類除草劑產(chǎn)生抗性的主要原因之一,其一般會(huì)賦予雜草不可預(yù)測(cè)的除草劑抗性模式。研究表明代謝抗性是多個(gè)超基因家族協(xié)同作用的結(jié)果,通常涉及到幾個(gè)主要的除草劑解毒酶家族,如細(xì)胞色素P450單加氧酶系(cytochrome P450 monooxygenases,CytP450s)、谷胱甘肽S-轉(zhuǎn)移酶系(glutathione S-transferases,GSTs)、UDP-糖基轉(zhuǎn)移酶系(UDP-glucosyltransferases,UDP-GTs)和ABC轉(zhuǎn)運(yùn)體(ATP-binding cassette transporters,ABC transporters)等,其中某些能夠賦予雜草抗藥性的關(guān)鍵基因近年來也得到鑒定,比如CYP81A家族基因廣泛參與稗草、菵草()等多種雜草對(duì)不同除草劑的代謝抗性等[26-27]。稗草P450s活性增強(qiáng)參與針對(duì)ALS抑制劑抗性的案例也在逐年增加[28-29]?!颈狙芯壳腥朦c(diǎn)】安徽省是我國(guó)長(zhǎng)江中下游水稻主產(chǎn)省份之一。前期田間調(diào)查表明,該省各地市水稻田稗草、千金子()等禾本科雜草發(fā)生較為嚴(yán)重[30-31],其中安徽省天長(zhǎng)市等地區(qū)農(nóng)戶近年來普遍反映,五氟磺草胺等稻田常用除草劑在大田推薦劑量下防治效果較差,推測(cè)稗草等雜草已經(jīng)對(duì)其產(chǎn)生了抗藥性。2020年10月,本課題組于該地區(qū)水稻田采集到一個(gè)稗草疑似抗性種群AHTC-01,然而其具體抗性發(fā)生情況以及內(nèi)在抗性機(jī)制如何,目前尚不清楚。【擬解決的關(guān)鍵問題】針對(duì)AHTC-01稗草種群,首先采用整株生物測(cè)定明確該種群對(duì)五氟磺草胺的敏感性和抗性水平,隨后探索其潛在的靶標(biāo)抗性分子機(jī)理,同時(shí)測(cè)定目標(biāo)抗性機(jī)制所賦予該種群的交互抗性模式,以及其對(duì)不同作用機(jī)制除草劑的敏感性和抗性水平。預(yù)期研究結(jié)果將明確AHTC-01稗草種群對(duì)五氟磺草胺的抗性水平和靶標(biāo)抗性分子機(jī)制,同時(shí)篩選可用于防治該稗草種群的有效藥劑,為抗性稗草科學(xué)防治、延緩其抗藥性發(fā)展提供依據(jù)。
2020年10月,于安徽省天長(zhǎng)市萬壽鎮(zhèn)石莊村水稻田(119.09°E,32.73°N)采集到疑似抗五氟磺草胺稗草種群AHTC-01,據(jù)當(dāng)?shù)剞r(nóng)戶反映,該田塊已連續(xù)至少10年使用ALS抑制劑五氟磺草胺防除稗草、千金子等惡性雜草,且種子采集當(dāng)季以大田推薦劑量(30 g a.i.·hm-2)于水稻苗后早期、稗草3葉期左右施用過五氟磺草胺;同期于安徽省滁州市鳳陽縣趙家圩子村非耕地(117.68°E,32.83°N)采集到敏感稗草種群AHFY-01,該地塊近20年來未使用過任何除草劑。各種群種子均隨機(jī)采集自至少200株稗草成熟穗,于室溫下風(fēng)干后分別裝入牛皮紙袋,保存于4 ℃?zhèn)溆谩?/p>
主要供試藥劑:25 g·L-1五氟磺草胺可分散油懸浮劑(OD)、30%氰氟草酯(cyhalofop-butyl)乳油(EC)、3%氯氟吡啶酯(florpyrauxifen-benzyl)EC,美國(guó)陶氏益農(nóng)公司;69 g·L-1精噁唑禾草靈(fenoxaprop-- ethyl)水乳劑(EW),拜耳作物科學(xué)(中國(guó))有限公司;4%甲氧咪草煙(imazamox)水劑(AS)、240 g·L-1烯草酮(clethodim)EC,山東奧坤作物科學(xué)股份有限公司;10%雙草醚(bispyribac-sodium)懸浮劑(SC),安徽久易農(nóng)業(yè)股份有限公司;5%嘧啶肟草醚(pyribenzoxim)微乳劑(ME),山東青島奧迪斯生物科技有限公司;6%三唑磺草酮(tripyrasulfone)OD,江蘇清原農(nóng)冠雜草防治有限公司。
主要供試試劑:Nuclean Plant Genomic DNA Kit、HiFiScript gDNA Removal cDNA Synthesis Kit,北京康為世紀(jì)生物科技股份有限公司;ChamQ SYBR qPCR Master Mix、DNA凝膠回收試劑盒,南京諾唯贊生物科技股份有限公司;Quick RNA Isolation RNA Kit,北京華越洋生物科技有限公司;LA Taq DNA Polymerase with GC Buffer,北京寶日醫(yī)生物技術(shù)有限公司。
主要供試儀器:BIC-400型人工氣候箱,上海博迅實(shí)業(yè)有限公司醫(yī)療設(shè)備廠;FA/B系列萬分之一天平,上海越平科學(xué)儀器(蘇州)制造有限公司;3WP-2000型行走式噴霧塔,農(nóng)業(yè)農(nóng)村部南京農(nóng)業(yè)機(jī)械化研究所;T100型梯度PCR儀,美國(guó)Bio-Rad公司;ERS 200型電泳儀,北京原平皓生物技術(shù)有限公司;ZF-288型凝膠成像分析系統(tǒng),上海金鵬分析儀器有限公司;Nanodrop 2000型分光光度計(jì),美國(guó)Thermo Scientific公司。
1.3.1 稗草對(duì)五氟磺草胺的敏感性和抗性水平測(cè)定 參照《農(nóng)藥室內(nèi)生物測(cè)定試驗(yàn)準(zhǔn)則除草劑第4部分:活性測(cè)定試驗(yàn)莖葉噴霧法》(NY/T 1155.4—2006)進(jìn)行,種子催芽和植株培養(yǎng)[30]后采用五氟磺草胺大田推薦劑量初篩進(jìn)行預(yù)試驗(yàn)(數(shù)據(jù)未展示),據(jù)此設(shè)定其梯度施藥劑量,以清水處理作為空白對(duì)照(表1)。使用3WP-2000型行走式噴霧塔進(jìn)行莖葉噴霧處理,噴霧時(shí)扇形噴頭距離稗草葉片約50 cm,噴液壓力0.275 mPa,噴液量450 L·hm-2。施藥后繼續(xù)培養(yǎng)3周,第21天時(shí)稱量植株地上部鮮重。每個(gè)處理至少重復(fù)3次,整個(gè)試驗(yàn)重復(fù)2次。
表1 整株劑量響應(yīng)試驗(yàn)所用除草劑處理詳細(xì)信息
本研究所使用各除草劑田間推薦劑量以粗體顯示,其中五氟磺草胺田間推薦劑量為30 g a.i.·hm-2
The field-recommended doses for each herbicide used in this study are marked in bold, among which the field-recommended dose for penoxsulam is 30 g a.i.·hm-2
1.3.2 稗草靶標(biāo)基因序列擴(kuò)增和比對(duì) DNA提取和引物信息:稗草種子萌發(fā)和生長(zhǎng)條件同1.3.1。待稗草生長(zhǎng)至3—4葉期,分別于抗性、敏感種群中隨機(jī)選擇10個(gè)單株,每株剪取約50 mg幼嫩葉片組織,采用Nuclean Plant Genomic DNA Kit提取其基因組DNA(genomic DNA,gDNA),具體操作步驟參照試劑盒說明書進(jìn)行,最終樣品保存于-20 ℃冰箱備用。稗草具有3個(gè)拷貝(、、),參照Iwakami等[32]報(bào)道的3對(duì)引物分別擴(kuò)增每個(gè)拷貝全長(zhǎng)序列,所得序列均包含目前已報(bào)道的8個(gè)突變位點(diǎn),各引物均由南京擎科生物科技有限公司進(jìn)行合成。
序列擴(kuò)增和比對(duì):以不同種群稗草單株gDNA為模板,采用 LA Taq DNA Polymerase with GC Buffer進(jìn)行PCR擴(kuò)增。PCR反應(yīng)體系:LA Taq 0.5 μL、2×GC Buffer I 25 μL、dNTP Mixture 8 μL,F(xiàn)orward Primer 1 μL、Reverse Primer 1 μL、gDNA 2 μL、ddH2O 12.5 μL。參照試劑盒說明書設(shè)置PCR循環(huán)條件,其中退火溫度為59 ℃,待反應(yīng)結(jié)束后,于1%瓊脂糖凝膠中進(jìn)行電泳檢測(cè),切取目標(biāo)條帶并采用DNA凝膠回收試劑盒進(jìn)行回收,送至南京擎科生物科技有限公司測(cè)序。以擬南芥()(GenBank登錄號(hào):AJ310767)氨基酸序列全長(zhǎng)為基準(zhǔn),使用DNAMAN v6.0(Lynnon Biosoft,Montreal,QC,Canada)軟件對(duì)不同稗草種群測(cè)序結(jié)果進(jìn)行比對(duì)。
1.3.3 稗草相對(duì)表達(dá)差異分析 RNA提取和cDNA合成:稗草種子萌發(fā)和生長(zhǎng)條件同1.3.1。待抗性、敏感稗草植株生長(zhǎng)至3—4葉期,同時(shí)以田間推薦劑量(30 g a.i.·hm-2)噴施五氟磺草胺。施藥前0 h和施藥后12、24、48 h分別剪取各植株幼嫩葉片組織,采用Quick RNA Isolation RNA Kit提取其RNA,采用1%瓊脂糖凝膠電泳測(cè)定RNA質(zhì)量,采用Nanodrop 2000型分光光度計(jì)測(cè)定RNA濃度,保存于-80 ℃冰箱備用。使用HiFiScript gDNA Removal cDNA Synthesis Kit合成互補(bǔ)DNA(complementary DNA,cDNA),用于相對(duì)表達(dá)量分析。及內(nèi)參基因引物參照Fang等[29]的報(bào)道,由南京擎科生物科技有限公司進(jìn)行合成。
相對(duì)表達(dá)量測(cè)定:以五氟磺草胺處理前后不同時(shí)間點(diǎn)的稗草葉片cDNA為模板,采用ChamQ SYBR qPCR Master Mix進(jìn)行實(shí)時(shí)熒光定量PCR(real-time quantitative PCR,RT-qPCR)分析,具體PCR體系和循環(huán)條件均參照試劑盒說明書進(jìn)行。以稗草作為內(nèi)參基因?qū)Ρ磉_(dá)進(jìn)行歸一化,采用2-ΔΔCT法計(jì)算在不同時(shí)間點(diǎn)的相對(duì)表達(dá)量。在本研究中,每個(gè)時(shí)間點(diǎn)樣品包含6個(gè)生物學(xué)重復(fù)(1株/重復(fù)),各生物學(xué)重復(fù)同時(shí)包括3個(gè)技術(shù)重復(fù)。采用SPSS v.26.0(IBM,Armonk,NY,USA)軟件一般線性模型對(duì)試驗(yàn)數(shù)據(jù)進(jìn)行ANOVA分析,當(dāng)fold change>2且<0.05時(shí)判定為具有顯著差異。
1.3.4 稗草抗性種群交互抗性和多抗性模式測(cè)定 稗草種子萌發(fā)和生長(zhǎng)條件同1.3.1。待抗性、敏感稗草植株生長(zhǎng)至3—4葉期,采用溫室盆栽法在整株水平上分別測(cè)定其對(duì)3種ALS抑制劑、3種乙酰輔酶A羧化酶(acetyl-CoA carboxylase,ACCase)抑制劑、1種4-羥基苯基丙酮酸雙氧化酶(4-hydroxyphenylpyruvate dioxygenase,HPPD)抑制劑、1種合成生長(zhǎng)素類除草劑(synthetic auxin mimic)的抗性水平(表1)。采用各除草劑大田推薦劑量初篩進(jìn)行預(yù)試驗(yàn)(結(jié)果未展示),以明確其具體施用劑量(表1)。莖葉噴霧處理方式和結(jié)果調(diào)查方法均同1.3.1。每個(gè)處理至少重復(fù)3次,整個(gè)試驗(yàn)重復(fù)2次。
1.3.5 數(shù)據(jù)處理 針對(duì)所有整株劑量響應(yīng)試驗(yàn),以清水處理為空白對(duì)照,將各處理鮮重?cái)?shù)據(jù)表示為空白對(duì)照相對(duì)鮮重(%)。使用SPSS v.26.0(IBM,Armonk,NY,USA)對(duì)重復(fù)試驗(yàn)間相同處理下的數(shù)據(jù)進(jìn)行ANOVA分析,由于兩組數(shù)據(jù)間無顯著差異(>0.05),采用SigmaPlot v.12.3(Systat Software,Chicago,IL,USA)按照公式=+{(-)/[1+(/GR50)]^}對(duì)合并后的數(shù)據(jù)進(jìn)行四參數(shù)雙邏輯非線性回歸分析,計(jì)算抑制50%植物生長(zhǎng)所需除草劑劑量(GR50)。式中,為特定除草劑用量,為處理下雜草相對(duì)鮮重,為響應(yīng)下限,為響應(yīng)上限,為GR50處曲線斜率。
以敏感稗草種群AHFY-01為對(duì)照,計(jì)算抗性稗草種群AHTC-01對(duì)不同除草劑的抗性倍數(shù)(resistance index,RI):RI=抗性種群GR50/敏感種群GR50。根據(jù)以下標(biāo)準(zhǔn)對(duì)種群的抗藥性水平進(jìn)行分級(jí):RI≥10,高抗;5≤RI<10,中抗;2≤RI<5,低抗;RI<2,敏感[33]。
五氟磺草胺田間推薦劑量(30 g a.i.·hm-2)處理后,疑似抗性稗草種群AHTC-01各植株仍然存活,其GR50為155.00 g a.i.·hm-2;敏感稗草種群AHFY-01各植株均枯萎死亡,其GR50為0.25 g a.i.·hm-2。相比AHFY-01,AHTC-01稗草種群已對(duì)五氟磺草胺產(chǎn)生高水平抗性,抗性倍數(shù)為620(表2)。
表2 不同稗草種群對(duì)五氟磺草胺的抗性水平
序列比對(duì)結(jié)果顯示,AHFY-01種群各單株、、均未發(fā)生氨基酸突變,而AHTC-01種群各單株第574位氨基酸密碼子均由色氨酸(TGG)突變?yōu)榱涟彼幔═TG)(圖1),其余位點(diǎn)均未發(fā)生突變(表3),種群?jiǎn)沃昕剐酝蛔冾l率為100%。
以五氟磺草胺田間推薦劑量(30 g a.i.·hm-2)分別對(duì)稗草種群AHTC-01和AHFY-01進(jìn)行莖葉處理,通過RT-qPCR分析相對(duì)表達(dá)量。結(jié)果表明在五氟磺草胺處理前(0 h)和處理后12、24、48 h,相對(duì)于敏感稗草種群AHFY-01,抗性稗草種群AHTC-01在各時(shí)間點(diǎn)的相對(duì)表達(dá)倍數(shù)分別為0.24、2.26、0.71、0.87(圖2)。AHTC-01稗草種群在藥劑處理后12 h時(shí)相對(duì)表達(dá)量為敏感種群AHFY-01的2.26倍,說明靶標(biāo)基因過量表達(dá)可能是其對(duì)五氟磺草胺產(chǎn)生抗性的分子機(jī)制之一。
圖1 稗草敏感(AHFY-01,左)和抗性(AHTC-01,右)種群靶標(biāo)基因ALS2的Trp574位密碼子
表3 稗草敏感和抗性種群ALS2序列比對(duì)
粗體表示已知可以發(fā)生抗性氨基酸的突變位點(diǎn);下劃線表示該種群在該位點(diǎn)發(fā)生氨基酸替換
All known mutation sites inare shown in bold; amino acid substitutions in specific sites are underlined
圖2 稗草抗性種群ALS在五氟磺草胺處理前后相對(duì)于敏感種群的表達(dá)倍數(shù)
整株劑量響應(yīng)試驗(yàn)表明,稗草種群AHFY-01對(duì)所測(cè)試的8種除草劑同樣較為敏感,其植株在各藥劑田間劑量處理下均枯萎死亡(圖3)。相比之下,抗五氟磺草胺稗草種群AHTC-01對(duì)其他3種ALS抑制劑產(chǎn)生交互抗性,其中對(duì)雙草醚產(chǎn)生中等水平抗性,抗性倍數(shù)為8.24;對(duì)嘧啶肟草醚、甲氧咪草煙均產(chǎn)生高水平抗性,抗性倍數(shù)分別為13.36、20.36(表4)。
同時(shí)選用其他3種作用機(jī)制的5種除草劑對(duì)抗性稗草種群AHTC-01進(jìn)行多抗性模式測(cè)定,結(jié)果表明AHTC-01稗草種群對(duì)ACCase抑制劑氰氟草酯、精噁唑禾草靈、烯草酮,HPPD抑制劑三唑磺草酮,以及合成生長(zhǎng)素類除草劑氯氟吡啶酯均較為敏感(圖3),其抗性倍數(shù)均低于2.00(表4)。
圖3 稗草抗性(AHTC-01)和敏感(AHFY-01)種群相對(duì)鮮重對(duì)不同除草劑的劑量響應(yīng)曲線
表4 稗草抗性種群AHTC-01對(duì)其他除草劑的抗性水平
目前我國(guó)東北、長(zhǎng)江中下游、華南等水稻主產(chǎn)區(qū)均有五氟磺草胺抗性稗草案例發(fā)生[16,34-35]。已有研究表明,作用機(jī)制單一的除草劑長(zhǎng)期、頻繁、超量使用容易誘導(dǎo)雜草產(chǎn)生抗藥性[8],而ALS抑制劑類除草劑至少連續(xù)使用10次即可誘導(dǎo)雜草產(chǎn)生抗性[33]。截至2023年4月,全球已有至少171種雜草對(duì)ALS抑制劑類除草劑產(chǎn)生抗性,這些抗性雜草廣泛分布于72個(gè)國(guó)家的97種作物田中[20]。本研究整株劑量響應(yīng)試驗(yàn)表明,采集自安徽省天長(zhǎng)市水稻田的稗草種群AHTC-01已對(duì)五氟磺草胺產(chǎn)生約620倍的高水平抗性。據(jù)前期田間調(diào)查,該種群所在田塊五氟磺草胺已經(jīng)連續(xù)使用超過10年,這再一次印證單一除草劑連續(xù)重復(fù)使用可以誘導(dǎo)雜草的抗藥性發(fā)展。
靶標(biāo)基因突變是雜草對(duì)除草劑產(chǎn)生抗性的主要靶標(biāo)分子機(jī)制之一[19]。針對(duì)ALS抑制類除草劑,靶標(biāo)基因關(guān)鍵氨基酸位點(diǎn)突變以后可以改變ALS構(gòu)象,進(jìn)而影響除草劑與之結(jié)合[5]。目前,已經(jīng)報(bào)道了8個(gè)基因突變位點(diǎn),每個(gè)位點(diǎn)發(fā)生的不同氨基酸替換形式均有可能導(dǎo)致雜草對(duì)不同ALS抑制劑產(chǎn)生抗性。其中,Pro197位點(diǎn)在不同ALS抗性雜草中突變頻率最高,其次是Trp574位點(diǎn)和Ser653位點(diǎn)[36]。比如,Pro197位點(diǎn)發(fā)生5種突變形式和Trp574位點(diǎn)Leu突變是硬直黑麥草()對(duì)甲嘧磺隆和咪唑乙煙酸產(chǎn)生抗性的主要原因之一[37];Trp574位點(diǎn)Leu突變可以賦予薺菜()對(duì)苯磺隆的高水平抗性[38],也可以導(dǎo)致反枝莧()對(duì)煙嘧磺隆產(chǎn)生抗性[39]。在本研究中,稗草種群AHTC-01所檢測(cè)的10個(gè)單株拷貝Trp574位點(diǎn)均發(fā)生了Leu突變,表明第574位突變是AHTC-01稗草種群對(duì)五氟磺草胺產(chǎn)生高水平抗性的重要靶標(biāo)分子機(jī)制之一。
靶標(biāo)基因過量表達(dá)也能夠?qū)е码s草對(duì)除草劑產(chǎn)生靶標(biāo)抗性。以往研究表明,該類抗性機(jī)制通常導(dǎo)致雜草對(duì)草甘膦等滅生性除草劑產(chǎn)生靶標(biāo)抗性[40-41]。然而目前已有研究證實(shí),靶標(biāo)基因過量表達(dá)也可以導(dǎo)致雜草對(duì)選擇性除草劑產(chǎn)生抗性[42]。例如,Sen等報(bào)道過表達(dá)是貧育雀麥對(duì)啶磺草胺產(chǎn)生抗性的原因之一[22],Zhao等在抗甲基二磺隆的看麥娘中也鑒定到過量表達(dá)[23]。本研究中,在五氟磺草胺處理后12 h,抗性稗草種群AHTC-01相對(duì)表達(dá)量為敏感稗草種群AHFY-01的2.26倍,表明過量表達(dá)可能是AHTC-01稗草種群對(duì)五氟磺草胺產(chǎn)生抗性的另一主要原因。目前,僅有少數(shù)案例報(bào)道過量表達(dá)可能參與了稗草對(duì)ALS抑制劑類除草劑的抗性[24],本研究結(jié)果進(jìn)一步印證了該觀點(diǎn)。
據(jù)報(bào)道,雜草基因Ala122、Ser653和Gly654位點(diǎn)發(fā)生突變后一般會(huì)對(duì)SU和IMI類除草劑產(chǎn)生交互抗性,Pro197位點(diǎn)突變以后則通常對(duì)SU和TP類除草劑產(chǎn)生抗性,而Ala205、Asp376和Trp574位點(diǎn)突變會(huì)導(dǎo)致雜草對(duì)ALS抑制劑5種類別除草劑均產(chǎn)生抗性,不過具體交互抗性模式會(huì)受到雜草種類、種群用藥歷史以及靶標(biāo)基因是否發(fā)生過量表達(dá)等因素影響[19,33]。比如,麥田雜草麥家公()和播娘蒿()發(fā)生Trp574Leu突變以后,均能夠?qū)U、TP、SCT、IMI和PTB產(chǎn)生廣譜交互抗性[43-44];小飛蓬()發(fā)生Pro197Ala突變以后僅對(duì)SU類除草劑產(chǎn)生抗性[45],而攜帶Pro197Ala突變的看麥娘則對(duì)ALS抑制劑不同類別除草劑產(chǎn)生廣譜抗性[46]。本研究中,稗草種群AHTC-01各植株均發(fā)生了Trp574Leu突變,并且對(duì)所測(cè)試的3種ALS抑制劑雙草醚、嘧啶肟草醚、甲氧咪草煙均產(chǎn)生了中高水平交互抗性,這與相關(guān)研究結(jié)果相似[15]。Trp574位點(diǎn)突變能夠?qū)LS構(gòu)象產(chǎn)生較為顯著的影響,進(jìn)而容易導(dǎo)致雜草對(duì)ALS抑制劑類除草劑產(chǎn)生廣譜交互抗性[5]。
水稻作為半數(shù)以上世界人口的重要糧食作物,其穩(wěn)收穩(wěn)產(chǎn)關(guān)系重大。雜草是影響水稻產(chǎn)量的重要威脅因素之一,其中稗草危害尤為突出。本研究采集到的抗性稗草種群AHTC-01對(duì)測(cè)定的其他3種ALS抑制劑均產(chǎn)生了中高水平抗性,說明目前水稻田常用ALS抑制劑類除草劑已經(jīng)不能有效防除該類抗性稗草。為了篩選有效的抗性稗草防治藥劑,本研究選用ACCase抑制劑、HPPD抑制劑、合成激素類3種作用機(jī)制的5種除草劑,對(duì)抗性稗草種群AHTC-01進(jìn)行敏感性測(cè)定。結(jié)果表明,AHTC-01稗草種群對(duì)上述5種除草劑均較為敏感。因此在水稻生產(chǎn)中,可以選用ACCase抑制劑氰氟草酯、HPPD抑制劑三唑磺草酮、激素類除草劑氯氟吡啶酯進(jìn)行藥劑復(fù)配或輪換使用,以實(shí)現(xiàn)對(duì)具有ALS抑制劑類除草劑交互抗性機(jī)制稗草的科學(xué)有效防除。結(jié)合土地深翻耕、作物輪作等農(nóng)業(yè)措施,進(jìn)一步延緩稗草抗藥性的產(chǎn)生和發(fā)展[47-48]。
采集自安徽省天長(zhǎng)市水稻田疑似抗性稗草種群AHTC-01已對(duì)ALS抑制劑類除草劑五氟磺草胺產(chǎn)生了高達(dá)620倍的抗性,且對(duì)其他3種ALS抑制劑類除草劑產(chǎn)生了中高水平交互抗性。靶標(biāo)基因Trp574位Leu突變和過量表達(dá)是該稗草種群對(duì)五氟磺草胺產(chǎn)生高水平抗性的重要分子機(jī)制之一。針對(duì)基因突變導(dǎo)致的抗性稗草,應(yīng)盡量選擇對(duì)水稻較為安全的其他作用機(jī)制除草劑,如氰氟草酯、三唑磺草酮、氯氟吡啶酯等進(jìn)行科學(xué)輪換使用,實(shí)現(xiàn)對(duì)抗性稗草的科學(xué)治理,延緩稗草抗藥性發(fā)展。
[1] GUO L, QIU J, YE C. Jin G, Mao L, Zhang H, Yang X, Peng Q, Wang Y, Jia L,.genome analysis provides insight into its adaptation and invasiveness as a weed.Nature Communications, 2017, 8(1): 1031.
[2] MAUN M A, BARRETT S C H. The biology of Canadian weeds. 77.(L.) Beauv. Canadian Journal of Plant Science, 1986, 66(3): 739-759.
[3] BAJWA A A, JABRAN K, SHAHID M, ALI H H, CHAUHAN B S. Eco-biology and management of. Crop Protection, 2015, 75: 151-162.
[4] CHAUHAN B S, JOHNSON D E. Implications of narrow crop row spacing and delayedandemergence for weed growth and crop yield loss in aerobic rice. Field Crops Research, 2010, 117(2/3): 177-182.
[5] LONHIENNE T, CHENG Y, GARCIA M D, HU S H, LOW Y S, SCHENK G, WILLIAMS C M, GUDDAT L W. Structural basis of resistance to herbicides that target acetohydroxyacid synthase. Nature Communications, 2022, 13(1): 3368.
[6] MCCOURT J A, PANG S S, KING-SCOTT J, GUDDAT L W, DUGGLEBY R G. Herbicide-binding sites revealed in the structure of plant acetohydroxyacid synthase. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(3): 569-573.
[7] JABUSCH T W, TJEERDEMA R S. Partitioning of penoxsulam, a new sulfonamide herbicide. Journal of Agricultural and Food Chemistry, 2005, 53(18): 7179-7183.
[8] NORSWORTHY J K, WARD S M, SHAW D R, LLEWELLYN R S, NICHOLS R L, WEBSTER T M, Bradley K W, FRISVOLD G, POWLES S B, BURGOS N R, WITT W W, BARRETT M. Reducing the risks of herbicide resistance: best management practices and recommendations. Weed Science, 2012,60(SP1): 31-62.
[9] 王瓊, 陳國(guó)奇, 姜英, 王慶亞, 姚振威, 董立堯. 水稻田稗屬 (spp.) 雜草對(duì)稻田常用除草劑的敏感性. 南京農(nóng)業(yè)大學(xué)學(xué)報(bào), 2015, 38(5): 804-809.
WANG Q, CHEN G Q, JIANG Y, WANG Q Y, YAO Z W, DONG L Y. Sensitivity ofspecies to frequently used herbicides in paddy rice field. Journal of Nanjing Agricultural University, 2015, 38(5): 804-809. (in Chinese)
[10] 王曉琳, 牛利川, 蔣翊宸, 張卓亞, 李貴. 不同稗草種群對(duì)五氟磺草胺的敏感性差異. 雜草學(xué)報(bào), 2017, 35(1): 8-14.
WANG X L, NIU L C, JIANG Y C, ZHANG Z Y, Li G. The sensitivity of different-populations to penoxsulam. Journal of Weed Science, 2017, 35(1): 8-14. (in Chinese)
[11] 仵奎. 硬稃稗 ()對(duì)五氟磺草胺的抗藥性機(jī)理研究[D]. 南京: 南京農(nóng)業(yè)大學(xué), 2017.
WU K. Study on resistance ofto penoxsulam[D]. Nanjing: Nanjing Agricultural University, 2017. (in Chinese)
[12] FANG J P, YANG D C, ZHAO Z R, CHEN J Y, DONG L Y. A novel Phe-206-Leu mutation in acetolactate synthase confers resistance to penoxsulam in barnyardgrass (-(L.) P. Beauv). Pest Management Science, 2022, 78(6): 2560-2570.
[13] CHEN G Q, WANG Q, YAO Z W, ZHU L F, DONG L Y. Penoxsulam-resistant barnyardgrass (-) in rice fields in China. Weed Biology and Management, 2016, 16(1): 16-23.
[14] CHEN G Q, ZHANG W, FANG J P, DONG L Y. Identification of massive molecular markers inusing a restriction-site associated DNA approach. Plant Diversity, 2017, 39(5): 287-293.
[15] FENG T Q, PENG Q, WANG L, XIE Y, OUYANG K, LI F, ZHOU H Z, MA H J. Multiple resistance mechanisms to penoxsulam infrom China. Pesticide Biochemistry and Physiology, 2022, 187: 105211.
[16] 馬國(guó)蘭, 劉都才, 張帥, 李新文, 劉雪源, 彭亞軍, 李巳夫, 柏連陽. 稻田稗屬雜草田間種群對(duì)五氟磺草胺的抗性監(jiān)測(cè). 農(nóng)藥學(xué)學(xué)報(bào), 2021, 23(5): 905-914.
MA G L, LIU D C, ZHANG S, LI X W, LIU X Y, PENG Y J, LI S F, BAI L Y. Resistance detection of field populations ofspp. to penoxsulam. Chinese Journal of Pesticide Science, 2021, 23(5): 905-914. (in Chinese)
[17] 劉慶虎, 陳國(guó)奇, 張玉華, 孫仲華, 董立堯. 不同葉齡千金子、稗和馬唐對(duì)氰氟草酯和五氟磺草胺的敏感性. 南京農(nóng)業(yè)大學(xué)學(xué)報(bào), 2016, 39(5): 771-776.
LIU Q H, CHEN G Q, ZHANG Y H, SUN Z H, DONG L Y. Sensitivities of,andat different leaf stages to cyhalofop-butyl and penoxsulam. Journal of Nanjing Agricultural University, 2016, 39(5): 771-776. (in Chinese)
[18] GAINES T A, DUKE S O, MORRAN S, RIGON C A, TRANEL P J, KüPPER A, DAYAN F E. Mechanisms of evolved herbicide resistance. Journal of Biological Chemistry, 2020, 295(30): 10307-10330.
[19] POWLES S B, YU Q. Evolution in action: plants resistant to herbicides. Annual Review of Plant Biology, 2010, 61: 317-347.
[20] HEAP I. The International Herbicide-Resistant Weed Database. http:// www.weedscience.org.
[21] TRANEL P J, WRIGHT T R. Resistance of weeds to ALS-inhibiting herbicides: what have we learned?. Weed Science, 2002, 50(6): 700-712.
[22] SEN M K, HAMOUZOVá K, MIKULKA J, BHARATI R, KO?NAROVá P, HAMOUZ P, ROY A, SOUKUP J. Enhanced metabolism and target gene overexpression confer resistance against acetolactate synthase-inhibiting herbicides in. Pest Management Science, 2021, 77(4): 2122-2128.
[23] ZHAO N, YAN Y Y, WANG H Z, BAI S, WANG Q, LIU W T, WANG J X. Acetolactate synthase overexpression in mesosulfuron- methyl-resistant shortawn foxtail (Sobol.): Reference gene selection and herbicide target gene expression analysis. Journal of Agricultural and Food Chemistry, 2018, 66(37): 9624-9634.
[24] 黃啟超, 顧瓊楠, 褚世海, 陳安安, 李林, 李儒海, 孫正祥. 稗18-WJJ-Ec種群對(duì)五氟磺草胺的靶標(biāo)抗性機(jī)制. 江蘇農(nóng)業(yè)科學(xué), 2022, 50(19): 104-110.
HUANG Q C, GU Q N, CHU S H, CHEN A A, LI L, LI R H, SUN Z X. Target-site resistance mechanism of barnyardgrass () population 18-WJJ-Ec to penoxsulam. Jiangsu Agricultural Sciences, 2022, 50(19): 104-110. (in Chinese)
[25] RIGON C A, GAINES T A, KüPPER A, DAYAN F E. Metabolism- based herbicide resistance, the major threat among the non-target site resistance mechanisms. Outlooks on Pest Management, 2020, 31(4): 162-168.
[26] DIMAANO N G, IWAKAMI S. Cytochrome P450-mediated herbicide metabolism in plants: current understanding and prospects. Pest Management Science, 2021, 77(1): 22-32.
[27] PAN L, GUO Q S, WANG J Z, SHI L, YANG X, ZHOU Y Y, YU Q, BAI L Y. CYP81A68 confers metabolic resistance to ALS and ACCase-inhibiting herbicides and its epigenetic regulation in. Journal of Hazardous Materials, 2022, 428: 128225.
[28] YAN B, ZHANG Y H, LI J, FANG J P, LIU T T, DONG L Y. Transcriptome profiling to identify cytochrome P450 genes involved in penoxsulam resistance in. Pesticide Biochemistry and Physiology, 2019, 158: 112-120.
[29] FANG J P, ZHANG Y H, LIU T T, YAN B J, LI J, DONG L Y. Target-site and metabolic resistance mechanisms to penoxsulam in barnyardgrass ((L.) P. Beauv). Journal of Agricultural and Food Chemistry, 2019, 67(29): 8085-8095.
[30] LI Q, ZHAO N, JIANG M H, WANG M L, Zhang J X, Cao H Q, LIAO M. Metamifop resistance invia glutathione S-transferases-involved enhanced metabolism. Pest Management Science, 2023, doi: 10.1002/ps.7453.
[31] JIANG M H, WANG Y F, LI W, LI Q, ZHANG J X, LIAO M, ZHAO N, CAO H Q. Investigating resistance levels to cyhalofop-butyl and mechanisms involved in Chinese sprangletop (L.) from Anhui Province, China. Pesticide Biochemistry and Physiology, 2022, 186: 105165.
[32] IWAKAMI S, HASHIMOTO M, MATSUSHIMA K I, WATANABE H, HAMAMURA K, UCHINO A. Multiple-herbicide resistance invar., an allohexaploid weed species, in dry-seeded rice. Pesticide Biochemistry and Physiology, 2015, 119: 1-8.
[33] BECKIE H J, TARDIF F J. Herbicide cross resistance in weeds. Crop Protection, 2012, 35: 15-28.
[34] 郭文磊, 馮莉, 張純, 張?zhí)﹦? 吳丹丹, 田興山. 廣東省水稻田稗對(duì)五氟磺草胺的抗性分析. 植物保護(hù)學(xué)報(bào), 2020, 47(5): 1131-1138.
GUO W L, FENG L, ZHANG C, ZHANG T J, WU D D, TIAN X S. Resistance of barnyard grassto penoxsulam in rice fields in Guangdong Province. Journal of Plant Protection, 2020, 47(5): 1131-1138. (in Chinese)
[35] LIU J, FANG J P, HE Z Z, LI J, DONG L Y. Target site-based resistance to penoxsulam in late watergrass () from China. Weed Science, 2019, 67(4): 380-388.
[36] NTOANIDOU S, MADESIS P, DIAMANTIDIS G, ELEFTHEROHORINOS I. Trp574 substitution in the acetolactate synthase ofconfers cross-resistance to tribenuron and imazamox. Pesticide Biochemistry and Physiology, 2017, 142: 9-14.
[37] YU Q, HAN H, Powles S B. Mutations of thegene endowing resistance to ALS-inhibiting herbicides inpopulations. Pest Management Science, 2008, 64(12): 1229-1236.
[38] 張樂樂, 郭文磊, 李偉, 趙寧, 劉偉堂, 王金信. 薺菜對(duì)乙酰乳酸合成酶抑制劑類除草劑的抗性水平及其分子機(jī)制. 農(nóng)藥學(xué)學(xué)報(bào), 2016, 18(6): 717-723.
ZHANG L L, GUO W L, LI W, ZHAO N, LIU W T, WANG J X. Resistance to acetolactate synthase-inhibiting herbicides inand its molecular resistance mechanism. Chinese Journal of Pesticide Science, 2016, 18(6): 717-723. (in Chinese)
[39] HUANG Z F, HUANG H J, CHEN J Y, CHEN J C, WEI S H, ZHANG C X. Nicosulfuron-resistantL. in Northeast China. Crop Protection, 2019, 122: 79-83.
[40] SALAS R A, DAYAN F E, PAN Z Q, WATSON S B, DICKSON J W, SCOTT R C, BURGOS N R.gene amplification in glyphosate-resistant Italian ryegrass (ssp.) from Arkansas. Pest Management Science, 2012, 68(9): 1223-1230.
[41] LORENTZ L, GAINES T A, NISSEN S J, WESTRA P, STREK H J, DEHNE H W, RUIZ-SANTAELLA J P, BEFFA R. Characterization of glyphosate resistance inpopulations. Journal of Agricultural and Food Chemistry, 2014, 62(32): 8134-8142.
[42] TRANEL P J. Herbicide-resistance mechanisms: gene amplification is not just for glyphosate. Pest Management Science, 2017, 73(11): 2225-2226.
[43] WANG Q, GE L A, ZHAO N, ZHANG L L, YOU L D, WANG D D, LIU W T, WANG J X. A Trp-574-Leu mutation in the acetolactate synthase (ALS) gene ofL. confers broad-spectrum resistance to ALS inhibitors. Pesticide Biochemistry and Physiology, 2019, 158: 12-17.
[44] DENG W, YANG Q, ZHANG Y Z, JIAO H T, MEI Y, LI X F, ZHENG M Q. Cross-resistance patterns to acetolactate synthase (ALS)-inhibiting herbicides of flixweed (L.) conferred by different combinations of ALS isozymes with a Pro-197-Thr mutation or a novel Trp-574-Leu mutation. Pesticide Biochemistry and Physiology, 2017, 136: 41-45.
[45] ZHENG D, KRUGER G R, SINGH S, DAVIS V M, TRANEL P J, WELLER S C, JOHNSON W G. Cross-resistance of horseweed () populations with three differentmutations. Pest Management Science, 2011, 67(12): 1486-1492.
[46] TANG Z, WANG Z L, WANG M L, YIN F, LIAO M, CAO H Q, ZHAO N. Molecular mechanism of resistance to mesosulfuron-methyl in shortawn foxtail () from China. Weed Science, 2023, doi: 10.1017/wsc.2023.23.
[47] COLBACH N, CHAUVEL B, DARMENCY H, DELYE C, LE CORRE V. Choosing the best cropping systems to target pleiotropic effects when managing single-gene herbicide resistance in grass weeds. A blackgrass simulation study. Pest Management Science, 2016, 72(10): 1910-1925.
[48] OSIPITAN O A, DILLE J A, ASSEFA Y, RADICETTI E, AYENI A, KNEZEVIC S Z. Impact of cover crop management on level of weed suppression: a meta-analysis. Crop Science, 2019, 59(3): 833-842.
Resistance Mechanism of Barnyard Grass () to Penoxsulam and Screening Herbicides for Its Control in Rice Fields
ZHANG LiYa1, LI Qi1, SHI ShanShan1, MA YuMeng1, LIU YaQi1, ZHAO ChaoWei1, WANG HeRu2, CAO HaiQun1, LIAO Min1, ZHAO Ning1
1School of Plant Protection, Anhui Agricultural University/Anhui Province Key Laboratory of Crop Integrated Pest Management, Hefei 230036;2Tianchang Agricultural Science and Technology Center Plant Protection Station, Tianchang 239300, Anhui
【Objective】Barnyard grass () is one of the main malignant weeds in rice fields in China. Acetolactate synthase (ALS) inhibitors, such as penoxsulam, are the main herbicides for controllingin rice fields. Previously, our research team identified a suspected penoxsulam-resistantpopulation, AHTC-01, in the main rice production area of Tianchang City, Anhui Province, China. The objective of this study is to clarify its resistance levels to major herbicides, investigate the possible resistance molecular mechanisms, and to provide a theoretical basis for the effective control of resistantand the delay of further development of herbicide resistance.【Method】Using the greenhouse potting method, the resistance levels of AHTC-01 to penoxsulam and its resistance patterns to different herbicides were determined at the whole-plant level. The target resistance molecular mechanism was explored through target gene sequencing and real-time quantitative PCR (RT-qPCR) analysis.【Result】Compared with the susceptiblepopulation AHFY-01, the suspected resistant population AHTC-01 had developed high-level resistance to penoxsulam, with a resistance index (RI) of 620. Analysis of the target-site based resistance mechanisms showed that thegene copy in the AHTC-01 population had a mutation from tryptophan (Trp) to leucine (Leu) at codon position 574, with a population mutation frequency of 100%. At 12 h after penoxsulam treatment, the relative expression level ofin the resistantpopulation AHTC-01 was 2.26 times of that in the susceptiblepopulation AHFY-01. AHTC-01 also exhibited varying levels of cross-resistance to three other ALS inhibitors, bispyribac sodium, pyribenzoxim, and imazamox, with RIs of 8.24, 13.36, and 20.36, respectively. However, it remained susceptible to other herbicides with different modes of action (MOAs), including the acetyl-CoA carboxylase (ACCase) inhibitors cyhalofop-butyl, fenoxaprop--ethyl, and clethodim, the 4-hydroxyphenylpyruvate dioxygenase (HPPD) inhibitor tripyrasulfone, and the synthetic auxin mimic florpyrauxifen-benzyl.【Conclusion】Mutation of theat amino acid position 574 andoverexpression are one of the main reasons for the resistance ofpopulation AHTC-01 to penoxsulam, which also confers cross-resistance to different ALS inhibitors. In actual agricultural production, effective control of this type of resistantcan still be achieved by rotating the use of other herbicides with different MOAs.
; penoxsulam; acetolactate synthase (ALS); gene mutation; gene overexpression; resistance pattern
10.3864/j.issn.0578-1752.2023.14.007
2023-04-11;
2023-05-14
安徽省科技重大專項(xiàng)(201903a06020033)、安徽農(nóng)業(yè)大學(xué)人才引進(jìn)科研啟動(dòng)項(xiàng)目(rc342004)、安徽農(nóng)業(yè)大學(xué)大學(xué)生創(chuàng)新訓(xùn)練項(xiàng)目(X202210364248)
張麗雅,E-mail:3012596087@qq.com。李奇,E-mail:qigi12345@163.com。張麗雅和李奇為同等貢獻(xiàn)作者。通信作者趙寧,E-mail:zhaon@ahau.edu.cn
(責(zé)任編輯 岳梅)