• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Nonlinear tight formation control of multiple UAVs based on model predictive control

    2023-07-31 13:30:26RuipingZhengYongxiLyu
    Defence Technology 2023年7期

    Ruiping Zheng ,Yongxi Lyu ,b,*

    a School of Automation, Northwestern Polytechnical University, Xi'an 710129, China

    b Shaanxi Province Key Laboratory of Flight Control and Simulation Technology, Xi'an 710129, China

    Keywords:Unmanned aerial vehicles Tight formation Wake vortex model Model predictive control

    ABSTRACT A tight formation of unmanned aerial vehicles (UAVs) has many advantages,such as fuel saving and deceiving enemy radar during battlefield entry.As a result,research on UAVs in close formation has received much attention,and the controller design for formation holding has become a popular research topic in the control field.However,there are many unknown disturbances in tight formation,and the tail aircraft is disturbed by the wake.This paper establishes a mathematical model of wake vortices for tail aircraft that considers uncertainty and strong interference.Two UAVs are simulated by Computational Fluid Dynamics software,followed by the design of a semiphysical simulation model predictive control(MPC) scheme that suppresses uncertainty and interference sufficiently to enable the tail aircraft to accurately track the lead aircraft and maintain a stable,tight formation.The tight formation controller is verified by numerical simulation and semiphysical simulation.The results show that the designed controller has an excellent control effect in the case of disturbance caused by the wake vortex.

    1.Introduction

    The concept of close formation flight originated from migratory birds[1-3].Birds flying in formation obtain aerodynamic benefits,and when 25 birds fly in a V formation,the range of motion can be increased by about 71%over that of a single bird[4].By measuring the heart rate ofPelecanus onocrotaluswhen they were flying in formation,researchers found that these birds reduce their energy expenditure by flying in formation,thus increasing their range of motion and improving their flight endurance [5].Sekhar et al.analyzed the characteristics of bird formation flight from a thermodynamic point of view,assuming that the V formation is the optimal mode of energy use during flight time [6].

    Many experts,inspired by bird formations,have studied mechanisms to reduce energy consumption during formation flight.Ahmad studied the basic parameters of each model of the aircraft wake vortex and pointed out that the vortex intensity varies with the size of the vortex nucleus radius[7].Blake et al.conducted a wind tunnel testing of aircraft in close formation,placing two vertical tailless delta-wing aircraft in close formation in a wind tunnel[8],where the induced drag on the wingman was reduced by 25% when the wings overlapped by 15%-20%.In their paper [9],Kaden et al.investigated the wake vortex model for transport aircraft formations using adaptive generation to fit the variation of vortex intensity.Numerous studies [10,11] and experimental data illustrate that the influence of the wake vortex flow on wingmen varies sharply when they are in different positions relative to the lead aircraft [8,12-14].

    Therefore,the issue of control of tight formations is critical to the study of tight formations [15].Keeping the wingman in the optimum position in tight formation reduces the drag on it and minimizes fuel consumption.In paper [16],Daniel B.Wilson et al.propose a quaternion based unscented Kalman filter to improve relative state estimate in the UAV formation flight.In paper[15],Q Zhang et al.proposed a robust control method by using the uncertainty and disturbance estimator to enhance the robustness of aircraft formation control.M.Pachter et al.[17] developed a tight formation flight controller that can enable aircraft to take advantage of the reduction in induced drag brought about by the aerodynamic coupling effects.The paper [18] presented a novel aerodynamic model-based robust adaptive control for close formation at level and straight flight.With the rapid development of technology,more and more sophisticated control methods are being applied to UAVs [19,20].In Ref.[21],an adaptive MPC was used to control a multi-UAV formation,and an extended state observer was incorporated to satisfy the expected control effect,but the case discussed in that paper was a distant formation flight,and the effect of the wake vortex airflow of a tight formation was not considered.With the model predictive control (MPC) scheme,the current state is used as the initial state,an optimal control sequence is generated,and the first set of data in the optimal control sequence is used to act on the controlled object [22].The advantage of the MPC is that a multivariate controller adjusts the output considering all factors simultaneously;another important advantage is that it imposes tight constraints on the states and the control inputs [23,24].

    One difficulty faced by tight formation controller design is that it is difficult for a conventional controller to keep the wingman in the proper position stably because of vortex interference.The MPC method can suppress the disturbance well and imposes strict constraints on the states and control inputs [25].Since the controller of a tight formation requires high real-time performance,the MPC cannot be used directly in a tight formation controller[26].However,since the guidance control of the wingman does not require a fast solution frequency,an MPC outer-loop controller was designed in this study,and a conventional control scheme was used for the inner loop of the aircraft.

    The primary contributions of this paper are as follows: (1) The non-linear tight formation model built in this paper can incorporate the influence of the wake vortex and describe the formation characteristics more accurately;(2) An outer-loop control law for tight formation is designed based on MPC,which has a certain antiinterference capability while meeting the real-time performance;(3) Numerical simulations and semi-physical experimental simulations are carried out to verify the feasibility and real-time performance of the tight formation system.

    This paper is structured as follows: First,the wake vortexinduced velocity model is presented.Then,the paper explains the controller design and discusses the MPC's stability and accuracy.Finally,the results of the tight formation flight simulation are presented and discussed.

    2.Modeling the formation flight vortex

    The UAV model selected for this study was the XQ7B.Fig.1 shows three views of the UAV,and Table 1 lists its parameters.In close formation flight,the effect of the longitudinal distancelxon the induced force and moment is much smaller than that of the lateral distancelyor the vertical distancelz.Therefore,in this paper,we neglect the effect oflxon the wake vortex [27].

    Table 1 Parameters of the UAV.

    Fig.1.Three views of the UAV.

    Fig.2.Schematic diagram of tight formation induced velocity.

    The Proctor vortex model[28]is derived from an analysis of the vortex tangential velocity by LiDAR and is provided by Eq.(1).

    whereBis the wingspan length,andrcis the radius of the vortex nucleus (5.82% of the aircraft span).ris the distance from the induced velocity point to the vortex line segment,b0=πB/4,Γ0=4W/πBρV.

    Thus,the total induced velocity at each point on the wing of the following aircraft isw(l)=wleft(l)+wright(l).

    The average value of the induced upwash on the wing of the wingman can then be calculated by integratingw(l),

    According to Ref.[29],the values of the variation of forces and moments applied to the wingman can be calculated.The forces are the drag side force and the lift force,and the moments are the roll moment,pitch moment,and yaw moment,created by the upwash and sidewash from the lead aircraft [30].

    In a close formation system,the forces on the wingman are changed considerably by a change in the relative positions of the two aircraft.A change of drag will interfere with the speed control of the original flight control system,and a change of lift will affect the altitude control of the wingman;a change of side force will affect the heading control of the wingman [31].

    The mathematical model of the wake vortex was established in the previous section.The mathematical model of the aircraft wake vortex presented in this paper has been simulated in Computational Fluid Dynamics software to verify the model’s accuracy.These tasks were verified in previous papers [30] and are not repeated here.The wake vortex is a strong disturbance in formation control,and the following points arise from the formation control law.

    (1) The tight formation system is not sufficiently resistant to interference,and the formation holding accuracy is low or unstable.

    (2) The dynamic performance of the formation is poor or fails to meet requirements.

    Our MPC-based formation outer-loop control law avoids the disadvantages of other control laws.The main contributions of this paper include the following:

    (1) The designed control law has a certain suppression effect on disturbances and has strong robustness.

    (2) The formation system eliminates steady-state errors and has excellent dynamic performance.

    3.Problem formulation

    In many scenarios,the wingman must follow a specific position relative to the lead aircraft for the maximum aerodynamic benefit to achieve fuel savings [32].This relative position in the airflow system of the lead aircraft does not change.To facilitate the design of the formation control law,the relative positions of wingman and leader are represented in the inertial coordinate system.As shown in Fig.3,the optimal position changes with the position and attitude of the lead aircraft at a rapid and unknown rate,and the design of the formation controller determines whether the wingman can accurately and consistently track to the optimal position.

    Fig.3.Relative position of the lead aircraft and follow aircraft.

    Fig.4.3-D Tight formation trajectory.

    Fig.5.Longitudinal tracking error.

    Fig.6.Lateral tracking error.

    Fig.7.Vertical tracking error.

    The aircraft kinematics are strongly nonlinear,and the tight formation is a non-complete constrained system.The aircraft generates control inputs that satisfy the nonlinear dynamics constraints and the actuator limit constraints during tracking[33].The designed tight formation control method should overcome the above two difficulties and satisfy the accuracy of tight formation.

    In the inertial coordinate system,the position of the leader is assumed to be(xl,yl,zl),and its optimal position(xd,yd,zd)is constant with respect to the leader.(xf,yf,zf)is the position of the wingman in the inertial coordinate system.When a design engineer develops control laws for a tight formation,the lead aircraft has a set flight path,and the wingman gains aerodynamic formation benefits.The lead aircraft is not affected by the formation airflow,so we need only to design control laws for the wingman.The equations for the nonlinear dynamics of a wingman in the tight formation are shown below.

    whereVf,γf,χfare the airspeed,track angle,and heading angle of the following aircraft,respectively.T,L,Dare the thrust force,lift force,and the drag force,respectively.ΔT,ΔL,ΔDare the uncertainties in aerodynamic forces.

    The desired tracking position and the longer aircraft position are related as follows:

    where LWIis the rotation matrix,

    The problem of tight formations translates into wingmen tracking the desired position(xd,yd,zd).The system can be viewed as a control system with inputs u(v,γ,χ)and states X(x,y,z)that has the general form of

    Each point on a given trajectory satisfies this kinematic equation,withdrepresenting the desired value,the general form is

    where Xd=[xd,yd,zd]T,ud=[vd,γd,χd]T.

    The following equation can be obtained by expanding Eq.(6)at the desired trajectory point using a Taylor series and ignoring higher-order terms.

    By subtracting Eq.(6) from Eq.(7),one obtains

    To facilitate the design of the model predictive controller,discretize Eq.(8)as follows:

    in whichA(k)=I+TA(t),B(k)=TB(t),andTis the sampling time.

    3.1.Design of the objective function

    The objective function incorporates the optimization of deviations from the state quantities and control inputs of the formation system to track the desired position quickly and smoothly.The objective function consists of three components.

    The first part of the designed objective function considers the wingman's ability to track the desired position.

    The second part of the objective function of the design considers constraints on the variation of control inputs

    The third part of the objective function considers the collision avoidance problem for wingmen and lead aircraft.As shown in Eq.(12).

    wheredfl(t)indicates the distance between the two aircraft.

    Dis the safe collision avoidance distance between the two aircraftdfl(t)≥D.σ=105.

    The objective function of the design is

    3.2.Enhancement of the objective function

    The second part of the objective function has certain shortcomings.It cannot limit the control increment in each sampling period or avoid abrupt changes in the control increment of the controlled system.This affects the continuity of the control variables,so adding a relaxation factor to the objective function and replacing the control amount with the control increment can limit the increment directly and avoid implementing the process where no feasible solution exists.This is shown below.

    3.3.Stability analysis

    The stability of tight formation systems is critical,and this study developed a controller based on the MPC with a nonlinear model.The stability of linear and nonlinear MPCs has been extensively demonstrated in the literature.Here,the stability of the proposed predictive control scheme is investigated by testing the monotonicity of the cost function,where the prediction horizon is finite,and the control horizon is smaller than the prediction horizon[34].The cost function is as follows:

    Assume that the control signal is(k)=[u(k|k),…,u(k+Hu-1|k)]Twhen the optimal solutions are taken at momentk.The control signal is(k+1)=[u(k+1|k),…,u(k+Hu-1|k)]Tat momentk+1 when the suboptimal solution is taken,and the cost function at this moment is

    Eqs.(17) and (16) are subtracted to obtain

    It follows thatJ*(k+1)-J(k)≤0.The cost function of the optimal solution is no greater than the cost function of the suboptimal solution at momentk+1,i.e.,J(k+1)≤J*(k+1),thereforeJ(k+1)-J(k)≤0.The cost function decreases monotonically with time,so the control system is stable.

    4.Experimental results and analysis

    This section discusses the experimental simulations of the formation system with the lead and wingman aircraft of type XQ7B.First,the model of the nonlinear dynamics of the two aircraft was constructed.Then,an established aerodynamic model is added to the wingman's dynamics model to describe the aerodynamic effects of close formation flight since only the wingman is affected by the close formation aerodynamic model and not the leader.Finally,experimental validation is discussed.

    4.1.Numerical simulation

    Numerical simulations were carried out in the MATLAB Simulink module.The lead aircraft flew at a constant speed on one trajectory,while the wingman's initial position was far from the lead aircraft's.The wingman quickly tracked to the desired position,as shown in Fig.4.

    The initial state of the lead aircraft is(xl,yl,zl)=(100,0,1000),vl=27.8 m/s.The initial state of the wingman aircraft is(xf,yf,zf)=(0,100,1000),vf=27.8 m/s.

    With the wake vortex's aerodynamic effects added to the tight formation system,as shown in Figs.5-7,a PID controller cannot suppress the disturbance of the tail vortex,but the designed MPC outer loop meets expectations,is strong and robust,and provides anti-disturbance performance.

    Longitudinal,lateral,and vertical tracking errors arexe=xf-xd,ye=yf-yd,ze=zf-zd,respectively.The speed simulation of the UAVs when use the MPC controller is shown in Fig.8.

    Fig.8.Speed simulation of UAVs.

    4.2.Conducting experiments on the semiphysical simulation platform

    After numerical simulation,experimental verification was conducted on a semiphysical simulation platform,shown in Fig.9.The nonlinear dynamics models of the lead and following aircraft were run on xPCs.The flight control system communicated directly with the xPC and transmitted control signals to the lead and following aircraft,while the lead and following aircraft transmitted their states to the flight controller.

    Fig.9.Semiphysical simulation of tight formations.

    The simulation results are displayed using Tacview,which visualizes the UAV tight formation system shown in Fig.10.Experimental results demonstrated that the designed tight formation controller meets the semiphysical experimental requirements.The following aircraft can track accurately and quickly to the appropriate position relative to the lead aircraft and has excellent antiinterference performance.

    Fig.10.Semiphysical simulation flight recordings.

    5.Conclusions

    In close formation UAV flight,a wingman in the position appropriate for the lead aircraft has favorable benefits,and there is a higher demand on the resistance of the wingman’s control system to interference.This study developed a tight formation control system that is proposed in the paper as an outer-loop nonlinear MPC that meets robustness and real-time performance requirements.The designed control law was subjected to MATLAB mathematical simulation,Tacview simulation,and semiphysical simulation.The results showed that the designed nonlinear control law met the desired requirements.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was funded by the National Natural Science Foundation of China (Grant Nos.62173277 and 61573286),the Natural Science Foundation of Shaanxi Province (Grant No.2022JM-011),the Aeronautical Science Foundation of China (Grant No.201905053004),and the Shaanxi Province Key Laboratory of Flight Control and Simulation Technology.We thank LetPub(www.letpub.com) for its linguistic assistance during the preparation of this manuscript.

    亚洲成人av在线免费| 99热网站在线观看| 美女国产视频在线观看| 色吧在线观看| 亚洲av.av天堂| 最近最新中文字幕免费大全7| 国内揄拍国产精品人妻在线| 少妇丰满av| 亚洲av男天堂| 亚洲自偷自拍三级| 精品久久国产蜜桃| 久久影院123| 日日摸夜夜添夜夜爱| 精品少妇久久久久久888优播| 国产黄片视频在线免费观看| 久久青草综合色| 国产成人a∨麻豆精品| 99久久综合免费| 我要看黄色一级片免费的| 大香蕉97超碰在线| 国产精品99久久99久久久不卡 | 在线观看av片永久免费下载| 亚洲av欧美aⅴ国产| 最新的欧美精品一区二区| 亚洲天堂av无毛| 搡女人真爽免费视频火全软件| www.色视频.com| 18禁裸乳无遮挡动漫免费视频| 国产亚洲欧美精品永久| 欧美少妇被猛烈插入视频| 亚洲国产精品一区三区| 一区二区三区四区激情视频| av卡一久久| 免费观看的影片在线观看| 精品人妻熟女av久视频| 国产亚洲一区二区精品| 特大巨黑吊av在线直播| 乱码一卡2卡4卡精品| 两个人免费观看高清视频 | 国产免费福利视频在线观看| 国内少妇人妻偷人精品xxx网站| 亚洲精品久久久久久婷婷小说| 国产午夜精品久久久久久一区二区三区| 久久精品国产自在天天线| 99热网站在线观看| 一级a做视频免费观看| 天美传媒精品一区二区| 日本猛色少妇xxxxx猛交久久| 亚洲综合色惰| 亚洲真实伦在线观看| 国产精品偷伦视频观看了| 视频区图区小说| 亚洲精品乱久久久久久| 激情五月婷婷亚洲| 嫩草影院新地址| 午夜91福利影院| 欧美日韩av久久| 欧美3d第一页| 乱码一卡2卡4卡精品| 80岁老熟妇乱子伦牲交| 国产一区二区三区综合在线观看 | 久久精品国产亚洲网站| av福利片在线| 国产一区亚洲一区在线观看| 久久ye,这里只有精品| 日本爱情动作片www.在线观看| 亚洲国产最新在线播放| 国产精品久久久久久精品电影小说| 性色av一级| 久久精品国产鲁丝片午夜精品| h视频一区二区三区| 九草在线视频观看| 三级国产精品欧美在线观看| 欧美精品一区二区免费开放| 国产伦精品一区二区三区视频9| 午夜久久久在线观看| 精品少妇久久久久久888优播| 国产在视频线精品| 韩国av在线不卡| 高清毛片免费看| 一级毛片aaaaaa免费看小| 中国美白少妇内射xxxbb| 夫妻性生交免费视频一级片| 国内少妇人妻偷人精品xxx网站| 久久国产乱子免费精品| 国产精品人妻久久久影院| 9色porny在线观看| 午夜91福利影院| 色婷婷久久久亚洲欧美| 一区二区三区乱码不卡18| 久久人人爽人人片av| 欧美成人午夜免费资源| 日韩精品免费视频一区二区三区 | 日本猛色少妇xxxxx猛交久久| 校园人妻丝袜中文字幕| 国产在视频线精品| 久久精品久久久久久久性| tube8黄色片| 国产毛片在线视频| 人体艺术视频欧美日本| 国产免费一级a男人的天堂| 在线精品无人区一区二区三| 国产黄片美女视频| 国产黄色免费在线视频| av.在线天堂| 亚洲激情五月婷婷啪啪| 夫妻性生交免费视频一级片| 亚洲欧美精品自产自拍| av播播在线观看一区| 亚洲伊人久久精品综合| 亚洲欧洲精品一区二区精品久久久 | 欧美精品亚洲一区二区| 纯流量卡能插随身wifi吗| a级一级毛片免费在线观看| 国产成人精品福利久久| 日韩人妻高清精品专区| 日韩制服骚丝袜av| 日韩强制内射视频| 大片免费播放器 马上看| 日韩 亚洲 欧美在线| 亚洲av在线观看美女高潮| 国产又色又爽无遮挡免| 熟女电影av网| 亚洲欧美精品专区久久| 日韩大片免费观看网站| 偷拍熟女少妇极品色| 一本久久精品| 在线观看www视频免费| 成人美女网站在线观看视频| 国产一区二区三区综合在线观看 | 亚洲成人一二三区av| 国产日韩欧美在线精品| 日韩熟女老妇一区二区性免费视频| 日韩av不卡免费在线播放| 草草在线视频免费看| 9色porny在线观看| 简卡轻食公司| 黑人巨大精品欧美一区二区蜜桃 | 成人无遮挡网站| 妹子高潮喷水视频| 一级毛片aaaaaa免费看小| 老司机影院毛片| 午夜av观看不卡| 免费久久久久久久精品成人欧美视频 | 国产老妇伦熟女老妇高清| 国产精品蜜桃在线观看| 国产欧美日韩精品一区二区| h日本视频在线播放| 国产黄色免费在线视频| 精品午夜福利在线看| 亚洲,一卡二卡三卡| 久久人人爽人人片av| 一级爰片在线观看| 久久鲁丝午夜福利片| 亚洲精品乱码久久久久久按摩| 色婷婷av一区二区三区视频| 亚洲色图综合在线观看| 免费黄色在线免费观看| 一级爰片在线观看| 亚洲成色77777| 成人黄色视频免费在线看| 欧美另类一区| 亚洲四区av| 纯流量卡能插随身wifi吗| 91精品一卡2卡3卡4卡| 男女边摸边吃奶| 婷婷色麻豆天堂久久| 久久久国产一区二区| 国模一区二区三区四区视频| 国产无遮挡羞羞视频在线观看| 精品一区二区三卡| 国产男女超爽视频在线观看| 午夜av观看不卡| 搡老乐熟女国产| 在现免费观看毛片| 丝瓜视频免费看黄片| 久久久久久久久久成人| 永久免费av网站大全| 十分钟在线观看高清视频www | 蜜桃久久精品国产亚洲av| 97超碰精品成人国产| 男的添女的下面高潮视频| 国产成人91sexporn| 国产黄片视频在线免费观看| 国产黄色视频一区二区在线观看| 日本91视频免费播放| 看十八女毛片水多多多| 日本色播在线视频| 亚洲欧洲精品一区二区精品久久久 | 在线观看一区二区三区激情| 国产黄片美女视频| 亚洲熟女精品中文字幕| 色哟哟·www| av不卡在线播放| 高清毛片免费看| 亚洲在久久综合| 成年人免费黄色播放视频 | 亚洲精品国产色婷婷电影| 中文乱码字字幕精品一区二区三区| 中文字幕人妻熟人妻熟丝袜美| 九草在线视频观看| 深夜a级毛片| 亚洲精品国产色婷婷电影| 水蜜桃什么品种好| 久久精品熟女亚洲av麻豆精品| 熟女电影av网| 精品一区二区免费观看| 亚洲,一卡二卡三卡| 亚洲精品中文字幕在线视频 | 如日韩欧美国产精品一区二区三区 | 欧美+日韩+精品| av播播在线观看一区| 我要看日韩黄色一级片| 少妇人妻精品综合一区二区| 精品视频人人做人人爽| 纵有疾风起免费观看全集完整版| 日韩中文字幕视频在线看片| 我要看黄色一级片免费的| 丝袜喷水一区| 插逼视频在线观看| 国产一区二区在线观看av| 一区二区三区四区激情视频| 嘟嘟电影网在线观看| 欧美日本中文国产一区发布| 欧美日韩视频精品一区| 9色porny在线观看| 啦啦啦啦在线视频资源| 高清视频免费观看一区二区| 国产精品无大码| 偷拍熟女少妇极品色| 99热这里只有是精品在线观看| 亚洲精品一二三| 男女边摸边吃奶| 噜噜噜噜噜久久久久久91| 水蜜桃什么品种好| 日韩欧美一区视频在线观看 | 国产美女午夜福利| 日韩精品免费视频一区二区三区 | 午夜91福利影院| 精品人妻一区二区三区麻豆| 欧美日韩综合久久久久久| 99热网站在线观看| 中文字幕精品免费在线观看视频 | 久久影院123| 天堂俺去俺来也www色官网| 少妇被粗大的猛进出69影院 | 欧美 亚洲 国产 日韩一| 丁香六月天网| 波野结衣二区三区在线| 一区在线观看完整版| 一二三四中文在线观看免费高清| 18禁动态无遮挡网站| 国产成人精品福利久久| 视频区图区小说| 亚洲婷婷狠狠爱综合网| 国产乱人偷精品视频| 黑丝袜美女国产一区| 国产一区二区在线观看av| 一级毛片我不卡| videos熟女内射| 制服丝袜香蕉在线| 有码 亚洲区| 国产中年淑女户外野战色| 国产伦理片在线播放av一区| 深夜a级毛片| 免费观看无遮挡的男女| 黑人巨大精品欧美一区二区蜜桃 | 狂野欧美激情性bbbbbb| 91精品一卡2卡3卡4卡| 欧美精品一区二区免费开放| av在线播放精品| 亚洲精品乱码久久久v下载方式| 亚洲经典国产精华液单| 99久久中文字幕三级久久日本| 2021少妇久久久久久久久久久| 精品久久久噜噜| 成人毛片60女人毛片免费| 久久人人爽人人爽人人片va| 狂野欧美激情性bbbbbb| 18禁在线无遮挡免费观看视频| 国产精品国产三级国产专区5o| 麻豆成人av视频| 成人黄色视频免费在线看| 黄色毛片三级朝国网站 | 国产伦精品一区二区三区视频9| 午夜老司机福利剧场| 久久国产精品男人的天堂亚洲 | 91精品国产九色| 日韩熟女老妇一区二区性免费视频| 亚洲国产精品专区欧美| 大香蕉97超碰在线| 成人午夜精彩视频在线观看| 国产精品成人在线| 日日爽夜夜爽网站| av在线app专区| 高清黄色对白视频在线免费看 | av视频免费观看在线观看| 最新的欧美精品一区二区| 天美传媒精品一区二区| 自线自在国产av| 制服丝袜香蕉在线| 欧美另类一区| 国产精品久久久久久精品古装| 免费av不卡在线播放| 亚洲av福利一区| 国产中年淑女户外野战色| 国产精品99久久久久久久久| 精品久久久久久久久亚洲| 日韩免费高清中文字幕av| 久热这里只有精品99| 国产黄频视频在线观看| 91久久精品国产一区二区成人| 久久精品国产亚洲av天美| 欧美三级亚洲精品| 免费av中文字幕在线| 久热久热在线精品观看| 国产高清不卡午夜福利| 777米奇影视久久| 亚洲欧美日韩另类电影网站| 内射极品少妇av片p| 成人国产麻豆网| 成年人午夜在线观看视频| 亚洲国产精品999| 日韩不卡一区二区三区视频在线| 最后的刺客免费高清国语| 久久狼人影院| 国产午夜精品久久久久久一区二区三区| 卡戴珊不雅视频在线播放| 一级爰片在线观看| 久久久午夜欧美精品| 男男h啪啪无遮挡| 日韩电影二区| 国产午夜精品久久久久久一区二区三区| 啦啦啦视频在线资源免费观看| 欧美精品高潮呻吟av久久| 亚洲精品乱码久久久久久按摩| 久久97久久精品| 亚洲av成人精品一区久久| 日韩人妻高清精品专区| 天美传媒精品一区二区| 91成人精品电影| 亚洲av国产av综合av卡| 国产成人a∨麻豆精品| 国产一区有黄有色的免费视频| 亚洲精品亚洲一区二区| 黄色毛片三级朝国网站 | 国产精品人妻久久久影院| 秋霞在线观看毛片| 九草在线视频观看| xxx大片免费视频| 国产69精品久久久久777片| 色网站视频免费| 伦理电影免费视频| 乱人伦中国视频| 亚洲精品视频女| 国产精品久久久久久av不卡| 亚洲丝袜综合中文字幕| 哪个播放器可以免费观看大片| 国语对白做爰xxxⅹ性视频网站| 日韩电影二区| 少妇被粗大猛烈的视频| 男人和女人高潮做爰伦理| 亚洲,欧美,日韩| 日韩大片免费观看网站| 久久精品久久久久久久性| 久久久久久久久久人人人人人人| 男女边吃奶边做爰视频| 纯流量卡能插随身wifi吗| 亚洲精品aⅴ在线观看| av国产精品久久久久影院| 国产免费又黄又爽又色| 欧美日韩视频精品一区| 五月天丁香电影| 看免费成人av毛片| 国产成人精品婷婷| 欧美 日韩 精品 国产| 欧美精品一区二区大全| 精品少妇久久久久久888优播| 国产免费又黄又爽又色| 日韩中字成人| 免费在线观看成人毛片| 国产av码专区亚洲av| 激情五月婷婷亚洲| 亚洲国产精品国产精品| 亚洲一区二区三区欧美精品| 国模一区二区三区四区视频| 18+在线观看网站| 日日撸夜夜添| 国产日韩欧美视频二区| 人人妻人人澡人人爽人人夜夜| 欧美日韩视频精品一区| 99热全是精品| 制服丝袜香蕉在线| 精品少妇久久久久久888优播| 亚洲国产毛片av蜜桃av| 少妇丰满av| 妹子高潮喷水视频| 欧美精品人与动牲交sv欧美| 久久 成人 亚洲| 免费看光身美女| 国产男女内射视频| 久久精品国产鲁丝片午夜精品| 最黄视频免费看| 韩国高清视频一区二区三区| 亚洲国产精品一区二区三区在线| 观看美女的网站| 又黄又爽又刺激的免费视频.| 午夜av观看不卡| 久久久久精品性色| 波野结衣二区三区在线| 国产日韩一区二区三区精品不卡 | 国产淫片久久久久久久久| 国产探花极品一区二区| 2018国产大陆天天弄谢| 内地一区二区视频在线| 日日啪夜夜撸| 美女cb高潮喷水在线观看| 久久久久国产网址| 精品一区在线观看国产| 丁香六月天网| 精华霜和精华液先用哪个| 国产美女午夜福利| 精品国产一区二区三区久久久樱花| 少妇裸体淫交视频免费看高清| 久久狼人影院| 亚洲伊人久久精品综合| 亚洲av综合色区一区| 国产永久视频网站| 日韩制服骚丝袜av| 少妇 在线观看| 国产精品久久久久久久电影| 91在线精品国自产拍蜜月| 少妇被粗大的猛进出69影院 | 久热久热在线精品观看| 日韩人妻高清精品专区| 婷婷色综合www| 少妇高潮的动态图| 久久影院123| 欧美97在线视频| 亚洲综合色惰| 亚洲国产成人一精品久久久| 日日啪夜夜撸| 精品一区二区三区视频在线| 久久久久久久久久久免费av| 99九九线精品视频在线观看视频| 男人添女人高潮全过程视频| 九九久久精品国产亚洲av麻豆| 国产精品一二三区在线看| 人妻夜夜爽99麻豆av| av国产久精品久网站免费入址| 国产探花极品一区二区| av一本久久久久| 黄色欧美视频在线观看| 国产成人91sexporn| 18禁动态无遮挡网站| 自拍偷自拍亚洲精品老妇| a 毛片基地| 成年美女黄网站色视频大全免费 | 18禁在线无遮挡免费观看视频| 99国产精品免费福利视频| 亚洲精品国产色婷婷电影| 男人添女人高潮全过程视频| 亚洲av.av天堂| 99热这里只有精品一区| 中文欧美无线码| 亚洲人与动物交配视频| 久久人妻熟女aⅴ| 好男人视频免费观看在线| 看免费成人av毛片| 视频中文字幕在线观看| 精品国产乱码久久久久久小说| 黄色视频在线播放观看不卡| 全区人妻精品视频| 亚洲婷婷狠狠爱综合网| 亚洲国产日韩一区二区| 欧美性感艳星| 18+在线观看网站| 亚洲内射少妇av| 免费少妇av软件| 一本—道久久a久久精品蜜桃钙片| 老熟女久久久| 国内揄拍国产精品人妻在线| 国产精品久久久久久精品古装| 2022亚洲国产成人精品| 国产精品99久久99久久久不卡 | 国产一区有黄有色的免费视频| www.色视频.com| 99热这里只有精品一区| 亚洲精品日韩av片在线观看| 丰满饥渴人妻一区二区三| 国产黄色免费在线视频| 精品人妻熟女av久视频| 在线看a的网站| 99久国产av精品国产电影| 亚洲成人av在线免费| 18禁在线无遮挡免费观看视频| 女人久久www免费人成看片| 精品少妇久久久久久888优播| 中文资源天堂在线| 久久影院123| 国产又色又爽无遮挡免| a级毛片免费高清观看在线播放| 在线观看免费视频网站a站| 国产亚洲欧美精品永久| 国产一区有黄有色的免费视频| 日本vs欧美在线观看视频 | 日韩制服骚丝袜av| 久久久久久久国产电影| 最黄视频免费看| 女的被弄到高潮叫床怎么办| 一区在线观看完整版| 国产午夜精品久久久久久一区二区三区| 水蜜桃什么品种好| 在线观看av片永久免费下载| 亚洲国产精品成人久久小说| 亚洲精品aⅴ在线观看| 国产精品一区www在线观看| 久久人妻熟女aⅴ| 中文字幕精品免费在线观看视频 | 国产视频内射| 只有这里有精品99| 最近的中文字幕免费完整| 日韩av在线免费看完整版不卡| 欧美精品亚洲一区二区| 国产永久视频网站| 久久久久国产精品人妻一区二区| 国内少妇人妻偷人精品xxx网站| 亚洲欧美精品专区久久| a级毛色黄片| 中文欧美无线码| 婷婷色av中文字幕| 国产精品福利在线免费观看| 免费看av在线观看网站| 如日韩欧美国产精品一区二区三区 | 最新中文字幕久久久久| 免费黄网站久久成人精品| 日本vs欧美在线观看视频 | 欧美精品人与动牲交sv欧美| 亚洲国产精品成人久久小说| av网站免费在线观看视频| 精品人妻熟女av久视频| 日韩视频在线欧美| 免费观看a级毛片全部| 特大巨黑吊av在线直播| 少妇丰满av| 亚洲不卡免费看| 亚洲国产精品专区欧美| av在线app专区| 日韩中文字幕视频在线看片| 视频区图区小说| 丝瓜视频免费看黄片| 女人精品久久久久毛片| 免费少妇av软件| 夫妻午夜视频| 在线播放无遮挡| 一级毛片久久久久久久久女| 十八禁网站网址无遮挡 | 国产成人freesex在线| 久久久久久久精品精品| 伦理电影大哥的女人| 欧美日韩国产mv在线观看视频| 夜夜看夜夜爽夜夜摸| 老司机影院成人| 一级,二级,三级黄色视频| 国产精品国产三级国产专区5o| 国产一区二区三区av在线| 久久久久久久国产电影| 一区二区av电影网| 精品亚洲成a人片在线观看| 777米奇影视久久| 国产精品国产av在线观看| 午夜久久久在线观看| 少妇的逼水好多| 亚洲情色 制服丝袜| 亚洲欧美日韩东京热| 中文字幕av电影在线播放| 亚洲成色77777| 亚洲精品国产av成人精品| 我的老师免费观看完整版| 97精品久久久久久久久久精品| 久久99精品国语久久久| 特大巨黑吊av在线直播| 国产一区二区在线观看av| 亚洲av成人精品一区久久| 国国产精品蜜臀av免费| 色5月婷婷丁香| av国产精品久久久久影院| 亚洲av二区三区四区| 亚洲国产最新在线播放| 国产精品一区二区性色av| 国产中年淑女户外野战色| 亚洲精品日韩av片在线观看| 国产深夜福利视频在线观看| 免费不卡的大黄色大毛片视频在线观看| 青春草视频在线免费观看| 亚洲精品国产成人久久av| 99国产精品免费福利视频| 国产精品久久久久久av不卡| 欧美日韩一区二区视频在线观看视频在线| 亚洲国产色片| 国产精品福利在线免费观看| 熟妇人妻不卡中文字幕| 18禁裸乳无遮挡动漫免费视频| 精品视频人人做人人爽| 国产视频首页在线观看| 欧美日本中文国产一区发布| 久久韩国三级中文字幕| 在线天堂最新版资源| 人妻少妇偷人精品九色| 自拍偷自拍亚洲精品老妇| 中文字幕免费在线视频6| 一本—道久久a久久精品蜜桃钙片| 夜夜爽夜夜爽视频| 精品一区在线观看国产| 免费大片黄手机在线观看|