• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      HECW2通過被CREB1轉錄激活而增強KIRC細胞活力并促進細胞侵襲和遷移*

      2023-08-07 06:12:20沈慧寇茜睿王麗張靜李芳
      中國病理生理雜志 2023年7期
      關鍵詞:結果表明細胞系活力

      沈慧, 寇茜睿, 王麗, 張靜, 李芳

      HECW2通過被CREB1轉錄激活而增強KIRC細胞活力并促進細胞侵襲和遷移*

      沈慧, 寇茜睿, 王麗, 張靜, 李芳△

      (延安大學醫(yī)學院,陜西 延安 716000)

      探究E3泛素連接酶HECW2(HECT, C2 and WW domain containing E3 ubiquitin protein ligase 2)在腎透明細胞癌(kidney renal clear cell carcinoma, KIRC)細胞活力、凋亡、侵襲和遷移中的作用及其分子調控機制。借助GEPIA(Gene Expression Profiling Interactive Analysis)數據庫分析HECW2在泛癌中的表達水平,同時利用SangerBox數據庫分析HECW2表達水平與泛癌免疫浸潤和預后的關系。在此基礎上,進一步通過體外實驗探究HECW2在KIRC中的調控作用及相關分子機制。首先,通過RT-qPCR和Western blot分析HECW2在KIRC細胞系中的表達水平;其次,通過CCK-8實驗分析敲減對KIRC細胞活力的影響;再者,通過流式細胞術分析敲減對KIRC細胞凋亡的影響;最后,通過劃痕實驗和Transwell實驗分析敲減對KIRC細胞遷移和侵襲的影響。此外,通過Western blot和ChIP-qPCR探究HECW2是否在轉錄因子cAMP反應元件結合蛋白1(cAMP response element-binding protein 1, CREB1)的轉錄激活作用下影響KIRC細胞。泛癌分析結果顯示,HECW2在KIRC和胰腺癌中顯著高表達,而在肺腺癌和肺鱗狀細胞癌中顯著低表達,且HECW2表達水平與這4種腫瘤的免疫浸潤水平呈顯著正相關;但HECW2高表達組和低表達組相比,僅KIRC患者生存期長短有顯著差異,即HECW2表達水平越高,KIRC患者總生存期、疾病特異性生存期和無進展間期越長,預后越好。體外實驗結果表明,HECW2在KIRC組織和細胞系中均呈顯著高表達;敲減可顯著抑制KIRC細胞活力、侵襲和遷移,并促進其凋亡。敲減可顯著降低KIRC細胞中HECW2的mRNA和蛋白表達水平,而過表達則觀察到相反的結果。ChIP-qPCR實驗結果表明CREB1能夠與的啟動子區(qū)域結合,提示HECW2能夠被CREB1轉錄激活。HECW2可在CREB1的轉錄激活作用下增強KIRC細胞活力并促進細胞侵襲和遷移。

      腎透明細胞癌;HECW2蛋白;cAMP反應元件結合蛋白1;細胞活力;細胞侵襲;細胞遷移

      腎細胞癌是起源于腎小管上皮細胞的腺癌,占腎臟惡性腫瘤的80%~90%,而在腎細胞癌中,約有75%~80%為腎透明細胞癌(kidney renal clear cell carcinoma, KIRC)[1]。盡管近年來腫瘤診療水平有所提高,但仍有約60%的KIRC患者在初診時已發(fā)生遠端轉移,且對放化療極不敏感;另一方面,KIRC患者手術切除后的復發(fā)率仍高達20%~40%,患者5年生存率僅為20%左右[2-4]。因此,闡明KIRC的致病機制并尋找其潛在靶點具有重要的理論實踐意義。

      泛素化修飾過程中的關鍵酶之一——E3泛素-蛋白質連接酶在多種腫瘤的發(fā)生發(fā)展中扮演重要角色[5-7]。目前關于E3泛素-蛋白質連接酶HECW2(HECT, C2 and WW domain containing E3 ubiquitin protein ligase 2)的功能和調控機制相關研究報道較少,且主要聚焦于神經發(fā)育遲緩、肌張力減退和智力障礙等方面[8-9]。但有研究證據提示HECW2可能在腫瘤進展中發(fā)揮重要調控作用,如:作為人類基因組中的基因整合熱點之一,可能是人乳頭瘤病毒的潛在致癌因子[10];HECW2在結腸癌和宮頸癌組織中呈顯著高表達,提示其可能作為促癌因子參與調控這2種腫瘤的發(fā)生發(fā)展[11]。另外,約38%的缺失突變小鼠表現出單側或雙側腎積水,且均在出生后2周內死亡;敲減可顯著抑制腎髓質細胞或腎乳頭細胞的增殖,提示HECW2可能在腎臟發(fā)育過程中扮演重要角色[12]。但HECW2是否參與調控KIRC的發(fā)生發(fā)展目前鮮有報道。

      cAMP反應元件結合蛋白1(cAMP response element-binding protein 1, CREB1)是亮氨酸拉鏈蛋白家族的成員之一,被認為是一種腫瘤控制的潛在靶點[13]。有研究發(fā)現,CREB1在腎細胞癌組織中顯著高表達,并與腎細胞癌的不良臨床病理特征密切相關;CREB1蛋白磷酸化水平升高與KIRC預后不良呈正相關[14-15],提示CREB1可能在KIRC進展中發(fā)揮重要作用。前期生物信息學分析結果表明,的啟動子區(qū)域可能有轉錄因子CREB1的結合位點,且這兩者的mRNA相對表達水平呈顯著正相關,提示CREB1可能是的轉錄激活因子。但HECW2是否在CREB1的轉錄激活作用下參與調控KIRC的發(fā)生發(fā)展目前尚不清楚。本文旨在闡明HECW2在KIRC發(fā)生發(fā)展中的作用,以及是否在CREB1的轉錄激活作用下影響KIRC細胞,從而為KIRC的致病機制研究及其靶向治療提供新的思路。

      材料和方法

      1 細胞

      本實驗所用人腎小管上皮細胞系HK-2及人KIRC細胞系786-O和Caki-1均來自延安大學醫(yī)學實驗研究中心細胞庫。

      2 主要試劑

      McCoy's 5A和RPMI-1640培養(yǎng)液及胎牛血清(fetal bovine serum, FBS)均購自Biological Industries;siRNA (si-HECW2)、siRNA (si-CREB1)及對照siRNA (si-NC)均購自吉瑪基因有限公司;過表達質粒及其對照質粒購自北京義翹神州科技股份有限公司;CCK-8購自陶術生物科技有限公司;Annexin V-FITC/PI細胞凋亡檢測試劑盒購自Biosharp;Transwell小室購自Corning;染色質免疫沉淀(chromatin immunoprecipitaion, ChIP)檢測試劑盒購自廣州伯信生物有限公司;基質金屬蛋白酶2(matrix metalloproteinase 2, MMP2)、MMP9、caspase-10、Bcl-2等抗體均購自Proteintech;β-actin抗體購自TransGen Biotech;HECW2抗體購自Abcam;CREB1抗體購自Cell Signaling Technology;TRIzol試劑購自Ambion;逆轉錄試劑盒和RT-qPCR試劑盒購自TransGen Biotech。

      3 主要方法

      3.1生物信息學分析運用GEPIA(Gene Expression Profiling Interactive Analysis)數據庫(http://gepia.cancer-pku.cn/)分析HECW2在正常組織及多種常見腫瘤組織中的表達差異;進一步借助UALCAN(http://ualcan.path.uab.edu/index.html)和HPA(Human Protein Atlas)數據庫(https://www.proteinatlas.org)分析腎正常組織及腎透明細胞癌組織中HECW2的表達水平。通過SangerBox數據庫分析HECW2表達水平與KIRC、胰腺癌(pancreatic adenocarcinoma, PAAD)、肺腺癌(lung adenocarcinoma, LUAD)和肺鱗狀細胞癌(lung squamous cell carcinoma, LUSC)這4種腫瘤免疫浸潤之間的關系。此外,我們還利用該數據庫分析HECW2表達水平與以上4種腫瘤患者生存期[包括總生存期(overall survival, OS)、疾病特異性生存期(disease-specific survival, DSS)、無疾病間期(disease-free interval, DFI)和無進展間期(progression-free interval, PFI)]之間的關系。

      3.2細胞培養(yǎng)與處理HK-2和Caki-1細胞用含10% FBS的McCoy's 5A培養(yǎng)液,786-O細胞用含10% FBS的RPMI-1640培養(yǎng)液,于37 ℃、5% CO2培養(yǎng)箱中培養(yǎng)。取對數生長期的Caki-1細胞接種于培養(yǎng)板中,24 h后轉染75 nmol/L siRNA。si-HECW2正義鏈為5'-CAGGGAAGUUAAAGUUAAUTT-3',反義鏈為5'-AUUAACUUUAACUUCCCUGTT-3';si-CREB1正義鏈為5'-ACGGUGCCAACUCCAAUUUAC-3',反義鏈為5'-GUAAAUUGGAGUUGGCACCGU-3';si-NC正義鏈為5'-UUCUCCGAACGUGUCACGUTT-3',反義鏈為5'-ACGUGACACGUUCGGAGAATT-3'。

      3.3CCK-8實驗檢測細胞活力將Caki-1細胞接于96孔板中(每孔2.5×103個),每組設4個復孔,37 ℃、5% CO2培養(yǎng)箱中培養(yǎng)24 h后進行轉染,6 h后換液繼續(xù)培養(yǎng)。0、24、48和72 h時,每孔加入10 μL CCK-8,于37 ℃孵育2 h后,酶標儀測定450 nm處吸光度。

      3.4流式細胞術檢測細胞凋亡將Caki-1細胞接種于6孔板中(每孔1.2×105個),37 ℃、5% CO2培養(yǎng)箱中培養(yǎng)24 h后進行轉染。轉染48 h后按Annexin V-FITC/PI細胞凋亡檢測試劑盒說明離心收集細胞,用Binding Buffer重懸細胞,加入10 μL Annexin V-FITC,輕輕混勻后室溫避光孵育10 min;上機前加入10 μL PI溶液,輕輕混勻,隨即用流式細胞儀檢測細胞凋亡情況。

      3.5劃痕實驗和Transwell實驗檢測細胞遷移能力(1)劃痕實驗:將Caki-1細胞接種于6孔板中(每孔2×105個),于37 ℃、5% CO2培養(yǎng)箱中培養(yǎng)24 h后進行轉染,繼續(xù)培養(yǎng)6 h后用200 μL移液槍頭尖垂直劃線,PBS沖洗2次,更換為含1% FBS的培養(yǎng)液繼續(xù)培養(yǎng)(此時記為0 h),分別于0、24和48 h拍照測量劃痕寬度。細胞遷移率=遷移距離/0 h劃痕寬度。(2)Transwell實驗:將轉染24 h后的Caki-1細胞(每孔4×104個)接種于上室(含1% FBS的培養(yǎng)液),下室為600 μL含10% FBS的培養(yǎng)液,37 ℃、5% CO2培養(yǎng)箱中培養(yǎng)48 h。4%多聚甲醛固定20 min,0.1%結晶紫染色30 min,拍照,用ImageJ軟件分析遷移的細胞數。

      3.6基質膠侵襲實驗檢測細胞侵襲能力基質膠用基礎培養(yǎng)液按1∶9稀釋后,取100 μL加入Transwell上室,37 ℃、5% CO2培養(yǎng)箱中靜置30 min使基質膠凝固。將轉染24 h后的Caki-1細胞(每孔4×104個)接種于上室(含1% FBS的培養(yǎng)液),下室為600 μL含10% FBS的培養(yǎng)液,37 ℃、5% CO2培養(yǎng)箱中培養(yǎng)48 h。4%多聚甲醛固定20 min,0.1%結晶紫染色30 min,拍照,用ImageJ軟件分析侵襲的細胞數。

      3.7ChIP實驗按ChIP檢測試劑盒說明書進行操作。收集2×107個Caki-1細胞,經1%甲醛交聯(lián)后超聲破碎,加入靶蛋白抗體,過夜孵育,使之與樣品中的靶蛋白-DNA復合物結合。將富集得到的靶蛋白-DNA復合物解交聯(lián)后用RT-qPCR檢測靶蛋白(CREB1)與DNA()之間的結合位點。

      3.8Western blot用RIPA裂解液提取Caki-1細胞總蛋白,并進行BCA定量、SDS-PAGE電泳、轉膜及封閉等過程。Ⅰ抗4 ℃孵育過夜,Ⅱ抗室溫孵育1.5 h,ECL發(fā)光液曝光。

      3.9RT-qPCRTRIzol試劑提取Caki-1細胞總RNA,用逆轉錄試劑盒合成cDNA,再用RT-qPCR試劑盒檢測mRNA相對表達水平。HECW2的上游引物序列為5'-CCAGAGTTCTTCACCGTGCT-3',下游引物序列為5'-CCACAAAGAATGCCTTGCCC-3';CREB1的上游引物序列為5'-ACGGTGCCAACTCCAATTTAC-3',下游引物序列為5'-GTAAATTGGAGTTGGCACCGT-3';β-actin的上游引物序列為5'-CCAACCGCGAGAAGATGA-3',下游引物序列為5'-CCAGAGGCGTACAGGGATAG-3';啟動子結合位點1的上游引物序列為5'-CACCCATCAACCCATCATCT-3',下游引物序列為5'-CACATGAACACAGGGAGGAG-3';啟動子結合位點2的上游引物序列為5'-CACATCTACCTCCTGAGGTTCC-3',下游引物序列為5'-GCCTACGGTAACAAGGACCA-3'。

      4 統(tǒng)計學處理

      采用SPSS 20.0軟件進行數據分析。數據均以均數±標準差(mean±SD)表示。兩組間比較用獨立樣本檢驗,多組間比較用單因素方差分析。以<0.05為差異有統(tǒng)計學意義。

      結果

      1 HECW2在泛癌中的表達水平及其與泛癌免疫浸潤、預后的關系

      通過GEPIA數據庫分析發(fā)現,HECW2在KIRC和PAAD組織中呈顯著高表達,而在LUAD和LUSC組織中呈顯著低表達(圖1A)。借助SangerBox數據庫分析HECW2表達水平與這4種腫瘤免疫浸潤之間的關系,結果如圖1B、C所示。HECW2表達水平越高,KIRC、LUSC和PAAD組織中B細胞、CD4+T細胞、CD8+T細胞、中性粒細胞、巨噬細胞和樹突狀細胞的浸潤豐度越高;HECW2表達水平越高,LUAD組織中CD4+T細胞、巨噬細胞和樹突狀細胞的浸潤豐度越高(圖1B)。此外,HECW2表達水平與KIRC、LUAD、LUSC和PAAD的基質評分呈顯著正相關,且與KIRC、LUSC和PAAD的免疫基質聯(lián)合評分呈顯著正相關(圖1C)。這些結果提示HECW2表達水平與KIRC、LUAD、LUSC和PAAD這4種腫瘤的免疫浸潤水平均呈顯著正相關。

      Figure 1. Expression level of HECW2 in pan-cancer (A) and its relationship with immune infiltration of pan-cancer (B and C). KIRC: kidney renal clear cell carcinoma; PAAD: pancreatic adenocarcinoma; LUAD: lung adenocarcinoma; LUSC: lung squamous cell carcinoma. *P<0.05, **P<0.01.

      與此同時,我們還利用該數據庫分析了HECW2表達水平與這4種腫瘤預后的關系。HECW2高表達組KIRC患者的OS、DSS和PFI顯著長于低表達組,而DFI無顯著差異;而LUAD、LUSC和PAAD患者的生存期長短在兩組間并無顯著差異,見圖2。

      Figure 2. Relationship between HECW2 expression level and prognosis of pan-cancer patients. A: overall survival (OS); B: disease-specific survival (DSS); C: progression-free interval (PFI); D: disease-free interval (DFI).

      上述泛癌分析結果表明,HECW2在KIRC組織中呈顯著高表達,但HECW2表達水平越高,KIRC患者生存期越長,預后越好。因此,尚不清楚HECW2是作為促癌還是抑癌因子而調控KIRC的發(fā)生發(fā)展。

      2 HECW2在KIRC組織和細胞中呈顯著高表達

      為探究HECW2在KIRC中的調控作用,我們首先分析了HECW2在KIRC組織和細胞系中的表達水平。與泛癌分析結果一致,UALCAN和HPA數據庫分析結果表明,HECW2在KIRC組織中呈顯著高表達(<0.01),見圖3A、B。運用RT-qPCR和Western blot檢測分析HECW2在KIRC細胞系中的表達水平,結果表明HECW2在KIRC細胞系(786-O和Caki-1)中的mRNA和蛋白表達水平均顯著高于HK-2細胞(<0.05或<0.01),見圖3C、D。由于Caki-1細胞中HECW2蛋白表達水平最為顯著,因此選用Caki-1細胞進行后續(xù)實驗。

      Figure 3. High expression of HECW2 in KIRC tissues and cell lines. A: expression level of HECW2 in KIRC tissues from the UALCAN database; B: expression level of HECW2 in KIRC tissues from the HPA database; C: RT-qPCR analysis of the relative mRNA expression level of HECW2 in KIRC cells; D: Western blot analysis of protein expression level of HECW2 in KIRC cells. Mean±SD. n=72 in normal group; n=533 in primary tumor group; n=3 in each cell line. **P<0.01 vs normal group; #P<0.05, ##P<0.01 vs HK-2 cell line.

      3 敲減HECW2可顯著減弱KIRC細胞增殖活力

      鑒于HECW2在KIRC中顯著高表達,我們用si-HECW2轉染Caki-1細胞,以探究HECW2在KIRC發(fā)生發(fā)展中的調控作用。與si-NC組相比,si-HECW2組Caki-1細胞中HECW2的mRNA和蛋白表達水平均顯著降低,即si-HECW2的敲減效率顯著(<0.01),見圖4A、B。通過CCK-8實驗檢測HECW2對KIRC細胞活力的影響,結果表明si-HECW2組Caki-1細胞的活力顯著低于si-NC組(<0.01),見圖4C。流式細胞術檢測敲減對KIRC細胞凋亡的影響,發(fā)現si-HECW2組Caki-1細胞凋亡數量多于對照組,但兩組間相比并無顯著差異,見圖4D。相應地,Western blot結果顯示,si-HECW2組Caki-1細胞中促凋亡蛋白caspase-10的表達水平有升高的趨勢,而抑凋亡蛋白Bcl-2的表達水平有降低的趨勢,但兩組之間相比并無顯著差異,見圖3E。這些研究結果表明,敲減能夠顯著減弱KIRC細胞活力。

      Figure 4. Knockdown of HECW2 attenuated the viability of KIRC cells. A and B: validation of the efficiency of HECW2 knockdown using RT-qPCR and Western blot; C: the effect of HECW2 knockdown on the viability of KIRC cells; D: the effect of HECW2 knockdown on the apoptosis of KIRC cells; E: the effect of HECW2 knockdown on the protein expression levels of apoptosis markers in KIRC cells. Mean±SD. n=3. **P<0.01 vs si-NC group.

      4 敲減HECW2可顯著抑制KIRC細胞侵襲和遷移

      我們接著探究了HECW2在KIRC細胞侵襲和遷移中的調控作用。劃痕實驗和Transwell實驗結果表明,si-HECW2組Caki-1細胞的遷移能力顯著低于si-NC組(<0.05或<0.01),見圖5A、B?;|膠侵襲實驗結果表明,與si-NC組相比,si-HECW2組Caki-1細胞的侵襲能力顯著降低(<0.01),見圖5C。為進一步證實敲減對KIRC細胞侵襲和遷移的抑制作用,通過Western blot檢測各處理組細胞侵襲和遷移標志蛋白MMP9和MMP2的表達水平。結果發(fā)現MMP9和MMP2在si-HECW2組Caki-1細胞中的蛋白表達水平顯著低于si-NC組(<0.05或<0.01),見圖5D。

      Figure 5. Knockdown of HECW2 inhibited the invasion and migration of KIRC cells. A and B: the effect of HECW2 knockdown on the migration of KIRC cells was deteced by wound-healing assay and Transwell assay; C: the effect of HECW2 knockdown on the invasion of KIRC cells by Transwell assay; D: the effect of HECW2 knockdown on the protein expression levels of invasion and migration markers in KIRC cells. Mean±SD. n=3. *P<0.05, **P<0.01 vs si-NC group.

      5 HECW2可在CREB1的轉錄激活作用下影響KIRC細胞

      接下來,我們進一步探究了HECW2調控KIRC細胞增殖和遷移的相關分子機制。借助hTFtarget和ChIP-base數據庫,我們發(fā)現CREB1可能是的轉錄因子。如圖6A所示,KIRC中CREB1和HECW2的表達水平呈顯著正相關(=0.9 718,=0)。加之,有研究證據提示CREB1可能作為促癌因子參與調控KIRC的發(fā)生發(fā)展[14-15],我們推測HECW2可能在CREB1的轉錄激活作用下參與調控KIRC細胞活力、侵襲和遷移。為驗證這一假設,我們首先檢測了CREB1在KIRC細胞系中的蛋白表達水平,發(fā)現CREB1在786-O和Caki-1細胞系中均呈顯著高表達,見圖6B。此外,敲減可顯著降低HECW2的mRNA和蛋白表達水平(<0.01),見圖6C、D;反之,過表達可顯著提高HECW2的mRNA和蛋白表達水平(<0.05或<0.01),見圖6E、F。接著通過JASPAR數據庫預測CREB1在啟動子區(qū)域是否存在結合位點,結果發(fā)現啟動子區(qū)域包含2個CREB1結合位點,其序列如圖6G所示。ChIP-qPCR實驗結果表明,CREB1與啟動子區(qū)域的結合位點為預測結合位點2,見圖6H。綜上所述,HECW2可在CREB1的轉錄激活作用下調控KIRC細胞活力、侵襲和遷移。

      Figure 6. HECW2 affected KIRC cells under transcriptional activation by CREB1. A: ChIP-base database was used to predict the correlation between HECW2 and CREB1 in KIRC; B: protein expression level of CREB1in KIRC cell lines; C and D: the effect of CREB1 knockdown on the mRNA and protein expression levels of HECW2; E and F: the effect of CREB1 overexpression on the mRNA and protein expression levels of HECW2; G: JASPAR data was used to predict the binding sites of transcription factor CREB1 to the promoter region of HECW2; H: ChIP-qPCR analysis for the binding sites between CREB1 and the promoter region of HECW2. Mean±SD. n=3. #P<0.05 vs HK-2 cell line; **P<0.01 vs si-NC group; △P<0.05, △△P<0.01 vs vector group; ▲▲P<0.01 vs IgG.

      討論

      KIRC是腎細胞癌最常見的亞型,其轉移率和死亡率均很高,且預后較差[16-17]。眾多研究證據表明,E3泛素-蛋白質連接酶在KIRC生長轉移的調控中扮演重要角色[18-19]。盡管有報道稱HECW2可能是神經母細胞瘤、先天性巨型黑素細胞痣等腫瘤的預后標志物之一[20-21],但目前鮮有關于HECW2在KIRC中的調控作用及其分子機制的相關研究報道。因此,闡明這一點對于KIRC致病機制研究及KIRC患者生存期延長具有重要意義。

      腫瘤微環(huán)境與腫瘤共同構成完整的生態(tài)系統(tǒng),能夠在影響免疫的同時促進腫瘤生長轉移[22]。本研究發(fā)現,HECW2的表達水平不僅與KIRC中6種主要類型免疫細胞的浸潤豐度呈顯著正相關,還與基質評分、免疫評分及免疫基質聯(lián)合評分呈顯著正相關。加之,有報道稱免疫細胞浸潤豐度增加與KIRC預后不良呈正相關[23-25]。本研究中泛癌分析結果和單基因分析結果均表明,HECW2在KIRC組織中呈顯著高表達;與生物信息學分析結果一致,RT-qPCR和Western blot實驗結果表明HECW2在KIRC細胞系786-O和Caki-1的mRNA相對表達水平和蛋白表達水平均顯著高于HK-2細胞。提示HECW2可能作為促癌因子在KIRC的發(fā)生發(fā)展中發(fā)揮調控作用。細胞實驗結果證實了這一點,我們發(fā)現敲減可顯著抑制Caki-1細胞的增殖和侵襲和遷移,并促進其凋亡。HECW2能夠促進KIRC細胞侵襲和遷移,提示HECW2高表達可能與KIRC預后不良呈正相關。但有趣的是,生存森林圖結果顯示HECW2高表達組KIRC患者的OS、DSS和PFI顯著長于低表達組,而DFI無顯著性差異,即HECW2表達水平越高,KIRC患者生存期越長,預后越好。

      有研究證據提示CREB1可能在KIRC的發(fā)生發(fā)展中發(fā)揮促癌作用[14-15]。與此一致,我們研究發(fā)現CREB1在KIRC細胞系中呈顯著高表達。加之,生信分析結果表明CREB1可能是的轉錄因子,且CREB1與HECW2這兩者的表達水平呈顯著正相關。與此同時,分子生物學實驗結果表明敲減可顯著降低HECW2的mRNA和蛋白表達水平,而過表達則觀察到相反結果。ChIP-qPCR實驗結果表明CREB1在的啟動子區(qū)域可能有結合位點。綜上可得:CREB1可能是的轉錄激活因子,HECW2可能在CREB1的轉錄激活作用下促進KIRC細胞增殖和轉移。除此之外,有研究發(fā)現CREB1還可通過與其他E3泛素-蛋白質連接酶相互作用來參與調控包括腫瘤在內的多種疾病的發(fā)生發(fā)展,如:CREB1通過與啟動子的順式調控元件結合來調控的轉錄進而促進宮頸癌和非小細胞肺癌進展[26];綠原酸可刺激SH-SY5Y細胞中E3泛素-蛋白質連接酶基因的CREB1依賴性轉錄激活,進而阻止帕金森病的神經退行性病變[27]。

      綜上所述,本研究發(fā)現HECW2在KIRC中顯著高表達,敲減可顯著降低KIRC細胞活力及侵襲和遷移能力。生信分析結果結合分子生物學實驗結果表明能夠被CREB1轉錄激活。換句話說,HECW2可在CREB1的轉錄激活作用下增強KIRC細胞活力并促進細胞侵襲和遷移,HECW2可能是富有前景的KIRC預后標志物和潛在治療靶點。本研究的完成為腎透明細胞癌的致病機制研究及其靶向治療提供了新的視角。

      [1] Richard EG, Gabriel TH. Renal cell carcinoma: diagnosis and management[J]. Am Fam Physician, 2019, 99(3):179-184.

      [2] Lai Y, Tang F, Huang Y, et al. The tumour microenvironment and metabolism in renal cell carcinoma targeted or immune therapy[J]. J Cell Physiol, 2021, 236(3):1616-1627.

      [3] Zhang Q, Huang R, Hu HQ, et al. Integrative analysis of hypoxia-associated signature in pan-cancer[J]. iScience, 2020, 23(9):146-160.

      [4]高永勝, 閆少春, 賈小娥, 等. 透明細胞腎細胞癌的表觀遺傳學研究進展[J]. 中國病理生理雜志, 2018, 34(1):178-182.

      Gao YS, Yan SC, Jia XE, et al. Progress in epigenetic study of clear cell renal cell carcinoma[J]. Chin J Pathophysiol, 2018, 34(1):178-182.

      [5] Zhang Y, Xu J, Fu H, et al. UBE3C promotes proliferation and inhibits apoptosis by activating the β-catenin signaling via degradation of AXIN1 in gastric cancer[J]. Carcinogenesis, 2021, 42(2):285-293.

      [6] Wang H, Yang W, Qin Q, et al. E3 ubiquitin ligase MAGI3 degrades c-Myc and acts as a predictor for chemotherapy response in colorectal cancer[J]. Mol Cancer, 2022, 21(1):151.

      [7] Chen L, Yuan R, Wen C, et al. E3 ubiquitin ligase UBR5 promotes pancreatic cancer growth and aerobic glycolysis by downregulating FBP1 via destabilization of C/EBPα[J]. Oncogene, 2021, 40(2):262-276.

      [8] Berko ER, Cho MT, Eng C, et al. De novo missense variants in HECW2 are associated with neurodevelopmental delay and hypotonia[J]. J Med Genet, 2017, 54(2):84-86.

      [9] Acharya A, Kavus H, Dunn P, et al. Delineating the genotypic and phenotypic spectrum of HECW2-related neurodevelopmental disorders[J]. J Med Genet, 2022, 59(7):669-677.

      [10] Feng YC, Wang SY, Zhang Y, et al. Genome-wide profiling of human papillomavirus DNA integration into human genome and its influence on PD-L1 expression in Chinese Uygur cervical cancer women[J]. J Immunol Res, 2020, 2020:6284960.

      [11] Lu L, Hu S, Wei R, et al. The HECT type ubiquitin ligase NEDL2 is degraded by anaphase-promoting complex/cyclosome (APC/C)-Cdh1, and its tight regulation maintains the metaphase to anaphase transition[J]. J Biol Chem, 2013, 288(50):35637-35650.

      [12] Qiu X, Wei R, Li Y, et al. NEDL2 regulates enteric nervous system and kidney development in its Nedd8 ligase activity-dependent manner[J]. Oncotarget, 2016, 7(21):314-340.

      [13] Huang X, Liu F, Jiang Z, et al. CREB1 suppresses transcription of microRNA-186 to promote growth, invasion and epithelial-mesenchymal transition of gastric cancer cells through the KRT8/HIF-1α axis[J]. Cancer Manag Res, 2020, 12:9097-9111.

      [14] Michael F, Nadine H, Christine S, et al. CREB1 is affected by the microRNAs miR-22-3p, miR-26a-5p, miR-27a-3p, and miR-221-3p and correlates with adverse clinicopathological features in renal cell carcinoma[J]. Sci Rep, 2020, 10(1):6499.

      [15] Zhang ZY, Guan B, Li YF, et al. Increased phosphorylated CREB1 protein correlates with poor prognosis in clear cell renal cell carcinoma[J]. Transl Androl Urol, 2021, 10(8):3348-3357.

      [16] Rini BI, Campbell SC, Escudier B. Renal cell carcinoma[J]. Lancet, 2009, 373(9669):1119-1132.

      [17] Sharaf A, Mensching L, Keller C, et al. Systematic affinity purification coupled to mass spectrometry identified p62 as part of the cannabinoid receptor CB2 interactome[J]. Front Mol Neurosci, 2019, 12:224.

      [18] Ma J, Peng JT, Mo R, et al. Ubiquitin E3 ligase UHRF1 regulates p53 ubiquitination and p53-dependent cell apoptosis in clear cell renal cell carcinoma[J]. Biochem Biophys Res Commun, 2015, 464(1):147-153.

      [19] Zhang EC, Dong X, Chen ST, et al. Ubiquitin ligase KLHL2 promotes the degradation and ubiquitination of ARHGEF7 protein to suppress renal cell carcinoma progression[J]. Am J Cancer Res, 2020, 10(10):3345-3357.

      [20] Qin X, Chen B. Comprehensive analysis and validation reveal potential MYCN regulatory biomarkers associated with neuroblastoma prognosis[J/OL]. J Biomol Struct Dyn, 2022 (2022-10-27) [2023-02-01]. https://www.tandfonline.com/doi/abs/10.1080/07391102.2022.2138977? journalCode=tbsd20.

      [21] Wei B, Gu J, Duan R, et al. Transcriptome analysis of large to giant congenital melanocytic nevus reveals cell cycle arrest and immune evasion: identifying potential targets for treatment[J]. J Immunol Res, 2021, 2021:8512200.

      [22] Bader JE, Voss K, Rathmell JC. Targeting metabolism to improve the tumor microenvironment for cancer immunotherapy[J]. Mol Cell, 2020, 78(6):1019-1033.

      [23] Zhang S, Zhang E, Long J, et al. Immune infiltration in renal cell carcinoma[J]. Cancer Sci, 2019, 110(5):1564-1572.

      [24] Wang Y, Yin C, Geng L, et al. Immune infiltration landscape in clear cell renal cell carcinoma implications[J]. Front Oncol, 2021, 10:491621.

      [25] Borcherding N, Vishwakarma A, Voigt AP, et al. Mapping the immune environment in clear cell renal carcinoma by single-cell genomics[J]. Commun Biol, 2021, 4(1):122.

      [26] Ashok C, Owais S, Srijyothi L, et al. A feedback regulation of CREB activation through the CUL4A and ERK signaling[J]. Med Oncol, 2019, 36(2):20.

      [27] Kim H, Park J, Kang H, et al. Activation of the Akt1-CREB pathway promotes RNF146 expression to inhibit PARP1-mediated neuronal death[J]. Sci Signal, 2020, 13(663):eaax7119.

      HECW2 enhances viability, invasion and migration of KIRC cells under transcriptional activation by CREB1

      SHEN Hui, KOU Qianrui, WANG Li, ZHANG Jing, LI Fang△

      (,716000,)

      To investigate the role of HECT, C2 and WW domain containing E3 ubiquitin protein ligase 2 (HECW2) in the viability, apoptosis, migration and invasion of kidney renal clear cell carcinoma (KIRC) cells and the underlying molecular mechanism.The expression levels of HECW2 in pan-cancer were analyzed by Gene Expression Profiling Interactive Analysis (GEPIA) database, and SangerBox database was used to determine the relationship between HECW2 expression levels and immune infiltration/prognosis in pan-cancer. Furthermore, the role of HECW2 in KIRC and the underlying mechanisms were exploredexperiments. The expression levels of HECW2 in KIRC cell lines were analyzed by RT-qPCR and Western blot. The effect ofknockdown on the viability of KIRC cells was assessed by CCK-8 assay. The effect ofknockdown on the apoptosis of KIRC cells was determined by flow cytometry. Wound-healing assay and Transwell assay were used to evaluate the effect ofknockdown on the migration and invasion of KIRC cells. In addition, Western blot and ChIP-qPCR were used to investigate whether HECW2 affected KIRC cells under the transcriptional activation by cAMP response element-binding protein 1 (CREB1).Pan-cancer analysis showed that HECW2 was significantly overexpressed in KIRC and pancreatic adenocarcinoma, but was remarkedly underexpressed in lung adenocarcinoma and lung squamous cell carcinoma, and the expression level of HECW2 was significantly positively correlated with the immune infiltration level of these four cancers above. However, only the survival of KIRC patients had a significant difference between high and low HECW2 expression groups. The higher expression level of HECW2, the longer survival time (such as overall survival, disease-specific survival and progression-free interval) and the better prognosis of KIRC patients.experiments results showed that HECW2 was significantly highly expressed both in KIRC tissues and cell lines. Knockdown ofsignificantly inhibited the viability, invasion and migration, but promoted the apoptosis of KIRC cells. Both mRNA and protein expression levels of HECW2 were significantly reduced in KIRC cells withknockdown, while the opposite result was observed in KIRC cells overexpressing. Furthermore, ChIP-qPCR results showed that CREB1 could bind to the promoter region of, suggesting thatcan be activated by the transcription factor CREB1.HECW2 enhances the viability, invasion and migration of KIRC cells under the transcriptional activation by CREB1.

      kidney renal clear cell carcinoma; HECW2 protein; cAMP response element-binding protein 1; cell viability; cell invasion; cell migration

      1000-4718(2023)07-1163-11

      2023-02-04

      2023-05-13

      18792873198; E-mail: 18792873198@163.com

      R737.11; R363.2

      A

      10.3969/j.issn.1000-4718.2023.07.002

      [基金項目]國家自然科學基金資助項目(No. 82260530);陜西省自然科學基礎研究計劃資助項目(No. 2022JQ-907);陜西省高校科協(xié)青年人才托舉計劃項目(No. 20210309);延安大學博士科研啟動項目(No. YDBK2020-04)

      (責任編輯:李淑媛,羅森)

      猜你喜歡
      結果表明細胞系活力
      活力
      當代陜西(2020年9期)2020-08-04 06:25:33
      改制增添活力
      STAT3對人肝內膽管癌細胞系增殖與凋亡的影響
      收回編制 激發(fā)活力
      抑制miR-31表達對胰腺癌Panc-1細胞系遷移和侵襲的影響及可能機制
      E3泛素連接酶對卵巢癌細胞系SKOV3/DDP順鉑耐藥性的影響
      全公開激發(fā)新活力
      浙江人大(2014年1期)2014-03-20 16:20:00
      七葉皂苷鈉與化療藥聯(lián)合對HT-29 結腸癌細胞系的作用
      體育鍛煉也重要
      闊世瑪與世瑪用于不同冬小麥品種的安全性試驗
      辉南县| 永新县| 礼泉县| 叶城县| 卢湾区| 汶川县| 凤山市| 土默特右旗| 五指山市| 会东县| 施甸县| 黄陵县| 循化| 包头市| 松原市| 凤翔县| 志丹县| 永安市| 辽宁省| 时尚| 蒙山县| 沾益县| 乡城县| 湖南省| 内乡县| 车险| 海口市| 广水市| 分宜县| 花莲县| 枝江市| 金乡县| 庆云县| 汤原县| 疏勒县| 兰坪| 普宁市| 汝阳县| 甘南县| 太康县| 额尔古纳市|