李亞楠,彭泉,馮馨瑤,康徐瑞,陳伶利,成細(xì)華
〔摘要〕 非酒精性脂肪肝?。╪on-alcoholic fatty liver disease, NAFLD)是一種以肝細(xì)胞內(nèi)脂質(zhì)的異常累積為特征的代謝性疾病,包括單純性脂肪肝(simple fatty liver, SFL)、非酒精性脂肪性肝炎(non-alcoholic steatohepatitis, NASH)及相關(guān)肝硬化和肝細(xì)胞癌。過氧化物酶體增殖物激活受體-γ共激活因子-1α(proliferator-activated receptor-γ coactivator-1α, PGC-1α)是一種轉(zhuǎn)錄共激活因子,能調(diào)控能量代謝,在線粒體的生物合成、糖脂代謝、機(jī)體適應(yīng)性產(chǎn)熱等過程中發(fā)揮著重要作用。NAFLD存在復(fù)雜的病因病機(jī),臨床上尚無有效治療手段和特效藥。中藥擅長(zhǎng)多靶點(diǎn)、多途徑治療疾病,臨床已廣泛用于治療NAFLD。本文綜述中藥調(diào)控PGC-1α,從影響胰島素抵抗、脂質(zhì)堆積、氧化應(yīng)激、炎癥反應(yīng)等方面改善NAFLD,為中藥治療NAFLD機(jī)制研究提供部分參考。
〔關(guān)鍵詞〕 非酒精性脂肪肝??;中藥;PGC-1α;胰島素抵抗;炎癥;氧化應(yīng)激
〔中圖分類號(hào)〕R285.5? ? ? ?〔文獻(xiàn)標(biāo)志碼〕A? ? ? ? 〔文章編號(hào)〕doi:10.3969/j.issn.1674-070X.2023.07.029
Research progress on treating non-alcoholic fatty liver disease by regulating PGC-1α with Chinese medicines
LI Yanan1, PENG Quan2, FENG Xinyao1, KANG Xurui1, CHEN Lingli1, CHENG Xihua1*
1. Medical School, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; 2. School of Acupuncture-Moxibustion and Tuina, Changchun University of Chinese Medicine, Changchun, Jilin 130117, China
〔Abstract〕 Non-alcoholic fatty liver disease (NAFLD) is a metabolic disorder characterized by abnormal accumulation of lipids, including simple fatty liver (SFL), non-alcoholic steatohepatitis (NASH), and associated cirrhosis and hepatocellular carcinoma. Peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) is a transcriptional coactivator that regulates energy metabolism and plays an important role in processes such as mitochondrial biosynthesis, glycolipid metabolism, and adaptive thermogenesis in the body. Due to the complex etiology and pathogenesis of NAFLD, there is no effective treatment or specific drug in clinic. Chinese medicines can treat diseases through multiple targets and pathways, which has been widely used clinically for the treatment of NAFLD. This paper reviews the regulation of PGC-1α by Chinese medicines from the aspects of affecting insulin resistance, lipid accumulation, oxidative stress, and inflammatory response, providing some references for mechanism research of Chinese medicines in treating NAFLD.
〔Keywords〕 non-alcoholic fatty liver disease; Chinese medicines; proliferator-activated receptor-γ coactivator-1α; insulin resistance; inflammation; oxidative stress
非酒精性脂肪肝?。╪on-alcoholic fatty liver disease, NAFLD)指除酒精和其他明確的損肝因素所致的肝細(xì)胞內(nèi)脂肪過度沉積為主要特征的臨床病理綜合征,與胰島素抵抗和遺傳易感性密切相關(guān)的獲得性代謝應(yīng)激性肝損傷,包括單純性脂肪肝(simple fatty liver, SFL)、非酒精性脂肪性肝炎(non-alcoholic steatohepatitis, NASH)及相關(guān)的肝硬化和肝細(xì)胞癌。我國(guó)成人NAFLD患病率高達(dá)29.81%,男性患病率(37.11%)明顯高于女性(22.67%)[1]。NAFLD的發(fā)病機(jī)制仍無定論,胰島素抵抗(insulin resistance, IR)、氧化應(yīng)激、炎癥、脂毒性、脂肪因子等在NAFLD的發(fā)生發(fā)展中均發(fā)揮著關(guān)鍵作用。過氧化物酶體增殖物激活受體-γ共激活因子-1α(proliferator-activated receptor-γ coactivator-1α, PGC-1α)是線粒體生物合成的關(guān)鍵調(diào)節(jié)因子,調(diào)節(jié)能量穩(wěn)態(tài),參與NAFLD、心血管疾病、糖尿病腎病、腫瘤以及神經(jīng)退行性疾病等的發(fā)生發(fā)展。中藥在治療NAFLD中發(fā)揮了其獨(dú)特優(yōu)勢(shì),本文綜述中藥調(diào)控PGC-1α治療NAFLD的研究成果,為中醫(yī)藥治療NAFLD提供更廣闊的視野。
1 PGC-1α的生物學(xué)功能
PGC-1家族由PGC-1α、PGC-1β和PRC(PGC-1相關(guān)的共激活因子)3個(gè)成員組成,PGC-1α是1998年由PUIGSERVER在棕色脂肪組織中發(fā)現(xiàn)并命名[2]。PGC-1α是一種營(yíng)養(yǎng)信號(hào)感知分子,是能量代謝關(guān)鍵調(diào)控因子,在心臟、肝臟、骨骼肌、大腦等能量代謝旺盛的組織器官中呈現(xiàn)高表達(dá),在線粒體的生物合成、糖脂代謝、機(jī)體適應(yīng)性產(chǎn)熱、骨骼肌纖維類型轉(zhuǎn)換中發(fā)揮著重要作用,同時(shí)還可以調(diào)節(jié)內(nèi)皮細(xì)胞的穩(wěn)態(tài)。PGC-1α在NAFLD、心血管疾病、糖尿病腎病、腫瘤以及神經(jīng)退行性疾病等患者中的表達(dá)異常,有可能成為NAFLD等疾病治療的新靶點(diǎn)[3]。
PGC-1α可調(diào)節(jié)多種轉(zhuǎn)錄因子的活性,主要包括核受體-雌激素相關(guān)受體(estrogen-relatedreceptor, ERR)、過氧化物酶體增殖物激活受體(peroxidase proliferation activated receptor, PPAR)、非核受體-核呼吸因子(nuclear respiratory factor, NRF)和叉頭盒受體O1(forkhead box protein O1, FoxO1)等。ERRα與PGC-1α結(jié)合,可調(diào)節(jié)參與脂質(zhì)和葡萄糖代謝的線粒體呼吸復(fù)合物和代謝酶的基因表達(dá),以及編碼三羧酸循環(huán)、線粒體氧化磷酸化和脂肪酸β氧化酶的基因表達(dá);研究表明,抑制ERRα可阻斷由高碳水化合物飲食或高脂飲食誘導(dǎo)的NAFLD發(fā)展[4]。PPARα主要富集在肝臟中,研究發(fā)現(xiàn),在新西蘭肥胖小鼠中脂肪酸和膽固醇代謝主要受PGC-1α/ PPARα途徑的影響[5];PPARγ可上調(diào)脂聯(lián)素的表達(dá),增加循環(huán)脂聯(lián)素含量,循環(huán)脂聯(lián)素與肝臟中的受體結(jié)合,引發(fā)信號(hào)級(jí)聯(lián)反應(yīng),導(dǎo)致IR和糖異生減少,β氧化增加,從而減少肝細(xì)胞脂肪堆積[6]。PGC-1α的激活可促進(jìn)Kelch樣環(huán)氧氯丙烷相關(guān)蛋白1(Kelch-like ECH-associated protein 1, Keap1)與核因子紅細(xì)胞系2相關(guān)因子2(nuclear factor erythroid 2 related factor 2, NRF2)的解離,從而使NRF2入核,激活一系列的抗氧化反應(yīng),在NAFLD中發(fā)揮保護(hù)作用[7];PGC-1α可激活NRF1,提高NRF1靶基因如線粒體轉(zhuǎn)錄因子A(mitochondrial transcription factor A, mtTFA)的轉(zhuǎn)錄,mtTFA活化后易位至線粒體,活化mtDNA的轉(zhuǎn)錄及復(fù)制,增加了線粒體的生物發(fā)生[8]。FoxO1是調(diào)節(jié)肝臟脂質(zhì)代謝的重要轉(zhuǎn)錄因子,研究發(fā)現(xiàn),抑制FoxO1泛素化和蛋白酶體降解可加重脂肪肝[9]。臨床研究顯示,肝臟中PGC-1α mRNA的低表達(dá)是NAFLD的重要病因之一[10-11]。
2 中藥調(diào)控PGC-1α防治NAFLD
NAFLD的特征是脂質(zhì)積累過多、炎癥和氧化還原穩(wěn)態(tài)不平衡。在NAFLD期間,肝細(xì)胞不再耐受累積的脂肪酸毒性,導(dǎo)致細(xì)胞線粒體β氧化和內(nèi)質(zhì)網(wǎng)應(yīng)激等功能障礙,隨后過量產(chǎn)生內(nèi)源性活性物質(zhì)[由活性氧(reactive oxygen species, ROS)、活性氮(reactive nitrogen species, RNS)和活性硫物質(zhì)(reactive sulfur substance, RSS)組成]導(dǎo)致肝細(xì)胞損傷,促進(jìn)炎癥細(xì)胞因子(TNF-α、IL-6、IL-10)的分泌和細(xì)胞死亡,而線粒體和過氧化物酶體中的促炎信號(hào)通路導(dǎo)致抗氧化穩(wěn)態(tài)失調(diào)。
NAFLD屬于中醫(yī)學(xué)“肝癖”“脅痛”“積聚”等范疇,其發(fā)病原因與飲食不節(jié)、情志失調(diào)、勞逸失度等有關(guān),導(dǎo)致痰、濕、濁、瘀、熱伏結(jié)肝體。中醫(yī)藥治療肝臟疾病,具有標(biāo)本兼治、毒副作用小、耐藥性低的優(yōu)勢(shì)[12]。然而,其基礎(chǔ)研究欠深入、藥物作用機(jī)制不明等問題一直困擾著其發(fā)展。新近研究表明,PGC-1α在中藥防治肝臟疾病中成為新的研究熱點(diǎn)[13-14]。下文對(duì)中藥調(diào)控PGC-1α治療NAFLD的核心文獻(xiàn)進(jìn)行總結(jié),以期為中藥治療NAFLD的機(jī)制研究提供部分參考。
2.1? 中藥調(diào)控PGC-1α影響IR與糖脂代謝改善NAFLD
IR與NAFLD互為因果,可促進(jìn)NAFLD的發(fā)生發(fā)展。IR引起外周脂肪組織分解,過多的脂肪酸進(jìn)入肝臟蓄積,同時(shí)肝臟脂肪堆積加重IR,通常伴隨著線粒體功能障礙,導(dǎo)致糖脂代謝紊亂。PGC-1α能夠通過蛋白激酶B(protein kinase B, PKB)產(chǎn)生的胰島素受體信號(hào)調(diào)節(jié)胰島素受體底物1(insulin receptor substrate 1, IRS1)和胰島素受體底物2(insulin receptor substrate 2, IRS2)之間的平衡,在糖異生的控制中起著雙重作用。NAFLD小鼠肝臟乙酰CoA羧化酶(acetyl CoA carboxylase, ACC)、膽固醇調(diào)節(jié)元件結(jié)合蛋白1(sterol-regulatory regulatory element binding protein 1, SREBP1)及其脂生成靶基因[硬脂酰輔酶Al(Stearoyl Coenzyme A1, SCA1)和脂肪酸合酶基因(fatty acid synthase, FAS)]的蛋白表達(dá)上調(diào),而參與脂肪酸β氧化的蛋白[如PPARα、PGC-1α、肉堿棕櫚酰轉(zhuǎn)移酶1(carnitine palmitoyl transferase 1, CPT1)、過氧化物酶體酰輔酶A氧化酶1(peroxisome acyl coa oxidase acyl-CoA oxidase, ACOX1)和人線粒體解偶聯(lián)蛋白2(recombinant uncoupling protein 2, UCP2)]以及PGC-1α上游介質(zhì)沉默信息調(diào)節(jié)因子1(silent mating type information regulation 1, SIRT1)和AMP依賴蛋白激酶(adenosine 5'-monophosphate-activated protein kinase α, AMPKα)表達(dá)下調(diào),調(diào)控PGC-1α通路可改善肝臟脂質(zhì)積累[15]。
中藥復(fù)方糖肝康治療糖尿病脂肪肝大鼠,抑制肝臟組織PGC-1α的異常表達(dá),通過調(diào)節(jié)糖脂代謝紊亂和胰島素敏感性而改善肝臟脂肪變性[16]。研究發(fā)現(xiàn),三黃湯預(yù)防NAFLD機(jī)制是通過激活PGC-1α及其下游信號(hào)通路來實(shí)現(xiàn)的[17]。平湯方治療NAFLD模型大鼠,發(fā)現(xiàn)肝臟PGC-1α、PPARα等關(guān)鍵脂解調(diào)節(jié)基因的表達(dá)上調(diào),而脂肪生成基因如SREBPc等的表達(dá)下降,證明平糖方通過調(diào)節(jié)PGC-1α信號(hào)通路,減輕了肝臟脂肪變性[18]。澤瀉湯處理棕櫚酸誘導(dǎo)的脂質(zhì)堆積細(xì)胞模型和高脂誘導(dǎo)的非酒精性脂肪肝動(dòng)物模型,激活了PGC-1α,并上調(diào)其靶基因酰基輔酶A脫氫酶(acyl-Coenzyme A dehydrogenase, ACADS)、CPT1α、CPT1β、線粒體棕色脂肪解偶聯(lián)蛋白1(recombinant uncoupling protein 1, UCP1)、長(zhǎng)鏈脂肪酸輔酶A連接酶1(long chain fatty acid coenzyme A ligase 1, ACSL1)、NRF1等的表達(dá),從而改善了肝細(xì)胞脂質(zhì)堆積[19]?;⒔鸱街委煾咧嬍常╤igh fat diet, HFD)喂養(yǎng)的C57/BL6J小鼠,明顯減少肝細(xì)胞脂肪堆積,其作用機(jī)制可能與其調(diào)節(jié)SIRT1/PPAR-α通路、減輕肝臟脂質(zhì)沉積有關(guān)[13]。藜麥復(fù)合物處理高脂飲食喂養(yǎng)的C57BL/6J小鼠,可明顯降低血清谷草轉(zhuǎn)氨酶(aspartate transaminase, AST)、甘油三酯(triglyceride, TG)、纖維蛋白原(fibrinogen, FBG)、空腹胰島素(fasting insulin, FINS)含量以及胰島素抵抗指數(shù)(insulin resistance index, IRI),明顯升高肝臟組織SIRT1、PGC-1α蛋白表達(dá)水平,表明藜麥復(fù)合物可能通過促進(jìn)SIRT1/PGC-1α的表達(dá)改善胰島素抵抗和糖脂代謝紊亂,從而減輕糖尿病肝損傷[20]。
中藥單體白藜蘆醇可激活肥胖男性肌肉組織AMPK,增加SIRT1和PGC-1α蛋白水平,促進(jìn)肌肉線粒體呼吸和產(chǎn)熱,從而減少肝臟脂質(zhì)合成,改善飲食引起的脂肪肝[21]。金線蓮多糖可能激活A(yù)MPK/SIRT1/PGC-1α信號(hào)通路促進(jìn)脂肪產(chǎn)熱,增加葡萄糖耐量和胰島素敏感性,從而通過減少脂質(zhì)合成和增加氧化來減少肝臟脂質(zhì)積累[14]。桑根酮C可明顯下降HepG2細(xì)胞內(nèi)脂滴數(shù)及TG含量,升高PGC-1α、PPARα、CPT-1、SIRT1的mRNA和蛋白表達(dá)水平,改善HepG2細(xì)胞的脂質(zhì)蓄積[22]。淫羊藿苷可上調(diào)NAFLD大鼠肝組織AMPKα1、PGC-1α、葡萄糖轉(zhuǎn)運(yùn)蛋白4(glucose transporter 4, GLUT4)、CPT-1、B淋巴細(xì)胞瘤-2(B-cell lymphoma-2, Bcl-2)蛋白相對(duì)表達(dá)量,下調(diào)了ACC蛋白相對(duì)表達(dá)量,從而改善了肝臟脂肪變性[23]。紅景天根可通過調(diào)節(jié)PGC-1α信號(hào)通路,改善SD大鼠肝脂肪變性[24]。
2.2? 中藥調(diào)控PGC-1α減少炎癥反應(yīng)改善NAFLD
體內(nèi)炎癥因子失衡參與NAFLD的第2次打擊,并推進(jìn)NAFLD進(jìn)程。臨床NAFLD患者血清中,TNF-α、IL-6、IL-10和高敏C反應(yīng)蛋白含量顯著升高。高濃度棕櫚酸鹽和膽固醇處理后的HepG2細(xì)胞,檢測(cè)到PGC-1α蛋白表達(dá)下調(diào),同時(shí)激活了核因子κB(nuclear factor kappa-B, NF-κB)信號(hào),導(dǎo)致TNF-α蛋白質(zhì)水平上升,而非甾體抗炎藥阿司匹林治療可調(diào)節(jié)以上蛋白表達(dá),緩解炎癥[25]。
中藥復(fù)方苓桂術(shù)甘湯加味通過調(diào)節(jié)PI3K-Akt/mTOR-S6K1/AMPK-PGC-1α通路,改善糖脂代謝和炎癥[26]。葛根芩連湯聯(lián)合白藜蘆醇明顯升高NAFLD 模型大鼠肝臟SIRT1及PGC-1α mRNA的表達(dá),同時(shí)下調(diào)NF-κB基因的表達(dá),緩解NAFLD的進(jìn)展[27]。
中藥單體山楂葉總黃酮上調(diào)了NAFLD大鼠肝臟法尼酯X受體(farnesoid X receptor, FXR)、PPARα、PGC-1α的表達(dá),調(diào)節(jié)肝臟的脂質(zhì)代謝,改善炎性反應(yīng)[28]。枸杞多糖聯(lián)合有氧運(yùn)動(dòng)激活A(yù)MPK/PPARα/PGC-1α途徑,增加脂肪酸氧化,改善NASH鼠的肝臟炎癥[29]。異甘草素激活PGC-1α表達(dá),抑制ROS、TNF-α、IL-1β和IL-6的表達(dá),改善NAFLD肝臟組織的脂質(zhì)積累和炎癥[30]。大葉茜草素上調(diào)AMPK、PPARγ、PGC-1α表達(dá),降低磷酸化核因子-κB(phosphorylation nuclear factor-kappa B, pNF-κB)水平,改善NAFLD小鼠肝臟組織胞質(zhì)內(nèi)的脂滴積聚和炎性細(xì)胞浸潤(rùn)[31]。慈姑多糖可上調(diào)PGC-1α mRNA表達(dá),降低TNF-α、IL-6 mRNA表達(dá),從而改善NAFLD小鼠肝臟組織胞質(zhì)內(nèi)的脂滴積聚和炎性細(xì)胞浸潤(rùn)[32]。
2.3? 中藥調(diào)控PGC-1α減少氧化應(yīng)激改善NAFLD
NAFLD與氧化應(yīng)激密切相關(guān),脂質(zhì)代謝紊亂會(huì)導(dǎo)致肝臟脂質(zhì)積聚,從而影響不同的ROS生成器,包括線粒體、內(nèi)質(zhì)網(wǎng)等。通過調(diào)查1651名脂肪肝指數(shù)>60和肝脂肪變性指數(shù)>36的NAFLD患者,發(fā)現(xiàn)血清高還原活性硫醇游離硫醇含量下降與NAFLD呈正相關(guān)[33]。在高脂肪高果糖飲食誘導(dǎo)形成NASH小鼠和棕櫚酸處理的HepG2肝細(xì)胞中,NRF2的核易位減少,抑制下游抗氧化基因的表達(dá),增加細(xì)胞內(nèi)ROS,從而導(dǎo)致肝細(xì)胞損傷。增加的細(xì)胞內(nèi)ROS導(dǎo)致線粒體功能基因線粒體動(dòng)力相關(guān)蛋白(dynamin-like protein 1, Drp1)、線粒體轉(zhuǎn)錄因子A(transcription factor A mitochondrial, TFAM)、PGC-1α和NRF1表達(dá)下調(diào),導(dǎo)致線粒體損傷,加劇肝細(xì)胞氧化損傷,一氧化碳釋放分子A1可調(diào)節(jié)此過程[34]。
中藥復(fù)方護(hù)肝清脂片可激活A(yù)MPK和PPARα通路,增加肝脂肪變性L02 和 HepG2 細(xì)胞中谷胱甘肽(L-Glutathione, GSH)水平和超氧化物歧化酶(superoxide dismutase, SOD)活性,增強(qiáng)抗氧化,改善肝細(xì)胞脂肪變性[35]。離肝石六八味散上調(diào)NAFLD大鼠和脂肪變性HepG2細(xì)胞中PPARα、PPARβ和核因子κB抑制因子(recombinant inhibitory subunit of NF kappa B alpha, IκBα)表達(dá),下調(diào)一氧化氮合成酶(nitric oxide synthase, iNOS)表達(dá),促進(jìn)脂肪酸氧化,緩解氧化應(yīng)激,改善肝細(xì)胞脂肪性變和損傷[36]。
中藥單體燈盞花乙素可調(diào)節(jié) PPARγ/PGC-1α-NRF2信號(hào)通路,從而抗氧化改善肝損傷[37]。枸杞多糖聯(lián)合有氧運(yùn)動(dòng)能夠降低NAFLD大鼠脂代謝紊亂的程度,降低肝臟氧化應(yīng)激的水平,這一過程可能與PGC-1α和Ⅲ型纖連蛋白域蛋白5(fibronectin type Ⅲ domain containing protein 5, FNDC5)mRNA表達(dá)上調(diào)有關(guān)[38]。槲皮素通過誘導(dǎo)PGC-1α表達(dá),激活脂肪酸β氧化,減輕氧化應(yīng)激以及抑制炎性反應(yīng),從而改善肝細(xì)胞損傷[39]。胡柚皮黃酮可調(diào)節(jié)SIRT1/PGC-1α信號(hào)通路,增強(qiáng)肝臟抗氧化能力,減少脂肪酸代謝過程中ROS的損傷,從而防治NASH的發(fā)生發(fā)展[40]。Acerola多糖激活NAFLD小鼠NRF2,抑制氧化應(yīng)激,激活PGC-1α,降低UCP2表達(dá),從而改善NAFLD[41]。
3 結(jié)語
NAFLD并非一種獨(dú)立的疾病,常常與代謝紊亂并存,合并肥胖、糖尿病、冠心病等。PGC-1α是線粒體生物合成的關(guān)鍵調(diào)節(jié)因子,研究證實(shí)PGC-1α通過IR、脂質(zhì)堆積、氧化應(yīng)激、炎癥反應(yīng)等途徑參與了NAFLD的發(fā)生發(fā)展,在NAFLD中發(fā)揮著保護(hù)作用。
中藥防治NAFLD療效顯著,然而作用機(jī)制尚未完全闡明。近期研究顯示,中藥在靶向調(diào)控PGC-1α方面發(fā)揮重要作用,改善NAFLD的效果顯著。然而基礎(chǔ)研究不深入、藥物作用機(jī)制不清等問題一直困擾著中醫(yī)藥的發(fā)展。(1)中藥復(fù)方或單體作用于PGC-1α及其信號(hào)通路的具體靶點(diǎn)仍未系統(tǒng)闡明。當(dāng)前研究集中在中醫(yī)藥可調(diào)節(jié)NAFLD肝細(xì)胞PGC-1α表達(dá),以及同時(shí)存在IR、糖脂代謝、炎癥反應(yīng)、氧化應(yīng)激相關(guān)指標(biāo)或基因表達(dá)變化,較少系統(tǒng)研究 PGC-1α信號(hào)的具體環(huán)節(jié),限制了中醫(yī)藥作為精準(zhǔn)醫(yī)療的應(yīng)用。表觀遺傳學(xué)、代謝組學(xué)等新興組學(xué)有望為篩選、發(fā)現(xiàn)中醫(yī)藥的可能作用靶點(diǎn)帶來曙光。(2)PGC-1α信號(hào)通路目前沒有研發(fā)出臨床相關(guān)的診斷指標(biāo),臨床報(bào)道罕見;中藥調(diào)控PGC-1α作用于NAFLD的相關(guān)性研究大多為基礎(chǔ)研究,其相關(guān)性和作用機(jī)制的闡明急需臨床研究證實(shí)。(3)針灸治療肥胖、NAFLD和心血管等疾病具有臨床優(yōu)勢(shì),然而,基于PGC-1α信號(hào)的治療機(jī)制尚未得到很好闡明。綜上所述,進(jìn)一步深入探究PGC-1α與NAFLD的關(guān)聯(lián)性,以及靶向調(diào)控機(jī)制,有望為中醫(yī)藥防治NAFLD帶來新的契機(jī)。
參考文獻(xiàn)
[1] JIE, LI, MD, et al. Prevalence, incidence, and outcome of non-alcoholic fatty liver disease in Asia, 1999—2019: A systematic review and meta-analysis[J]. The Lancet Gastroenterology & Hepatology, 2019, 4(5): 389-398.
[2] PUIGSERVER P, WU Z, PARK C W, et al. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis[J]. Cell, 1998, 92(6): 829-839.
[3] WU D, YANG Y, HOU Y R, et al. Increased mitochondrial fission drives the reprogramming of fatty acid metabolism in hepatocellular carcinoma cells through suppression of Sirtuin 1[J]. Cancer Communications, 2022, 42(1): 37-55.
[4] CHEN CY, LI Y, ZENG N, et al. Inhibition of estrogen-related receptor α blocks liver steatosis and steatohepatitis and attenuates triglyceride biosynthesis[J]. The American Journal of Pathology, 2021, 191(7): 1240-1254.
[5] KNEBEL B, G?DDEKE S, HARTWIG S, et al. Alteration of liver peroxisomal and mitochondrial functionality in the NZO mouse model of metabolic syndrome[J]. Proteomics Clinical Applications, 2018, 12(1): 1700028.
[6] SKAT-R?覫RDAM J, H?覫JLAND IPSEN D, LYKKESFELDT J, et al. A role of peroxisome proliferator-activated receptor γ in non-alcoholic fatty liver disease[J]. Basic & Clinical Pharmacology & Toxicology, 2019, 124(5): 528-537.
[7] LEE Y H, JANG H J, KIM S, et al. Hepatic MIR20B promotes nonalcoholic fatty liver disease by suppressing PPARA[J]. eLife, 2021, 10: e70472.
[8] CHEN J D, CHEN J X, FU H R, et al. Hypoxia exacerbates nonalcoholic fatty liver disease via the HIF-2α/PPARα pathway[J]. American Journal of Physiology Endocrinology and Metabolism, 2019, 317(4): E710-E722.
[9] GAO H Q, ZHOU L, ZHONG Y M, et al. Kindlin-2 haploinsufficiency protects against fatty liver by targeting Foxo1 in mice[J]. Nature Communications, 2022, 13(1): 1025.
[10] SAREMI L, LOTF?PANAH S, MOHAMMADI M, et al. Association between PPARGC1A single nucleotide polymorphisms and increased risk of nonalcoholic fatty liver disease among Iranian patients with type 2 diabetes mellitus[J]. Turkish Journal of? Medical Sciences, 2019, 49(4): 1089-1094.
[11] YONEDA M, HOTTA K, NOZAKI Y, et al. Association between PPARGC1A polymorphisms and the occurrence of nonalcoholic fatty liver disease (NAFLD)[J]. BMC Gastroenterol, 2008, 8: 27.
[12] 廖小妹, 陳美麗, 王璽舜, 等. 加味消脂利肝方治療非酒精性脂肪肝的網(wǎng)絡(luò)藥理學(xué)研究及實(shí)驗(yàn)驗(yàn)證[J]. 湖南中醫(yī)藥大學(xué)學(xué)報(bào), 2023, 43(2): 317-326.
[13] 黃? 明, 張嘉駿, 施旭光, 等. 虎金方對(duì)小鼠非酒精性脂肪肝的作用及對(duì)SIRT1/PPARα通路的影響[J]. 中藥新藥與臨床藥理, 2020, 31(4): 419-424.
[14] TIAN DM, ZHONG XY, FU LY, et al. Therapeutic effect and mechanism of polysaccharides from Anoectochilus Roxburghii (Wall.) Lindl. in diet-induced obesity[J]. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology, 2022, 99: 154031.
[15] CHEN X Y, CAI C Z, YU M L, et al. LB100 ameliorates nonalcoholic fatty liver disease via the AMPK/Sirt1 pathway[J]. World Journal of Gastroenterology, 2019, 25(45): 6607-6618.
[16] 錢秋海, 錢衛(wèi)斌, 蔡欣蕊, 等. 糖肝康對(duì)糖尿病脂肪肝大鼠肝臟PGC-1α、PPARα表達(dá)的影響[J]. 中華中醫(yī)藥雜志, 2015, 30(7): 2525-2528.
[17] A P F, A Y S, A X G, et al. San-Huang-Tang protects obesity/diabetes induced NAFLD by upregulating PGC-1α/PEPCK signaling in obese and galr1 knockout mice models[J]. Journal of Ethnopharmacology, 2020, 250: 112483.
[18] SHU Y Y, NENG J Z, XUE J L, et al. Ping-Tang Recipe improves insulin resistance and attenuates hepatic steatosis in high-fat diet-induced obese rats[J]. Chinese Journal of Integrative Medicine, 2012, 18(4): 262-268.
[19] 王夢(mèng)瑤, 高? 改, 李二穩(wěn), 等. 基于LKB1/AMPK/PGC-1α的澤瀉湯改善非酒精性脂肪肝作用機(jī)制研究[J]. 中國(guó)中藥雜志, 2022, 47(2): 453-460.
[20] 胡媛媛, 姜廣建, 祝嘉健, 等. 藜麥復(fù)合物調(diào)控SIRT1/PGC-1α通路改善糖尿病小鼠肝細(xì)胞損傷[J]. 湖南中醫(yī)藥大學(xué)學(xué)報(bào), 2021, 41(12): 1863-1868.
[21] TIMMERS S, KONINGS E, BILET L, et al. Calorie restriction-like effects of 30 days of resveratrol supplementation on energy metabolism and metabolic profile in obese humans[J]. Cell Meta?鄄bolism, 2011, 14(5): 612-622.
[22] 邢菊玲, 劉? 芬, 馮? 萌, 等. 桑根酮C對(duì)游離脂肪酸誘導(dǎo)人肝癌HepG2細(xì)胞脂質(zhì)蓄積的改善作用[J]. 中國(guó)藥房, 2021, 32(15): 1868-1873.
[23] 宋正偉, 夏? 平, 黎? 黎, 等. 淫羊藿苷介導(dǎo)AMPK/PGC-1α/GLUT4通路對(duì)高脂誘導(dǎo)的大鼠非酒精性脂肪肝損傷和脂代謝的調(diào)節(jié)作用[J]. 臨床和實(shí)驗(yàn)醫(yī)學(xué)雜志, 2019, 18(16): 1702-1707.
[24] YUAN C L, JIN Y Q, YAO L, et al. Rhodiola crenulata root extract ameliorates fructose-induced hepatic steatosis in rats: Association with activating autophagy[J]. Biomedecine & Pharmacotherapie, 2020, 125: 109836.
[25] HAN Y M, LEE Y J, JANG Y N, et al. Aspirin improves nonalcoholic fatty liver disease and atherosclerosis through regulation of the PPARδ-AMPK-PGC-1αPathway in dyslipidemic conditions[J]. BioMed Research International, 2020, 2020: 1-17.
[26] SUN J P, SHI L, WANG F, et al. Modified Linggui Zhugan Decoction ameliorates glycolipid metabolism and inflammation via PI3K-Akt/mTOR-S6K1/AMPK-PGC-1 α signaling pathways in obese type 2 diabetic rats[J]. Chinese Journal of Integrative Medicine, 2022, 28(1): 52-59.
[27] GUO Y, LI JUN-XIANG, MAO TANG-YOU, et al. Targeting Sirt1 in a rat model of high-fat diet-induced non-alcoholic fatty liver disease: Comparison of gegen qinlian decoction and resveratrol[J]. Experimental and Therapeutic Medicine, 2017: 4279-4287.
[28] 何蓓暉, 陸永娟, 李寶華, 等. 山楂葉總黃酮對(duì)FXR及其相關(guān)基因調(diào)控治療NAFLD模型大鼠的機(jī)制研究[J]. 中華中醫(yī)藥雜志, 2017, 32(4): 1807-1810.
[29] LI D D, MA J M, LI M J, et al. Supplementation of Lycium barbarum polysaccharide combined with aerobic exercise ameliorates high-fat-induced nonalcoholic steatohepatitis via AMPK/PPARα/PGC-1α pathway[J]. Nutrients, 2022, 14(15): 3247.
[30] WANG L, WANG X H, KONG L N, et al. Activation of PGC-1α via isoliquiritigenin-induced downregulation of miR-138-5p alleviates nonalcoholic fatty liver disease[J]. Phytotherapy Research, 2022, 36(2): 899-913.
[31] 周永靜, 王肖輝, 李如意, 等. 大葉茜草素對(duì)高脂誘導(dǎo)小鼠非酒精性脂肪肝的影響[J]. 世界中西醫(yī)結(jié)合雜志, 2022, 17(1): 86-91, 110.
[32] 柯秀慧, 董瑞娟, 葛東宇, 等. 慈姑多糖對(duì)非酒精性脂肪肝小鼠糖脂代謝的作用及機(jī)制[J]. 北京中醫(yī)藥, 2019, 38(7): 644-649, 封3.
[33] WANG S W, SHENG H, BAI Y F, et al. Neohesperidin enhances PGC-1α-mediated mitochondrial biogenesis and alleviates hepatic steatosis in high fat diet fed mice[J]. Nutrition & Diabetes, 2020, 10: 27.
[34] UPADHYAY K K, JADEJA R N, VYAS H S, et al. Carbon monoxide releasing molecule-A1 improves nonalcoholic steatohepatitis via Nrf2 activation mediated improvement in oxidative stress and mitochondrial function[J]. Redox Biology, 2020, 28: 101314.
[35] YIN J J, LUO Y Q, DENG H L, et al. Hugan Qingzhi medication ameliorates hepatic steatosis by activating AMPK and PPARα pathways in L02 cells and HepG2 cells[J]. Journal of Ethnopharmacology, 2014, 154(1): 229-239.
[36] JIANG Y Z, CHEN L, WANG H, et al. Li-Gan-Shi-Liu-Ba-Wei-San improves non-alcoholic fatty liver disease through enhancing lipid oxidation and alleviating oxidation stress[J]. Journal of Ethnopharmacology, 2015, 176: 499-507.
[37] ZHANG X X, JI R P, SUN H J, et al. Scutellarin ameliorates nonalcoholic fatty liver disease through the PPARγ/PGC-1α-Nrf2 pathway[J]. Free Radical Research, 2018, 52(2): 198-211.
[38] 郭怡瓊, 吳? 瓊, 吳雅婷, 等. 枸杞多糖和有氧運(yùn)動(dòng)對(duì)大鼠非酒精性脂肪肝的干預(yù)效果及其機(jī)制研究[J]. 上海交通大學(xué)學(xué)報(bào)(醫(yī)學(xué)版), 2020, 40(1): 30-36.
[39] 李麗紅, 李? 欣, 李? 碩, 等. PGC-1α在槲皮素通過雌激素樣作用減輕FFA誘導(dǎo)肝細(xì)胞脂肪變性中的機(jī)制[J]. 中國(guó)比較醫(yī)學(xué)雜志, 2022, 32(9): 47-54.
[40] 陳芝蕓, 李劍霜, 蔣劍平, 等. 胡柚皮黃酮對(duì)非酒精性脂肪性肝炎小鼠肝組織SIRT1/PGC-1α通路的影響[J]. 中國(guó)中藥雜志, 2014, 39(1): 100-105.
[41] HU Y Y, YIN F W, LIU Z Y, et al. Acerola polysaccharides ameliorate high-fat diet-induced non-alcoholic fatty liver disease through reduction of lipogenesis and improvement of mitochondrial functions in mice[J]. Food & Function, 2020, 11(1): 1037-1048.
(本文編輯? 匡靜之)
湖南中醫(yī)藥大學(xué)學(xué)報(bào)2023年7期