宋謝天 田嘯宇 王楠 周銀 謝源源 謝宗周 柴利軍 葉俊麗 鄧秀新
摘 ? ?要:【目的】柑橘的遺傳轉(zhuǎn)化通常以實生苗上胚軸為外植體。作為基因組高度雜合的無融合生殖物種,柑橘多胚種子中常含有一定比例的、因遺傳重組較親本表現(xiàn)出遺傳背景差異的有性后代,從實生群體中篩選無性后代進行遺傳轉(zhuǎn)化實驗可有效保證外植體材料遺傳背景的一致性及后續(xù)相關(guān)研究的科學性和可靠性。基于此,開發(fā)分子標記用于快速準確篩選柑橘短童期種質(zhì)——多胚山金柑(Fortunella hindsii)子代中的珠心胚實生苗,以期為優(yōu)化完善山金柑遺傳轉(zhuǎn)化體系提供基礎(chǔ)?!痉椒ā坷媚副旧浇鸶滩牧螪B02重測序數(shù)據(jù)進行InDel標記的挖掘,篩選出可以區(qū)分有性后代和無性后代的InDel標記,通過瓊脂糖凝膠電泳對DB02系山金柑的子代幼苗進行鑒定。【結(jié)果】開發(fā)出7對可以區(qū)分DB02系山金柑種子中有性和無性后代的InDel雜合位點標記(InDel1~InDel7),基于這些標記進一步研究,發(fā)現(xiàn)土播幼苗和試管幼苗中的珠心苗比例分別為87.5%和74.2%?!窘Y(jié)論】利用InDel標記可以成功篩選出與DB02系山金柑遺傳背景一致的無性克隆后代,進一步完善了山金柑實生苗上胚軸遺傳轉(zhuǎn)化體系。
關(guān)鍵詞:山金柑;珠心胚實生苗鑒定;InDel;分子標記
中圖分類號:S666.1 文獻標志碼:A 文章編號:1009-9980(2023)07-1312-06
InDel marker-assisted selection of nucellar seedlings in polyembryonic Fortunella hindsii
SONG Xietian1, TIAN Xiaoyu1, WANG Nan1, ZHOU Yin1, XIE Yuanyuan1, XIE Zongzhou1, CHAI Lijun1, YE Junli1, DENG Xiuxin1, 2*
(1National Key Laboratory for Germplasm lnnovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, Hubei, China; 2Hubei Hongshan Laboratory, Wuhan 430070, Hubei, China)
Abstract: 【Objective】Citrus is a highly heterozygous genome apomixis species, and the polyembryonic seeds frequently contain a certain proportion of sexual offspring(also called zygotic embryos) that exhibit genetic background differences compared to their parents due to genetic recombination. Screening of asexual offspring (nucellar embryos) from the polyembryonic seedlings for genetic transformation experiments could effectively ensure the consistency of the genetic background of explant materials and the scientific reliability of follow-up studies. Based on this, we have developed Insertion-Deletion (InDel) molecular markers for rapid and accurate screening of asexual clonal plants in the offspring of Fortunella hindsii, a short juvenility germplasm of citrus, in order to provide a basis for optimizing and improving the genetic transformation system of F. hindsii. 【Methods】 The polyembryonic wild kumquat DB02 was used as the maternal parent and the progeny plants produced from DB02 seeds were used as identification materials. The seeds were sown under two conditions, one was in substrate soil and the other was in sterile test tube. Genomic DNA was extracted from the mature leaves of kumquat DB02 and its progeny, and the DNA extraction solution of qualified quality was diluted to the working concentration (about 100 ng·μL-1). The re-sequencing data of the maternal DB02 was aligned to the kumquat reference genome, the InDel variant sites were extracted and the (0/1) heterozygous type sites with a difference about 50bp were screened out. The primers were designed within 600 bp around the upstream and downstream of the InDel variant site. PCR amplification products were detected by 3% agarose gel, the markers with clear and stable hybrid bands were selected. All the InDel marker primers were used to amplify the progeny of kumquat DB02 line, and the progeny with only one band was sexual seedlings. The amplification products of the InDel marker primers of the nucellar embryos were all consistent with the maternal parent. 【Results】 A total of seven pairs of selected InDel markers were used to amplify the maternal parent DB02 kumquat. After detection by agarose gel electrophoresis, all markers contained clearly heterozygous bands in the maternal parent DNA, denoted as “Aa”, which can be used to screen out zygotic embryos and nucellar embryos in subsequent progeny materials. On the one hand, the DB02 progeny seeds were sown in the soil, and a total of 56 seedlings were counted after germination. These seedlings were then numbered. According to the identification results of the amplified products of 7 pairs of InDel markers, it was found that in the InDel01 marker electrophoresis results, the descendants number of 34, 41 and 56 were singly banded, and these plants were identified as zygotic seedlings. Similarly, 1, 3, 23, 27, and 41 were identified as zygotic seedlings by the InDel02 marker. 1, 3 and 27 were identified as zygotic seedlings by InDel05 labeling results. 1, 3, 23, 27, 41 and 56 were identified as zygotic seedlings by InDel06 and InDel07 labeling results. Based on the results of all markers, it can be concluded that a total of 7 zygotic seedlings (1, 3, 23, 27, 34, 41 and 56) were identified in the 56 DB02 progeny, and the remaining 48 nucellar seedlings were consistent with the maternal parent, the rate of nucellar embryos is 87.5%. On the other hand, the epicotyl material required in the genetic transformation generally comes from sterile test tube. To investigate whether the nucellar embryos ratio of kumquat DB02 is the same as that of substrate seeding, the DB02 seeds were sown in sterile test tube. A total of 62 seedlings after germination were counted and numbered. According to the identification results of 7 pairs of InDel-markers, a total of 2, 3 and other 16 zygotic seedlings were identified in the 62 DB02 progeny, the remaining 46 seedlings are nucellar seedlings, and nucellar embryo rate is 74.2%. 【Conclusion】 Nucellar poly-embryony is of great significance for the evolution, reproduction and breeding of citrus, and the asexual offspring developed from the nucellar embryos are genetically identical to the parents, so in citrus study, the epicotyl of polyembryonic seedlings are frequently used for genetic transformation. In this study, 7 pairs of InDel markers were selected from resequencing data of the wild kumquat DB02, which can accurately screen out the asexual offspring. Meanwhile, the nucellar seedlings rate under different growth conditions was also statistical, and it was found that the nucellar seedlings rate of kumquat DB02 under substrate conditions was about 87.5%, which was at a moderate level compared with other citrus varieties, while the nucellar seedlings rate under sterile medium conditions was 74.2%. This may be due to the fact that under sterile test tube conditions, some stunted zygotic embryos have better culture conditions and increased regeneration opportunities, while under soil sowing conditions, stunted zygotic embryos are often difficult to grow, which in turn leads to an increase in the proportion of zygote seedlings in sterile conditions. However, in general, the vast majority offspring of kumquat DB02 are asexual offspring, which can be used as an alternative material for genetic transformation of F. hindsii, and this study further improves the Agrobacterium-mediated epicotyl genetic transformation system in kumquats.
Key words: Fortunella hindsii; Nucellar seedlings identification; InDel; Molecular marker
柑橘是世界上經(jīng)濟產(chǎn)值最高的果樹之一,但由于童期長、具有多胚性[1](無融合生殖)的特點,阻礙了柑橘功能基因組學的研究進程,利用遺傳轉(zhuǎn)化鑒定基因功能通常耗時較長。筆者課題組前期開發(fā)了蕓香科(Rutaceae)金柑屬(Fortunella)山金柑(Fortunella hindsii)特殊材料,其特有的短童期、早花和矮化等特征縮短了試驗周期,具有作為研究果樹性狀模式材料的潛力[2]。遺傳轉(zhuǎn)化是種質(zhì)資源利用的基礎(chǔ),基于前期發(fā)掘的這一特殊材料,建立其遺傳轉(zhuǎn)化體系可以促進未來柑橘功能基因組的研究。
遺傳轉(zhuǎn)化首先要考慮轉(zhuǎn)基因材料背景的一致性,比如擬南芥、番茄等模式作物的親本及其后代均為純合位點,從而保證了遺傳背景的一致性。而對于多年生果樹來說,基因組普遍具有高度雜合特性,有性后代基因位點發(fā)生遺傳重組后會與親本產(chǎn)生遺傳背景差異,因此果樹中遺傳轉(zhuǎn)化主要以植物組織或器官作為外植體。不同物種所適用的轉(zhuǎn)化材料也存在差異,如香蕉[3]、大蕉[4]、葡萄[5]、梨[5-6]通常使用愈傷組織轉(zhuǎn)化,蘋果[7]、草莓[8]、可可[9]和獼猴桃[10]普遍使用葉盤轉(zhuǎn)化。而柑橘一方面具有多胚性,其一粒種子可以產(chǎn)生多個由珠心細胞發(fā)育而來的無性胚(珠心胚),這種類型的胚不經(jīng)過減數(shù)分裂和受精過程,直接由體細胞發(fā)育為種子,可以認為是母體的無性克隆[11],其遺傳背景與母本可以保持一致;另一方面研究者發(fā)現(xiàn)以種子萌發(fā)后的上胚軸作為外植體具有較高的轉(zhuǎn)化效率,因此柑橘通常以實生苗上胚軸作為遺傳轉(zhuǎn)化的材料。雖然柑橘具有無融合生殖特性,但子代中也會存在一定比例的有性后代(合子胚),會對轉(zhuǎn)化材料的遺傳背景造成干擾從而影響基因功能的鑒定。目前關(guān)于柑橘短童期種質(zhì)——山金柑材料的無性克隆后代篩選方法鮮有報道。
在以往研究中,砧木繁殖過程也需要篩除有性后代來消除不良基因型,從而保證后代植株的一致性。Xiang等[12]最開始利用10個同工酶位點對12個柑橘砧木的珠心幼苗和合子幼苗進行了區(qū)分,后來不斷開發(fā)出其他類型的分子標記如RAPD[13]、SSR[14-15]、ISSR[16]、EST-SSR[17]等來鑒定不同柑橘品種的合子胚。以上分子標記對多品種的鑒定有一定效果,但存在重復性差、分辨率低等缺點。隨著基因組測序技術(shù)逐漸成熟,開發(fā)插入/缺失片段長度多態(tài)性(Insertion/Deletion,InDel)標記可以產(chǎn)生大于50 bp的差異片段[18],實現(xiàn)利用常規(guī)瓊脂糖凝膠電泳區(qū)分帶型。對于特定品系的柑橘品種,利用特異性InDel分子標記進行雜種鑒定,具有低成本,快速、遺傳穩(wěn)定性高、重復性好且結(jié)果準確可靠的特征。利用InDel標記來區(qū)分柑橘有性與無性后代目前還鮮有報道。
筆者在本研究中以野生山金柑多胚類型DB02系為材料,通過重測序數(shù)據(jù)進行InDel標記的挖掘,利用瓊脂糖凝膠電泳實驗篩選無性后代,以期為山金柑遺傳轉(zhuǎn)化體系的優(yōu)化奠定基礎(chǔ)。
1 材料和方法
1.1 材料
多胚型野生山金柑DB02系作為母本以及其種子產(chǎn)生的子代植株。
1.2 基因組DNA的提取與檢測
采集山金柑DB02及其子代成熟葉片并提取基因組DNA,提取方法采用改良CTAB法,具體步驟參照盧素文[19]博士學位論文,使用NanoDrop1000超微量分光光度計對DNA質(zhì)量和含量檢測,將質(zhì)量合格的DNA初提液稀釋至工作質(zhì)量濃度(約100 ng·μL-1),保存于-20 ℃冰箱備用。
1.3 InDel引物的篩選
利用母本DB02的重測序數(shù)據(jù)以山金柑基因組為參考基因組進行比對,提取InDel變異位點,篩選含有50 bp左右差異的(0/1)雜合類型位點。在InDel變異位點上下游600 bp范圍內(nèi)設(shè)計引物(表1),以母本DNA為模板進行PCR擴增,PCR擴增反應體系20 μL,其中包括10 μL PCR-Mix,1 μL DNA,InDel上下游引物各1 μL,加入ddH2O補足體積。PCR擴增產(chǎn)物使用3%瓊脂糖凝膠檢測,選擇清晰穩(wěn)定的雜合帶型標記。
1.4 子代合子胚和珠心胚鑒定
以山金柑DB02系子代DNA為模板進行PCR擴增,只含有一條帶的后代為合子幼苗,珠心幼苗在所有的InDel標記擴增產(chǎn)物都與母本的兩條帶一致。
2 結(jié)果與分析
2.1 InDel引物的篩選
利用選取的7對InDel標記組對山金柑DB02系母本進行擴增,經(jīng)瓊脂糖凝膠電泳檢測后,所有標記在母本DNA中均包含兩條帶型(圖1),記為Aa,便于后續(xù)子代合子胚和珠心胚篩選。后代若均與母本條帶一致,認為該植株為珠心胚,若含有一個標記表現(xiàn)為AA或aa,則認為該植株為合子胚。
2.2 土播子代珠心胚苗與合子胚苗鑒定
將DB02種子進行基質(zhì)播種,統(tǒng)計萌發(fā)后代共計獲得56株幼苗。根據(jù)7對InDel標記的擴增產(chǎn)物鑒定結(jié)果(圖2),發(fā)現(xiàn)在InDel01標記結(jié)果中,子代34、41、56號幼苗為單條帶,則這3株植株被認定為合子幼苗;同樣地,利用InDel02標記鑒定出1、3、23、27、41號為合子幼苗;InDel03標記結(jié)果鑒定1、27、34號為合子幼苗;InDel04標記結(jié)果鑒定出1、3號為合子幼苗;InDel05標記結(jié)果鑒定出1、3、27號為合子幼苗;InDel06及InDel 07標記結(jié)果鑒定出1、3、23、27、41、56號為合子幼苗。綜合所有標記結(jié)果可以得出結(jié)論,在56株DB02子代中共鑒定出1、3、23、27、34、41、56號7株合子幼苗,其余48株珠心幼苗在7個標記中帶型均與母本一致,珠心胚率為87.5%。
2.3 試管播種子代珠心胚苗與合子胚苗鑒定
柑橘遺傳轉(zhuǎn)化過程中所需要的上胚軸材料一般來自于無菌播種的試管苗,為了研究該播種條件下珠心胚的比例,將DB02種子進行試管播種,統(tǒng)計萌發(fā)后代共計獲得62株幼苗。根據(jù)7對InDel標記的擴增產(chǎn)物鑒定結(jié)果(圖3),在62株DB02子代中共鑒定出2、3、8、9、11、13、15、17、18、23、36、39、45、48、49、52號16株合子幼苗,其余46株為珠心幼苗,合子胚率為25.8%,珠心胚率為74.2%。
3 討 論
珠心胚對柑橘果實的進化、繁殖和育種具有重要意義,由珠心胚發(fā)育而來的無性后代在遺傳上與親本相同,這有助于保存和保持柑橘砧木品種間的遺傳一致性。柑橘的遺傳轉(zhuǎn)化同樣要求轉(zhuǎn)基因材料與母本之間保持遺傳一致性,Gill等[20]最初以珠心苗為外植體,對不同的組織如葉片、上胚軸、子葉和根段進行再生誘導,發(fā)現(xiàn)上胚軸的誘導再生效率最高,因此柑橘后來的遺傳轉(zhuǎn)化主要以上胚軸作為外植體。相對于其他外植體,如蘋果[21]、鳳梨[22]等物種需要長期通過組織培養(yǎng)來繼代母本組織材料,對實驗條件有較為嚴格的要求,而柑橘只需要播種多胚種子即可長出完全無菌的莖段,降低了操作難度。然而,目前在柑橘基因功能驗證研究中,雖然獲得了轉(zhuǎn)基因植株,但不同的材料間并沒有統(tǒng)一篩選珠心胚的方法,大多數(shù)研究并未對轉(zhuǎn)基因材料進行遺傳背景的鑒定[23-24],但不同的遺傳背景可能會對表型產(chǎn)生無法判斷的影響。
InDel標記作為一種共顯性標記,雖然可以區(qū)分雜合與純合,但是利用雜合標記進行子代雜種鑒定時,如果父本基因型與母本相同,后代存在有性后代帶型和母本一致的情況,因此需要多個標記共同鑒定才能達到篩選無性后代的要求。Shimada等[25]在研究中利用3個CAPS標記進行合子胚鑒定,當標記數(shù)量過少時結(jié)果的可靠性不高,標記數(shù)量過多又耗時耗力不經(jīng)濟,最佳的標記對數(shù)理論上是1/27,即7對標記可以有99%以上的可靠性[14]。因此,張斯淇[26]在多胚調(diào)控相關(guān)基因CitRWP啟動子區(qū)域開發(fā)的MITE雜合分子標記,雖然也可以用于多胚山金柑無性克隆后代的篩選,但想精確篩選出無性后代,仍需要多個標記共同驗證。筆者在本研究中利用7個InDel雜合標記可以實現(xiàn)對野生山金柑DB02系無性后代的精確篩選。
山金柑作為未來柑橘遺傳轉(zhuǎn)化的模式材料,較高的珠心胚比例符合遺傳轉(zhuǎn)化的需求。以往研究發(fā)現(xiàn)不同柑橘品種的多胚性也不同,其產(chǎn)生珠心胚的能力和無性后代數(shù)量也存在很大差異,Xiang等[12]對12種類型柑橘砧木(柚,檸檬,枳雜種,甜橙)進行合子胚率統(tǒng)計,結(jié)果發(fā)現(xiàn)合子胚率在5.5%~50.6%之間;對酸橙砧木的合子胚率也進行了鑒定,發(fā)現(xiàn)存在22.2%~26.64%的合子胚。本研究在成功篩選山金柑無性后代的同時,對不同生長條件下的珠心胚率也進行了統(tǒng)計,發(fā)現(xiàn)DB02山金柑系在基質(zhì)播種條件下,珠心胚率約為87.5%,與其他柑橘品種相比處于適中的水平,而培養(yǎng)基播種條件下的珠心胚率為74.2%。這可能是由于在組培條件下,一些發(fā)育不良的合子胚得到了較好的培養(yǎng)條件,再生機會增加,而在土播條件下,發(fā)育不良的合子胚往往難以成苗,進而導致組培的合子苗比例上升。但總體來說,該品系絕大多數(shù)子代仍為無性后代,可以作為山金柑遺傳轉(zhuǎn)化的備選材料。
4 結(jié) 論
選用7對InDel雜合標記組對野生山金柑DB02系子代在試管播種和土播兩種條件下的合子胚率進行統(tǒng)計,試管播種子代的合子胚率高于土播子代,但均表現(xiàn)出較高的珠心胚率。同時利用該InDel標記組可以快速準確地鑒定出合子胚與珠心胚,進一步完善了山金柑材料實生苗上胚軸遺傳轉(zhuǎn)化體系。
參考文獻References:
[1] KOLTUNOW A M. Apomixis:Embryo sacs and embryos formed without meiosis or fertilization in ovules[J]. The Plant Cell,1993,5(10):1425-1437.
[2] 朱晨橋. 柑橘模式材料的開發(fā)與金柑屬植物系統(tǒng)發(fā)育學研究[D]. 武漢:華中農(nóng)業(yè)大學,2020.
ZHU Chenqiao. Development of Citrus model material and phylogenetic study of genus Fortunella[D]. Wuhan:Huazhong Agricultural University,2020.
[3] NAIM F,DUGDALE B,KLEIDON J,BRININ A,SHAND K,WATERHOUSE P,DALE J. Gene editing the phytoene desaturase alleles of Cavendish banana using CRISPR/Cas9[J]. Transgenic Research,2018,27(5):451-460.
[4] YE S W,CHEN G,KOHNEN M V,WANG W J,CAI C Y,DING W S,WU C,GU L F,ZHENG Y S,MA X Q,LIN C T,ZHU Q. Robust CRISPR/Cas9 mediated genome editing and its application in manipulating plant height in the first generation of hexaploid Ma bamboo (Dendrocalamus latiflorus Munro)[J]. Plant Biotechnology Journal,2020,18(7):1501-1503.
[5] NAKAJIMA I,BAN Y,AZUMA A,ONOUE N,MORIGUCHI T,YAMAMOTO T,TOKI S,ENDO M. CRISPR/Cas9-mediated targeted mutagenesis in grape[J]. PLoS One,2017,12(5):e0177966.
[6] PANG H G,YAN Q,ZHAO S L,HE F,XU J F,QI B X,ZHANG Y X. Knockout of the S-acyltransferase gene,PbPAT14,confers the dwarf yellowing phenotype in first generation pear by ABA accumulation[J]. International Journal of Molecular Sciences,2019,20(24):6347.
[7] NISHITANI C,HIRAI N,KOMORI S,WADA M,OKADA K,OSAKABE K,YAMAMOTO T,OSAKABE Y. Efficient genome editing in apple using a CRISPR/Cas9 system[J]. Scientific Reports,2016,6:31481.
[8] WILSON F M,HARRISON K,ARMITAGE A D,SIMKIN A J,HARRISON R J. CRISPR/Cas9-mediated mutagenesis of phytoene desaturase in diploid and octoploid strawberry[J]. Plant Methods,2019,15:45.
[9] FISTER A S,LANDHERR L,MAXIMOVA S N,GUILTINAN M J. Transient expression of CRISPR/Cas9 machinery targeting TcNPR3 enhances defense response in Theobroma cacao[J]. Frontiers in Plant Science,2018,9:268.
[10] VARKONYI-GASIC E,WANG T C,VOOGD C,JEON S,DRUMMOND R S M,GLEAVE A P,ALLAN A C. Mutagenesis of kiwifruit CENTRORADIALIS-like genes transforms a climbing woody perennial with long juvenility and axillary flowering into a compact plant with rapid terminal flowering[J]. Plant Biotechnology Journal,2019,17(5):869-880.
[11] 譚志友. 《中國果樹志·柑橘卷》正式出版發(fā)行[J]. 中國南方果樹,2010,39(3):11.
TAN Zhiyou. Chinese Fruit Trees & Citrus Rolls official publication[J]. South China Fruits,2010,39(3):11.
[12] XIANG C,ROOSE M L. Frequency and characteristics of nucellar and zygotic seedlings in 12 citrus rootstocks[J]. Scientia Horticulturae,1988,37(1/2):47-59.
[13] ANDRADE-RODR?GUEZ M,VILLEGAS-MONTER A,CARRILLO-CASTA?EDA G,GARC?A-VEL?ZQUEZ A. Polyembryony and identification of Volkamerian lemon zygotic and nucellar seedlings using RAPD[J]. Pesquisa Agropecuária Brasileira,2004,39(6):551-559.
[14] RUIZ C,BRETO M P,AS?NS M J. A quick methodology to identify sexual seedlings in citrus breeding programs using SSR markers[J]. Euphytica,2000,112(1):89-94.
[15] 譚李梅,符紅艷,徐靜,朱志媚,胡哲,肖順元,馬先鋒,鄧子牛. 檸檬合子胚自交實生苗的鑒定及其對柑橘潰瘍病的抗性初步評價[J]. 分子植物育種,2020,18(7):2258-2267.
TAN Limei,F(xiàn)U Hongyan,XU Jing,ZHU Zhimei,HU Zhe,XIAO Shunyuan,MA Xianfeng,DENG Ziniu. Identification of lemon zygotic self-crossed seedlings and the primary evaluation of the resistance to Citrus canker disease[J]. Molecular Plant Breeding,2020,18(7):2258-2267.
[16] AWAD M,EL-ALAKMY H,ABDALLA M,ELDEEP M. Distinguishing of zygotic and nucellar seedlings in citrus rootstocks using ISSR technique[J]. Sinai Journal of Applied Sciences,2019,8(1):1-8.
[17] RAO M N,SONEJI J R,CHEN C X,HUANG S,GMITTER J F G. Characterization of zygotic and nucellar seedlings from sour orange-like Citrus rootstock candidates using RAPD and EST-SSR markers[J]. Tree Genetics & Genomes,2008,4(1):113-124.
[18] ALBERS C A,LUNTER G,MACARTHUR D G,MCVEAN G,OUWEHAND W H,DURBIN R. Dindel:Accurate indel calls from short-read data[J]. Genome Research,2011,21(6):961-973.
[19] 盧素文. 柑橘番茄紅素β-環(huán)化酶基因功能分析及其轉(zhuǎn)錄調(diào)控研究[D]. 武漢:華中農(nóng)業(yè)大學,2017.
LU Suwen. Functional identification and transcriptional regulatory analysis of Citrus lycopene β-cyclase genes[D]. Wuhan:Huazhong Agricultural University,2017.
[20] GILL M I S,SINGH Z,DHILLON B S,GOSAL S S. Somatic embryogenesis and plantlet regeneration in mandarin (Citrus reticulata Blanco)[J]. Scientia Horticulturae,1995,63(3/4):167-174.
[21] 鄒春好. 基于體細胞胚胎發(fā)生的蘋果遺傳轉(zhuǎn)化體系的建立[D]. 泰安:山東農(nóng)業(yè)大學,2021.
ZOU Chunhao. Establishment of a genetic transformation system for Malus domestica based on somatic embryogenesis[D]. Taian:Shandong Agricultural University,2021.
[22] 張國芳. 觀賞鳳梨高頻再生以及遺傳轉(zhuǎn)化研究[D]. 杭州:浙江大學,2011.
ZHANG Guofang. Studies on high frequency regeneration and genetic transformation of ornamental pineapple[D]. Hangzhou:Zhejiang University,2011.
[23] WANG L J,CHEN S C,PENG A H,XIE Z,HE Y R,ZOU X P. CRISPR/Cas9-mediated editing of CsWRKY22 reduces susceptibility to Xanthomonas citri subsp. citri in Wanjincheng orange [Citrus sinensis (L.) Osbeck][J]. Plant Biotechnology Reports,2019,13(5):501-510.
[24] ZHU C Q,ZHENG X J,HUANG Y,YE J L,CHEN P,ZHANG C L,ZHAO F,XIE Z Z,ZHANG S Q,WANG N,LI H,WANG L,TANG X M,CHAI L J,XU Q,DENG X X. Genome sequencing and CRISPR/Cas9 gene editing of an early flowering Mini-Citrus (Fortunella hindsii)[J]. Plant Biotechnology Journal,2019,17(11):2199-2210.
[25] SHIMADA T,ENDO T,F(xiàn)UJII H,NAKANO M,SUGIYAMA A,DAIDO G,OHTA S,YOSHIOKA T,OMURA M. MITE insertion-dependent expression of CitRKD1 with a RWP-RK domain regulates somatic embryogenesis in citrus nucellar tissues[J]. BMC Plant Biology,2018,18(1):166.
[26] 張斯淇. 柑橘無融合生殖的遺傳分析和相關(guān)基因挖掘[D]. 武漢:華中農(nóng)業(yè)大學,2017.
ZHANG Siqi. Genetic analysis of citrus apomixis and its related genes discovery[D]. Wuhan:Huazhong Agricultural University,2017.