• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Heteroatom-substituted rhodamine dyes:Structure and spectroscopic properties

    2019-10-31 09:00:32FeiDengZhaochaoXu
    Chinese Chemical Letters 2019年10期

    Fei Deng,Zhaochao Xu

    a CAS Key Laboratory of Separation Science for Analytical Chemistry,Dalian Institute of Chemical Physics,Chinese Academy of Sciences,Dalian 116023,China

    b University of Chinese Academy of Sciences,Beijing 100049,China

    Keywords:

    Rhodamine

    Heteroatom

    Si-rhodamine

    Optical properties

    Fluorescent dyes

    ABSTRACT

    Rhodamine is one class of most popular dyes used in fluorescence imaging due to the outstanding photoproperties including high brightness and photostability.In recent years,replacement the xanthene oxygen with other elements,especially silicon,has attracted great attentions in the development of new rhodamine derivatives.This review summarized the structures and photophysical properties of heteroatom-substituted rhodamines.We hope this review can help to understand the structure-property relationships of rhodamine dyes and then elucidate the way to create derivatives with improved photoproperties.

    1.Introduction

    Fluorescence microscopy is an essential tool for visualizing biological processes in living cells [1-6].The key point of this strategy is to select a proper fluorophore [7-10].Compared with fluorescent proteins and quantum dots,organic dyes are attracting much more attention in recent 20 years,ascribed to their advantages of mall size,easy of chemical modification,good brightness and photostability,and emissions spanning the entire color spectrum[11].Particularly,the single-molecule imaging and super-resolution imaging have been driving the development of new fluorophores with super brightness and photostability [12].

    Rhodamines,a fluorophore with a history over a century,are the most popular dyes used in fluorescence imaging due to their stability,brightness and water solubility[13].A typical structure of rhodamine is showed in Fig.1.Although pyronine and rhodamine share the same chromophore xanthene (Fig.1a,for example,Pyronin Y vs.tetramethylrhodamine(TMR)),rhodamine has higher brightness and stability,and is more suitable for biological application than pyronin.The carbon atom at 9-position of xanthene moiety was stabilized by the phenyl ring in rhodamine,where the one in pyronin Y was much more reactive to limit the applications of pyronine.Another feature of rhodamine is the equilibrium between the ring-opened fluorescent zwitterionic form and the ring-closed non-fluorescent lactone form (Fig.1b).This equilibrium has been widely used to design fluorogenic chemosensors [14].To avoid the formation of non-fluorescent lactone form,the common strategy is to introduce methyl or methoxyl groups at C-3'and C-7'in rhodamines[15,16].However,the absorption and emission of rhodamines within the range of 500-600 nm limit their applications in multicolour imaging and in vivo imaging[17].These scenarios necessitate the development of near-infrared (NIR) rhodamine fluorophores.

    It is required and challenging to extend the absorption and emission wavelength of rhodamines,especially to far-red and nearinfrared(NIR)region.The general strategies to elicit the absorption and emissionto NIR regioninclude theπ-conjugation extension and limited-flexibility of chromophore.The drawbacks of these methods are the associated decrease in brightness and watersolubility[18-20].Another way to shift emission into NIR region is to replace the xanthene oxygen in rhodamine by heteroatoms.This strategy has been demonstrated over half century and represented by C,N,S,Se and Te-rhodamine.Due to the limited improvement in fluorescent properties and complicated synthetic routes,these rhodamines did not get much attention,until the appearance of Si-Pyroninin2008,pioneered by QianandXiao et al.[21].Replacement of the oxygen in the skeleton of rhodamine with silicon produces a significant red-shift toNIR regionwhile maintaining the brightness.According to the advantage of Si-rhodamine in bioimaging,Nagano et al.developed a series of Si-rhodamines from far-red to NIR[22,23].Further studies revealed the fluorogenic behavior and extremely photostability of Si-rhodamine-carboxyl,which made it ideal fluorophore for live-cell super-resolution microscopy[24,25].The big success of Si-rhodamine has allowed a triumphant return of oxygen replacement in rhodamine modification,like borinate,phosphinate and sulfone.Here,we review various heteroatoms replaced rhodamines (Fig.1c) and focus on their photophysical properties in order to facilitate the modification and application of new rhodamine dyes.

    Fig.1.(a) A typical structure of pyronin and rhodamine.(b) Equilibrium of TMR between zwitterionic form and lactone form.(c) Elements used in rhodamine 10-position replacement was shown in red.

    2.Boron group

    Fig.2.Structures of B-rhodamines.

    The boron group is the chemical elements in group 13 of the periodic table,comprising boron(B),aluminium(Al),gallium(Ga),indium (In),thallium (Tl),and perhaps also the chemically uncharacterized nihonium (Nh).At the present time,only the element of boron was reported to replace rhodamine oxygen.The first B-pyronine JS-R was reported by Egawa et al.in 2016 (Fig.2 and Table 1,compound 4) [26].Incorporating a borinate moiety into a xanthene skeleton produced a significant (>60 nm)bathochromic shift compared to its parent dye pyronin Y.The molar absorption coefficient and quantum yield of JS-R were measured to be 1.3×105L mol-1cm-1and 0.59,respectively.Next,Stains et al.synthesized the corresponding B-rhodamine RF620(Fig.2 and Table 1,compound 5) by insertion of 2-methyl phenyl group at the 9-position of JS-R [27].Substitution by aromatic residues caused a slight red shift (<10 nm) in absorption and emission.Besides,molar absorption coefficient and quantum yield of RF620 were decreased to 1.09×105L mol-1cm-1and 0.36,respectively.Similar variation between pyronin Y and TMR were observed,that TMR displayed a deceased absorption and quantum yield compared with pronin Y.

    3.Carbon group

    The carbon group,Group 14 in the p-block,contains carbon(C),silicon(Si),germanium(Ge),tin(Sn),lead(Pb)and flerovium(Fl).Except Pb and Fl,all these elements have been successfully applied in rhodamine oxygen replacement.Compared with traditional Orhodamine,the obtained carbon-group-rhodamine fluorophores displayed significant red-shifts in fluorescence spectra.The bathochromic shift of group 14 rhodamines may be due to their lower LUMO levels.Except C-rhodamine,the existed σ*-π*conjugation in Si-,Ge-and Sn-rhodamine and the LUMO of π-system were stabilized.Besides,the conjugation became less efficient as the atomic number increase.As a consequence,the extent of red shift was C <Sn <Ge <Sn [28].

    3.1.Carbon-rhodamine (C-rhodamine)

    Replacement of rhodamine oxygen with a quaternary carbon elicits a 50-nm bathochromic shift.These C-rhodamines were firstly synthesized by Aaron et al.in 1963[29].In the following half century,few attentions had been paid to the research of Crhodamine,maybe due to the complex synthesis and low yield.Because of the high brightness and phtotostability,C-rhodamines have been successfully applied in super-resolution fluorescent imaging,which brought C-rhodamine back to the attention of dye scientists.

    Lavis et al.reported a series of C-rhodamines by alternating the substituents on the N atoms(Fig.3 and Table 1,compounds 6-9,17 and 18) [30-32].The twist of Caryl--N bond in rhodamine greatly influenced the brightness of the fluorophore.Replacing the N,Ndimethyl group in compound 7 with differently sized rings could mitigate twisted internal charge transfer (TICT) and regulate the brightness of the fluorophore.In particularly,the azetidinyl Crhodamine (compound 8) had higher quantum yield (φ=0.67)compared to compound 7(φ=0.52),while maintained the similar extinction coefficient (ε=1.21×105L mol-1cm-1).

    By introducing fluorine,Hell et al.obtained a series of Crhodamines with maximum absorption in the range of 560-630 nm (Fig.3 and Table 1,compounds 11-16) [33,34].Though the fluorination of the carbonrhodamine in tricyclic cores led to red-shifts of the absorption and emission compared to unmodified C-rhodamine,the extinction coefficients and quantum yields were reduced significantly.Taking compound 14 as an example,the extinction coefficients and quantum yields were only 6700 L mol-1cm-1and 0.06,whereas the unmodified compound 12 were 100,000 L mol-1cm-1and 0.59,respectively.These results were totally different to O-rhodamine.Typically,the fluorination of rhodamine could lead to slight improvement in brightness [35].However,introducing fluorine contained alkyl group into the N atoms of C-rhodamines (compounds 15 and 16) resulted in bathochromic shift while maintained the brightness compared to unmodified C-rhodamine,which was in accord with O-rhodamines.

    Table 1 (Continued)

    Table 1 (Continued)

    Table 1 (Continued)

    Table 1 (Continued)

    Table 1 (Continued)

    Table 1 (Continued)

    In 2014,Klan et al.reported a NIR C-rhodamine (Fig.3 and Table 1,compound 10) by replacing the aromatic substituents at the position C9 with phenylethynyl group [36].This compound possessed two characteristic absorptions at 472 and 677 nm.Both of the absorption excited the maximum emission at 705 nm.The quantum yields were about 0.15 in methanol.

    3.2.Silicon-rhodamines (Si-rhodamine)

    In 2008,Xiao et al.replaced the oxygen in the pyronine Y with a silicon atom to obtain TMDHS(Fig.4 and Table 1,compound 19)[21].The absorption and emission of TMDHS were at 641 and 659 nm,nearly 90 nm bathochromic shift compared to pyronine Y.To improve the stability,Nagano et al.inserted 2-methyl phenyl group at the 9th position of TMDHS and created Sirhodamine [28].This compound exhibited λmax/λem=646 nm/660 nm,ε=1.1×105L mol-1cm-1and φ=0.31 in PBS buffer.These data illustrated Si-rhodamine was as bright as the Orhodamines.In order to fulfill the requirement of in vivo imaging,Nagano group further developed a series of NIR-excitable Sirhodamine (Fig.4 and Table 1,compounds 21-24) by the expansion of the xanthene ring.These compounds show the emissions over 700 nm [37,38].Especially,compound 22 showed excellent tolerance to photobleaching and high quantum efficiency (φ=0.12) [25].

    Like the modification in C-rhodamines,Lavis et al.also replaced dialkylamino substituents with differently sized rings to mitigate TICT and regulate the brightness in Si-rhodamine (Fig.4 and Table 1,compounds 25-29) [31,34,39,40].The azetidinyl Sirhodamine (compound 27) had similar absorption and emission(λmax/λem=646 nm/664 nm) and higher quantum yield (φ=0.31)compared to N,N-dimethyl Si-rhodamine (compound 26).Also,depending on the free rotation of the bond between the N atom and the Si-substituted xanthene moiety,Urano et al.designed a series of near-infrared fluorescence quenchers(Fig.4 and Table 1,compounds 30 and 31)[38].These compounds showed absorption in NIR region (660 nm and 779 nm) and the quantum yields were almost zero.

    In O-rhodamine modification,introducing halogen,especially fluorine,would improve the photostability and brightness of fluorophore.This strategy was also applied in Si-rhodamine.Lavis and Hell groups have vigorously developed various fluorine-containing Si-rhodamines (Fig.4 and Table 1,compounds 32-42).Similar to C-rhodamine,introducing fluorine into the tricyclic cores of Si-rhodamine decreased the extinction coefficients and quantum yields sharply,albeit with nearly 30 nm red-shift in wavelengths (compounds 32,34 and 36) [33,40].However,the fluorination or chlorination in the bottom phenyl group had a much smaller effect on brightness with 20-30 nm redshifts in wavelengths (compounds 35,37-42).The fluorinated azetidine (compound 33) exhibited ~10 nm blue shift in spectral properties,a slightly higher quantum yield (φ=0.56) relative to compound 27,which was similar to O-rhodamines and Crhodamines [32].

    Replacing the group at the 9-position also induced fluorescence changes(Fig.4 and Table 1,compounds 43-58).Compound 43 with a conjugated phenylethynyl group shifted the absorption and emission over 700 nm [36].The 9-imino-10-silaxanthone compounds 44 and 45 exhibit remarkably large Stokes shifts (around 200 nm),which were related to the excitation of an electron from the HOMO to the LUMO of the chromophores [41].These fluorophores with large Stokes shift would be useful in multicolor nanoscopy[42].Based on the structure of azetidinyl Si-rhodamine(compound 27),Lavis et al.also changed the substituents at the 9th position.(Compounds 46-58 showed similar absorption and emission spectra (~λmax/λem=650 nm/665 nm).The extinction coefficients of these compounds were about 1.2×105L mol-1cm-1.However,the quantum yields were greatly influenced by the substitutes.For example,compound 51 had a lower quantum yield of 0.2,while the quantum yields of compounds 52-56 were over 0.5 [33,40].The intramolecular rotation of phenyl ring in 51 may decrease the quantum yield.

    Dimethylsilane was routinely used as heteroatom in Sirhodamine.Indeed,the different substituents on silicon atoms also affect the fluorescence properties.For example,compounds 59-61 with different Si-substitutes were developed by Zhang et al.(Fig.4 and Table 1).These compounds displayed different bathochromic shifts and quantum yields [43].For compound 62,the substitute was changed from silane to silanediol,and the excitation and emission were further red-shifted to 663 nm and 681 nm,respectively,with ε=1.05×105L mol-1cm-1and φ=0.43 in PBS buffer [27].

    3.3.Germanium-rhodamines (Ge-rhodamine)

    Ge-rhodamines display further about 10 nm hypsochromic shift compared with Si-rhodamine.And the brightness is similar with that of Si-rhodamine (Fig.5 and Table 1,compounds 63-66)[28,34].Taking compound 65 as an example,it displayed λmax/λem=410 nm/471 nm,ε=9.7×104L mol-1cm-1and φ=0.43.Although the attention to Ge-rhodamine is constrained by the fact that synthetic raw materials are not readily available,the outstanding brightness and proper excitation wavelength make Ge-rhodamine a promising fluorophore in bioimaging(Fig.5).

    3.4.Tin-rhodamines (Sn-rhodamine)

    Compared to C-,Si-and Ge-rhodamine,Sn-rhodamines were rarely reported(Fig.6 and Table 1,compounds 67-68)[28].Nagano group synthesized both Sn-pyronine and Sn-rhodamine and found they were really chemical-active.Compound 68 showed the maximum absorption and emission at 614 nm and 628 nm,respectively.

    4.Nitrogen family

    4.1.Nitrogen-rhodamines (N-rhodamine)

    Replacement of the oxygen by a nitrogen atom on the pyronin framework produced acridine orange(69),which have been widely used as a nucleic acid-selective dye over half a century.When bound to DNA,acridine orange displayed a similar emission with that of fluorescein.When bound to RNA,its excitation and emission were shifted to 460 nm and 650 nm,respectively.Lavis et al.replaced the N,N-dimethylamino substituents in acridine orange with four-membered azetidine rings.Compound 70 showed an improved quantum yield from 0.21 to 0.52 (Fig.7 and Table 1,compounds 69-70) [31].

    4.2.Phosphorus-rhodamines (P-rhodamine)

    Fig.3.Structures of C-rhodamines.

    Besides nitrogen,phosphorus was also used to replace rhodamine oxygen.In 2015,Wang et al.reported a series of Prhodamines(Fig.8 and Table 1,compounds 71-73)[44].Due to the electron-withdrawing properties of the phosphorus moiety,these P-rhodamines elicit 140 nm bathochromic shifts relative to O-rhodamine.These compounds displayed similar absorption and emission spectra (λmax/λem=694 nm/711 nm).Due to the restricted intramolecular rotation,the quantum yields of 71-73,which have increasing number of methyl substituents in phenyl group,improved from 0.06 to 0.15.Stains et al.used phosphinate functional group as the bridge and created P-rhodamines 74-77 (Fig.8 and Table 1).Compound 74 exhibited excitation and emission maxima at 666 nm and 685 nm,respectively.The molar extinction coefficients and quantum yields were 1.65×105L mol-1cm-1and φ=0.38,respectively.Moreover,its ethyl ester counterpart compound 75 showed further 35 nm bathochromic shift,though the brightness decreased.By replacing the dimethylaniline in compounds 74 and 75 with julolidine substituent,the excitation and emissions in compounds 76 and 77 were further red-shifted to the rang over 700 nm [45].

    5.Oxygen family

    Due to the similar chemical characteristics in chalcogens,it was reasonable to replace the bridging oxygen atom with other chalcogens.The extent of red shift in emissions was correlate with the atom size(O <S <Se <Te)[46].This trend was thought to be related to the resonance effect of the chalcogen atom,which narrowed the HOMO-LUMO gap [47,48].Besides,the molar extinction coefficients and fluorescence quantum yields decreased with the increasing size of the chalcogen atom,which could be attributed to a strong heavy-atom effect [49].Different with oxygen,the common oxidation states in S,Se,and Te could be-2,+4 and+6.The corresponding oxide can also be applied in replacing the bridging oxygen atom.

    5.1.Sulfur-rhodamines (S-rhodamine)

    Most of S-rhodamines were firstly reported by Detty group(Fig.9 and Table 1,compounds 78-83).Compared to O-rhodamine,S-rhodamines displayed about 20 nm red-shift in absorption and emission spectra.However,the brightness was less than half that of O-rhodamine.Taking compound 78 as an example,it exhibited λmax/λem=571 nm/599 nm,ε=6.26×104L mol-1cm-1and φ=0.44 in methanol.These photophysical properties limited the wide applications of S-rhodamine in biological imaging[46,49,50].

    Guo et al.reported a series of sulfone-rhodamines in 2016(Fig.9 and Table 1,compounds 84-89)[51].The sulfone group serves as the bridge to rigidify their structures and a strong electron withdrawing group.The absorption and emission of sulfone-rhodamines reached 700 nm and 730 nm,respectively.Different substituents in phenyl group influenced the stability and brightness due to the steric effects,which have been referred in P-rhodamines.

    5.2.Selenium-rhodamines (Se-rhodamine)

    When the oxygen bridge was replaced by Selentium,the bathochromic shift in emission was further increased by 30 nm associated with sharply decreased brightness(Fig.10 and Table 1,compounds 90-95) [46,50].For example,compound 90 showed λmax/λem=581 nm/608 nm and ε=4.4×104L mol-1cm-1,but a relatively low φ=0.01 in methanol.Unlike other dyes,Serhodamine had a high yield for singlet oxygen generation,which could be applied as an efficient photosensitizer [49].

    5.3.Tellurium-rhodamines (Te-rhodamine)

    Te-rhodamines were reported with very weak fluorescence(φ <0.001) due to the heavy-atom effect (Fig.11 and Table 1,compounds 96-104)[50,52,53].For Te-rhodamines,Te atom could be easily oxidized by reactive oxygen species (Fig.11 and Table 1,compounds 105-107).The corresponding telluroxide rhodamines exhibited a large red shift compared to Te-rhodamine and showed strong fluorescence.Taking compound 96 as an example,it could be oxidized to compound 105 by reactive oxygen species and exhibited maximum fluorescence emission around 686 nm with φ=0.18 [52].These results indicated that the heavy-atom effect could be weakened by binding of oxygen atom.

    6.Conclusions and perspectives

    Rhodamine is a type of widely used fluorophore.The bridge modification atom at 10 position enriches the color palette of rhodamines.So far,most of the possible element have been applied to build heteroatom-substituted rhodamine.Changing the functional group of the same element at 10 position seems a promising method to further extend the heteroatom-substituted rhodamines in the further.For example,sulfur-rhodamine and sulfonerhodamine share the same element at 10 position but have totally different photophysical properties.Besides,most of the researches in this field are focusing on group 14 elements,especially silicon.A number of methods have been proposed to improve the brightness,photostability and fluorogenicity of rhodamine,C-rhodamine and Si-rhodamine.Among these methods,incorporation of fourmembered azetidine rings into the fluorophore is one of the most attractive.However,these methods have rarely been applied in other element replaced rhodamines so far.We hope that this review paper can draw much more attention on the structural modification of rhodamines.A new way of thinking can be found through the comparison of fluorescence structure-activity relationships.We hope that the structure-activity relationship summarized here,as shown in Table 1,will help to achieve the goal of creating more dyes with high brightness and photostability.

    Fig.4.Structures of Si-rhodamines.

    Fig.5.Structures of Ge-rhodamines.

    Fig.6.Structures of tin-substituted rhodamines.

    Fig.7.Structures of N-rhodamines.

    Fig.8.Structures of P-rhodamines.

    Fig.9.Structures of S-rhodamines and sulfone-rhodamines.

    Fig.10.Structures of Se-rhodamines.

    Acknowledgments

    This work was financially supported by the National Natural Science Foundation China (No.21878286) and DICP (Nos.DMTO201603,TMSR201601).

    Fig.11.Structures of Te-rhodamines.

    我的女老师完整版在线观看| 国产一区二区在线观看日韩| 亚洲欧美成人综合另类久久久| 一级片'在线观看视频| 一二三四中文在线观看免费高清| 妹子高潮喷水视频| 中文字幕免费在线视频6| 免费黄色在线免费观看| 黑人欧美特级aaaaaa片| 国产视频首页在线观看| 18禁裸乳无遮挡动漫免费视频| 一级,二级,三级黄色视频| www.av在线官网国产| 成人午夜精彩视频在线观看| 在线观看一区二区三区激情| 丝瓜视频免费看黄片| 国产亚洲av片在线观看秒播厂| 黄色配什么色好看| 久久人妻熟女aⅴ| 欧美xxⅹ黑人| 成人免费观看视频高清| 国产精品麻豆人妻色哟哟久久| av女优亚洲男人天堂| a级毛片黄视频| 亚洲成人手机| 丝袜脚勾引网站| 久久久久久久国产电影| 热re99久久精品国产66热6| 亚洲av综合色区一区| 久久精品久久久久久久性| 午夜福利乱码中文字幕| 免费在线观看完整版高清| 亚洲精品一区蜜桃| 性色avwww在线观看| 中文字幕最新亚洲高清| 一边亲一边摸免费视频| √禁漫天堂资源中文www| 精品国产乱码久久久久久小说| 亚洲成国产人片在线观看| 精品少妇久久久久久888优播| 嫩草影院入口| av卡一久久| 亚洲伊人久久精品综合| av网站免费在线观看视频| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 街头女战士在线观看网站| 自拍欧美九色日韩亚洲蝌蚪91| 精品国产国语对白av| 欧美亚洲日本最大视频资源| 新久久久久国产一级毛片| 亚洲成人一二三区av| 日韩欧美精品免费久久| 亚洲av电影在线观看一区二区三区| 人人妻人人澡人人看| 制服诱惑二区| 成人国语在线视频| 午夜福利影视在线免费观看| av黄色大香蕉| 亚洲国产精品999| 一个人免费看片子| 激情视频va一区二区三区| 久久国产亚洲av麻豆专区| 亚洲,一卡二卡三卡| 日日摸夜夜添夜夜爱| 国语对白做爰xxxⅹ性视频网站| 久久精品久久久久久久性| 亚洲国产精品999| 在线观看免费日韩欧美大片| 欧美日韩视频高清一区二区三区二| 99热全是精品| 伦理电影大哥的女人| 久久精品久久久久久噜噜老黄| 中文字幕av电影在线播放| 麻豆乱淫一区二区| 精品亚洲乱码少妇综合久久| 欧美成人精品欧美一级黄| 免费日韩欧美在线观看| 亚洲欧美日韩卡通动漫| 国产1区2区3区精品| av国产久精品久网站免费入址| 午夜激情av网站| 成年动漫av网址| 欧美精品人与动牲交sv欧美| 丰满乱子伦码专区| 欧美成人午夜精品| 久久女婷五月综合色啪小说| 国产精品免费大片| 婷婷色av中文字幕| 99精国产麻豆久久婷婷| 爱豆传媒免费全集在线观看| 国产精品国产三级国产专区5o| 亚洲精品一二三| 1024视频免费在线观看| 精品一区二区免费观看| 成人国产av品久久久| 夜夜爽夜夜爽视频| 亚洲欧美日韩另类电影网站| 成年女人在线观看亚洲视频| 丝袜人妻中文字幕| 在线观看免费高清a一片| 国产在线一区二区三区精| 日韩在线高清观看一区二区三区| 精品酒店卫生间| videosex国产| 99国产综合亚洲精品| 久久久久久久久久久免费av| 国产福利在线免费观看视频| 精品人妻偷拍中文字幕| 国产国语露脸激情在线看| 91精品伊人久久大香线蕉| 高清在线视频一区二区三区| 男女啪啪激烈高潮av片| 免费观看无遮挡的男女| 久久精品熟女亚洲av麻豆精品| 夫妻性生交免费视频一级片| 一级,二级,三级黄色视频| 欧美日韩成人在线一区二区| 最新的欧美精品一区二区| 欧美精品一区二区免费开放| 91aial.com中文字幕在线观看| 亚洲美女视频黄频| 久久影院123| 国产精品久久久久久精品古装| 国产欧美亚洲国产| 在线观看三级黄色| 女的被弄到高潮叫床怎么办| 免费av不卡在线播放| 黑人高潮一二区| 一二三四在线观看免费中文在 | 搡女人真爽免费视频火全软件| 日韩欧美精品免费久久| 久久久a久久爽久久v久久| 大香蕉久久网| 中文天堂在线官网| 精品人妻偷拍中文字幕| 欧美bdsm另类| 97在线视频观看| 国精品久久久久久国模美| 9191精品国产免费久久| 精品一区二区三区视频在线| 性色av一级| 97超碰精品成人国产| 亚洲熟女精品中文字幕| 亚洲四区av| 热99久久久久精品小说推荐| 欧美人与性动交α欧美精品济南到 | 免费女性裸体啪啪无遮挡网站| 男女边吃奶边做爰视频| 久久精品国产a三级三级三级| 亚洲av日韩在线播放| 男女边吃奶边做爰视频| 久久久久网色| 在线观看人妻少妇| 国产精品不卡视频一区二区| 欧美人与善性xxx| 色网站视频免费| 在线看a的网站| 婷婷色综合大香蕉| 大码成人一级视频| 五月天丁香电影| 亚洲欧美成人精品一区二区| 七月丁香在线播放| 亚洲国产最新在线播放| 晚上一个人看的免费电影| 国产又爽黄色视频| 国产午夜精品一二区理论片| 亚洲成av片中文字幕在线观看 | 亚洲精品国产av成人精品| 纯流量卡能插随身wifi吗| 最近中文字幕2019免费版| 精品久久国产蜜桃| 久久人人97超碰香蕉20202| 大话2 男鬼变身卡| 国产1区2区3区精品| 日本欧美视频一区| 一区在线观看完整版| 春色校园在线视频观看| 91精品三级在线观看| 七月丁香在线播放| 亚洲av综合色区一区| 久久精品人人爽人人爽视色| 日韩中字成人| 丰满乱子伦码专区| 最近中文字幕高清免费大全6| 亚洲精品国产av成人精品| 97人妻天天添夜夜摸| 精品亚洲乱码少妇综合久久| av有码第一页| 精品人妻偷拍中文字幕| xxx大片免费视频| 一级黄片播放器| 国产白丝娇喘喷水9色精品| 国产精品人妻久久久影院| 欧美精品亚洲一区二区| 大陆偷拍与自拍| 国产精品三级大全| 韩国精品一区二区三区 | 久久人人爽av亚洲精品天堂| av卡一久久| 久久久久国产精品人妻一区二区| 亚洲精品456在线播放app| 夜夜爽夜夜爽视频| 久久国产精品大桥未久av| av播播在线观看一区| 国国产精品蜜臀av免费| 色婷婷久久久亚洲欧美| 欧美+日韩+精品| 亚洲一级一片aⅴ在线观看| 99热全是精品| 国产成人精品无人区| 制服人妻中文乱码| 少妇 在线观看| 日韩精品免费视频一区二区三区 | 国产高清不卡午夜福利| 国产精品 国内视频| 少妇的丰满在线观看| 美女福利国产在线| 人妻少妇偷人精品九色| 免费看光身美女| 又粗又硬又长又爽又黄的视频| 久久99一区二区三区| 国产日韩一区二区三区精品不卡| 老女人水多毛片| 欧美日韩成人在线一区二区| 国产精品久久久久久精品电影小说| 精品人妻熟女毛片av久久网站| 中国三级夫妇交换| 在线亚洲精品国产二区图片欧美| 欧美日韩成人在线一区二区| av女优亚洲男人天堂| 国产成人精品福利久久| 精品第一国产精品| 国产又爽黄色视频| 日本vs欧美在线观看视频| 国产乱来视频区| 老司机影院毛片| 亚洲成国产人片在线观看| 欧美 亚洲 国产 日韩一| 男人舔女人的私密视频| 日韩电影二区| 久久久久久久久久久免费av| 交换朋友夫妻互换小说| 亚洲国产精品专区欧美| 国产成人免费无遮挡视频| 久久精品国产亚洲av天美| 国产永久视频网站| 热99国产精品久久久久久7| 国产一区二区三区综合在线观看 | 日本欧美视频一区| 亚洲av男天堂| 晚上一个人看的免费电影| 国产永久视频网站| 另类亚洲欧美激情| 免费人成在线观看视频色| 成年人免费黄色播放视频| 黄片无遮挡物在线观看| 一边亲一边摸免费视频| 女性被躁到高潮视频| 日韩电影二区| a级毛片在线看网站| 国产精品女同一区二区软件| 日韩 亚洲 欧美在线| 夫妻性生交免费视频一级片| 黄片播放在线免费| 久久精品熟女亚洲av麻豆精品| 69精品国产乱码久久久| av在线播放精品| 中文字幕制服av| 成年人免费黄色播放视频| 国产精品 国内视频| 日日撸夜夜添| 日日摸夜夜添夜夜爱| 亚洲国产成人一精品久久久| 国产伦理片在线播放av一区| 日本与韩国留学比较| 久久青草综合色| 青春草视频在线免费观看| 日韩制服骚丝袜av| 亚洲精品456在线播放app| 久久女婷五月综合色啪小说| 日韩三级伦理在线观看| 最后的刺客免费高清国语| 激情视频va一区二区三区| 乱码一卡2卡4卡精品| 捣出白浆h1v1| 日本色播在线视频| 亚洲情色 制服丝袜| 国产69精品久久久久777片| 制服丝袜香蕉在线| 91精品国产国语对白视频| 美国免费a级毛片| 久久人人爽av亚洲精品天堂| 青春草国产在线视频| tube8黄色片| 日本-黄色视频高清免费观看| 日韩三级伦理在线观看| 99九九在线精品视频| 久久精品国产亚洲av天美| 日本-黄色视频高清免费观看| 久久韩国三级中文字幕| 国产在线视频一区二区| 国产综合精华液| av视频免费观看在线观看| 桃花免费在线播放| 久久精品国产a三级三级三级| 波多野结衣一区麻豆| 51国产日韩欧美| 制服丝袜香蕉在线| 99久国产av精品国产电影| 老司机影院毛片| 91久久精品国产一区二区三区| 纯流量卡能插随身wifi吗| 亚洲人成77777在线视频| 美女国产视频在线观看| 视频中文字幕在线观看| 一本大道久久a久久精品| 亚洲精品456在线播放app| 亚洲欧美成人精品一区二区| 美女主播在线视频| 久久国产亚洲av麻豆专区| 久久毛片免费看一区二区三区| 精品久久蜜臀av无| 精品亚洲成国产av| 亚洲一级一片aⅴ在线观看| 老熟女久久久| 亚洲国产精品专区欧美| 飞空精品影院首页| 看非洲黑人一级黄片| 蜜桃国产av成人99| 国产熟女午夜一区二区三区| 秋霞在线观看毛片| 90打野战视频偷拍视频| 国产国拍精品亚洲av在线观看| 亚洲四区av| 国产高清三级在线| 免费高清在线观看日韩| 99热网站在线观看| 午夜福利影视在线免费观看| 丝瓜视频免费看黄片| 你懂的网址亚洲精品在线观看| 十分钟在线观看高清视频www| 少妇人妻精品综合一区二区| 高清视频免费观看一区二区| 日本色播在线视频| 黄片播放在线免费| 九色亚洲精品在线播放| 国产午夜精品一二区理论片| 这个男人来自地球电影免费观看 | 久久这里有精品视频免费| 日本午夜av视频| 看免费av毛片| 精品99又大又爽又粗少妇毛片| 欧美人与善性xxx| 国产熟女午夜一区二区三区| 啦啦啦在线观看免费高清www| 国产老妇伦熟女老妇高清| 国产成人午夜福利电影在线观看| 成人国语在线视频| 亚洲国产精品国产精品| 久久久亚洲精品成人影院| 天堂8中文在线网| 三上悠亚av全集在线观看| 色94色欧美一区二区| 极品人妻少妇av视频| 国精品久久久久久国模美| 狠狠精品人妻久久久久久综合| 九草在线视频观看| 中文字幕人妻熟女乱码| 亚洲av免费高清在线观看| 在线观看免费视频网站a站| 日本午夜av视频| 欧美国产精品va在线观看不卡| 亚洲人成网站在线观看播放| 2022亚洲国产成人精品| 免费大片18禁| 国产黄色视频一区二区在线观看| 久久亚洲国产成人精品v| 日本色播在线视频| 中文字幕av电影在线播放| 免费人成在线观看视频色| 国产国拍精品亚洲av在线观看| 美女中出高潮动态图| 日韩av免费高清视频| 精品一品国产午夜福利视频| 中文字幕最新亚洲高清| 在线观看免费视频网站a站| 99热国产这里只有精品6| 精品一区二区三区视频在线| 亚洲性久久影院| 日本wwww免费看| 高清欧美精品videossex| 亚洲伊人色综图| 久久人妻熟女aⅴ| 国产一区亚洲一区在线观看| 久久精品久久精品一区二区三区| 夜夜爽夜夜爽视频| 精品国产乱码久久久久久小说| 欧美 亚洲 国产 日韩一| 中国美白少妇内射xxxbb| 国产成人91sexporn| 欧美成人午夜精品| 国产高清不卡午夜福利| 中国三级夫妇交换| 久久精品夜色国产| 国产一区二区三区综合在线观看 | 国产成人免费无遮挡视频| tube8黄色片| 欧美精品一区二区大全| 国产免费视频播放在线视频| 久热这里只有精品99| 97在线视频观看| kizo精华| 国产av国产精品国产| videosex国产| 中文字幕精品免费在线观看视频 | 久久精品久久精品一区二区三区| 欧美97在线视频| 免费观看a级毛片全部| 国产精品久久久久成人av| 日韩欧美一区视频在线观看| 亚洲天堂av无毛| 性色avwww在线观看| 国产成人一区二区在线| 亚洲综合色网址| 麻豆乱淫一区二区| 日本免费在线观看一区| 国精品久久久久久国模美| 国产成人一区二区在线| 一二三四中文在线观看免费高清| 全区人妻精品视频| 国产黄色视频一区二区在线观看| 如日韩欧美国产精品一区二区三区| 99热这里只有是精品在线观看| 满18在线观看网站| 国产av国产精品国产| 天天影视国产精品| 大香蕉久久成人网| 亚洲欧美日韩卡通动漫| 久久久a久久爽久久v久久| 交换朋友夫妻互换小说| 久久午夜福利片| 亚洲成av片中文字幕在线观看 | 97超碰精品成人国产| 国产精品免费大片| 色5月婷婷丁香| 青青草视频在线视频观看| 五月开心婷婷网| av国产久精品久网站免费入址| 国产成人精品久久久久久| 少妇人妻精品综合一区二区| 欧美日韩精品成人综合77777| 亚洲国产成人一精品久久久| 婷婷色麻豆天堂久久| 免费观看无遮挡的男女| 欧美亚洲日本最大视频资源| 国产一区二区三区综合在线观看 | 久久久久国产网址| 人妻人人澡人人爽人人| 日韩人妻精品一区2区三区| 国产精品国产三级国产专区5o| 欧美亚洲 丝袜 人妻 在线| 51国产日韩欧美| 国产免费一级a男人的天堂| 一二三四中文在线观看免费高清| 久久毛片免费看一区二区三区| 精品国产乱码久久久久久小说| 嫩草影院入口| 日韩一区二区视频免费看| 亚洲国产av新网站| 久久久精品区二区三区| 日本免费在线观看一区| 天美传媒精品一区二区| 极品少妇高潮喷水抽搐| 成人国产麻豆网| 丝袜在线中文字幕| 色吧在线观看| 97超碰精品成人国产| 黄色毛片三级朝国网站| 国产成人精品久久久久久| 一边摸一边做爽爽视频免费| 精品国产乱码久久久久久小说| 一个人免费看片子| 亚洲内射少妇av| 赤兔流量卡办理| 男女边吃奶边做爰视频| 国产免费又黄又爽又色| 搡女人真爽免费视频火全软件| 丰满饥渴人妻一区二区三| 国产福利在线免费观看视频| 久久精品国产综合久久久 | 日本vs欧美在线观看视频| 纯流量卡能插随身wifi吗| 欧美亚洲 丝袜 人妻 在线| 水蜜桃什么品种好| 国产福利在线免费观看视频| 国产 精品1| av免费观看日本| tube8黄色片| 搡老乐熟女国产| 看十八女毛片水多多多| 色婷婷av一区二区三区视频| 免费高清在线观看视频在线观看| 在线观看www视频免费| 精品一区二区三区四区五区乱码 | 肉色欧美久久久久久久蜜桃| 精品卡一卡二卡四卡免费| videosex国产| 日韩成人av中文字幕在线观看| 考比视频在线观看| 在线观看三级黄色| 精品亚洲成a人片在线观看| 免费播放大片免费观看视频在线观看| 人妻系列 视频| 一级片免费观看大全| 我要看黄色一级片免费的| 中文字幕另类日韩欧美亚洲嫩草| 18禁在线无遮挡免费观看视频| 五月开心婷婷网| 美女福利国产在线| 久久久国产精品麻豆| 卡戴珊不雅视频在线播放| 大话2 男鬼变身卡| 香蕉精品网在线| 777米奇影视久久| 欧美+日韩+精品| 我要看黄色一级片免费的| 一区二区三区精品91| 亚洲少妇的诱惑av| 久久影院123| 99视频精品全部免费 在线| 久久人人爽人人片av| 日本wwww免费看| 欧美变态另类bdsm刘玥| 99久久综合免费| 男女啪啪激烈高潮av片| 亚洲伊人色综图| 亚洲欧洲精品一区二区精品久久久 | 一区在线观看完整版| 香蕉精品网在线| 观看av在线不卡| 中文字幕亚洲精品专区| freevideosex欧美| 99久久精品国产国产毛片| 五月开心婷婷网| 伦理电影免费视频| 少妇的逼水好多| 男女国产视频网站| 日韩成人伦理影院| 两个人看的免费小视频| 蜜桃在线观看..| 久久综合国产亚洲精品| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 91在线精品国自产拍蜜月| 男女免费视频国产| 中文字幕制服av| √禁漫天堂资源中文www| 两个人免费观看高清视频| 中文字幕最新亚洲高清| 亚洲欧美成人精品一区二区| 男女边吃奶边做爰视频| 国产免费又黄又爽又色| 2018国产大陆天天弄谢| 亚洲成av片中文字幕在线观看 | 麻豆精品久久久久久蜜桃| 最近最新中文字幕免费大全7| 另类亚洲欧美激情| 日韩成人av中文字幕在线观看| 国产成人精品福利久久| 日日爽夜夜爽网站| 国产在线免费精品| 亚洲色图综合在线观看| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 五月开心婷婷网| 一区二区三区四区激情视频| 十八禁网站网址无遮挡| 人人澡人人妻人| 精品酒店卫生间| 美国免费a级毛片| 久久99精品国语久久久| 在线亚洲精品国产二区图片欧美| 日韩精品有码人妻一区| 在线观看人妻少妇| 啦啦啦在线观看免费高清www| 午夜免费观看性视频| 日韩av免费高清视频| 欧美97在线视频| 一边亲一边摸免费视频| 国产色婷婷99| 亚洲一级一片aⅴ在线观看| 内地一区二区视频在线| 最近最新中文字幕免费大全7| 国产亚洲av片在线观看秒播厂| 亚洲精品色激情综合| 久久久精品免费免费高清| 美女xxoo啪啪120秒动态图| 日本免费在线观看一区| 18禁动态无遮挡网站| 91久久精品国产一区二区三区| 欧美日韩一区二区视频在线观看视频在线| 亚洲精品456在线播放app| √禁漫天堂资源中文www| 美女脱内裤让男人舔精品视频| 美女视频免费永久观看网站| 国产精品欧美亚洲77777| 免费高清在线观看日韩| 亚洲av综合色区一区| 男女边吃奶边做爰视频| 在线天堂最新版资源| 婷婷色av中文字幕| √禁漫天堂资源中文www| 全区人妻精品视频| 久久久久久久大尺度免费视频| 成人影院久久| 大话2 男鬼变身卡| 婷婷色av中文字幕|