• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The Smoothing Newton Method for NCP with P0-Mapping Based on a New Smoothing Function

    2023-06-29 10:59:24MAChangfeng馬昌鳳WANGTing王婷
    應(yīng)用數(shù)學(xué) 2023年3期
    關(guān)鍵詞:王婷

    MA Changfeng(馬昌鳳),WANG Ting(王婷)

    (1.Key Laboratory of Digital Technology and Intelligent Computing,School of Big Data,Fuzhou University of International Studies and Trade,Fuzhou 350202,China;2.School of Mathematics and Statistics,Fujian Normal University,Fuzhou 350117,China)

    Abstract: The nonlinear complementarity problem (NCP) can be reformulated as the solution of a nonsmooth system of equations.By introducing a new smoothing function,the problem is approximated by a family of parameterized smooth equations.Based on this smoothing function,we propose a smoothing Newton method for NCP with P0-mapping and R0-mapping.The proposed algorithm solves only one linear equations and performs only one line search per iteration.Under suitable conditions,the method is proved to be globally and local quadratically convergent.Numerical results show that the proposed algorithm is effective.

    Key words: Nonlinear complementarity problem;Smoothing Newton method;Smoothing function;Global convergence;Local quadratic convergence

    1.Introduction

    We consider the nonlinear complementarity problem(NCP),to find a vector(x,y)∈R2nsuch that

    whereF: Rn →Rnis a continuously differentiable mapping,(x,y) is short for (xT,yT)T.IfF(x) is an affine function,then NCP reduces to a linear complementarity problem (LCP).

    NCP has many applications in economics and engineering[5?6].Recently,there has been an increasing interest in solving the NCP by using smoothing methods.Roughly speaking,a smoothing method uses a smoothing function to approximate NCP via a family of parameterized smooth equations,solves the smooth equations approximately at each iteration,and refines the smooth approximation as the iterate progresses toward a solution of NCP.It is evident that smoothing functions play an important pole in smoothing methods.Up to now,many smoothing functions have been proposed: the Kanzow smoothing function[7],Engelke-Kanzow smoothing function[8],and so on.

    It is well known that anx ∈Rnsolves(1.1)if and only if it solves the following nonsmooth equations[1?4]:

    where the plus function [·]+is defined by

    The plus function is applied to each component ofx.In this sense,the plus function plays an important role in mathematical programming.But one big disadvantage of the plus function is that it is not smooth because it is not differentiable.Thus numerical methods that use gradients cannot be directly applied to solve a problem involving a plus function.In this paper,we use a smoothing function approximation to the plus function.With this approximation,many efficient algorithms can be easily employed.We are interested in smoothing method.

    The idea of using smooth functions to solve the nonsmooth equation reformulation of complementarity problems and related problems has been investigated actively.[9]Recently,there have been strong interests in smoothing Newton methods for solving the complementarity problem.[21?27]Note that some of them,ZHANG and GAO[21]propose a one-step smoothing Newton method for solving theP0-LCP based on Kanzow’s smoothing function.Their smoothing Newton method solves only one linear system of equations and performs only one line search at each iteration.It is proved that their proposed algorithm has global convergence and local quadratic convergence in absence of strict complementarity assumption at theP0-LCP solution.Later,they extend this method to the NCP based on the smoothing symmetric perturbed Fischer function[21]and the algorithm also has global convergence and local quadratic convergence without strict complementarity assumption.This algorithm has strong convergence results under weaker conditions and has a feature that the full stepsize of 1 will eventually be accepted.Motivated by the feature of this algorithm,in this paper,by using a new smoothing function approximation to the plus function above mentioned and modifying the algorithms in[21],we propose a smoothing method for NCP with aP0-mapping andR0-mapping.Compared to the algorithm in [21],our method has all their properties and has the following nice features: Our algorithm is simper and the fast step in our algorithm keeps the local quadratic convergence.

    We establish the global linear and local quadratic convergence of the algorithm under suitable assumptions.Lastly,we give some numerical results which show that our method is efficient.For any (x,y)∈R2n,μ >0,our smoothing method for NCP is based on the following equation

    whereμis a smoothing parameter.It is easy to show that

    This paper is organized as follows.In Section 2,we study a few properties of the smoothing function.In Section 3,we give a one-step smoothing Newton method and the global linear convergence.The local quadratic convergence of the algorithm are discussed in Section 4.Preliminary numerical results are reported in Section 5.

    In our notation,all vectors are column vectors,Rndenotes the space ofn-dimensional real column vectors,anddenotes the nonnegative [respectively,positive]orthant in Rn.For convenience,we also write (uT,vT)Tas (u,v) for any vectorsuandv.We denoteI={1,2,···,n}.For any continuously differentiable function

    we denote its Jacobian by

    where?gidenotes the gradient ofgifori=1,2,···,n.

    2.Properties of the new Smoothing Function

    In this section,we mention some properties of the new smoothing function.

    Lemma 2.1Let the smoothing function?(μ,t) be defined by (1.5).We have the following results.

    Lemma 2.2For anyμ1≠μ2∈R+,we have

    ProofWithout loss of generality,we assume that 0≤μ1<μ2.

    The proof is completed.

    For any (x,y)∈R2,from the smoothing function?(μ,·) defined by (1.5),we can obtain that

    By simple calculation,we have

    It is not difficult to see thatare continuous withμ>0.Then,from (2.1)-(2.3),we have the following results.

    Lemma 2.3For any (μ,x,y)∈R++×R2,we have

    Lemma 2.4FunctionH(μ,x,y) is continuously differentiable on R++×Rn×Rnand

    whereIdenotes then×nidentity matrix and

    3.Algorithm and Global Linear Convergence

    Now we give the algorithm and some preliminaries that will be used throughout this paper.

    Algorithm 3.1(One-step smoothing Newton method)

    Step 0 Initialization.Chooseσ ∈(0,0.5],α ∈(0.5,1),δ ∈(0,1),ε≥0.Take an arbitrary vectorz0:=(μ0,x0,y0)∈R++×R2n.Chooseγ ∈[1,∞) such that‖H(z0)‖2/γ <1 andμ0/γ <1.Sete1:=(1,0,···,0)T∈R2n+1andk:=0.

    Definition 3.1A mappingF:Rn →Rnis said to be a

    1)P0mapping if for allx,y ∈Rn,x/=y,there exists an indexi ∈Isuch thatxi≠yiand

    Lemma 3.1LetH(z) :=H(μ,x,y) be defined by (1.3).For anyz:=(μ,x,y)∈R++×R2n,define the level set

    wherez0is given in Algorithm 3.1.Then,for anyμ2≥μ1>0,the set

    is bounded.Furthermore,for anyμ>0,the setLμ(z0) defined by (3.4) is bounded.

    ProofBy Lemma 2.2,for all (x,y)∈Lμ(z0,μ1,μ2),we have

    where the second inequality follows from the relation ofG(μ,x,y) andΦ(μ,x,y).Thus,‖G(0,x,y)‖1is bounded.On the other hand,by‖min{x,F(x)}?min{x,y}‖1≤‖y ?F(x)‖1,we have

    where the first equality follows from min{x,y}=x ?[x ?y]+,(1.4) and Lemma 2.1 (ii),and the last inequality follows from the above deduction.So we have

    By the above inequality,for any (x,y)∈Lμ(z0,μ1,μ2),‖min{x,F(x)}‖1is bounded.By Proposition 3.12 in [10],ifFis anR0function,then{x}is bounded if‖min{x,F(x)}‖1is bounded.BecauseF(x) is continuous and‖y ?F(x)‖1≤‖H(μ,x,y)‖1≤‖H(z0)‖1,we obtain that{y}is bounded if (x,y)∈Lμ(z0,μ1,μ2).Then the setLμ(z0,μ1,μ2) is bounded.This completes the first part of the lemma.The boundedness ofLμ(z0) with anyμ>0 is the immediate corollary of the first part.

    Lemma 3.2IfFis aP0mapping,then Algorithm 3.1 is well defined and generates an infinite sequence{zk=(μk,xk,yk)}withμk ∈R++andμk ≥σkμ0for allk >0.If for anyμ>0,(xk,yk)∈Lμ(z0),then we can show that (xk+1,yk+1)∈Lμ(z0) for allk >0.

    ProofFrom Lemmas 2.3 and 2.4,we can know that

    which imply thatDxand?Dyare positive diagonal matrices for any (μ,x,y)∈R++×R2n.SinceFis aP0mapping,thenF′is aP0matrix for anyx ∈Rn(see [11],Lemma 5.4).Thus,the matrixH′is nonsingular for anyμ>0 (see [12],Lemma 4.1).So the system (3.1) is well defined and has a unique solution.On the other hand,we can show that the backtracking line search (3.3) terminate finitely.From (3.1),we can obtain that

    Therefore,for anyλ ∈(0,1]we obtain that

    Thus,for anyλ ∈(0,1],by differentiability ofH,and combining (3.5),(3.6) andσk=‖H(zk)‖2min{1,‖H(zk)‖2}/γ,we have

    It means that exists a constant∈(0,1]such that

    holds for anyλ ∈(0,].This indicates that Step 3 of Algorithm 3.1 is well defined at thekth iteration.Therefore,by (3.5) and Steps 2-3,we haveμk+1=σkμ0>0 orλk ∈(0,1]andμk+1=μk+λk?μk=(1?λk)μk+λkσkμ0>0.Thus,fromμ0>0 and the above statements,we obtain that Algorithm 3.1 is well defined and generates an infinite sequence{zk=(μk,xk,yk)}withμk ∈R++and we can easily obtainμk ≥σkμ0for allk >0.

    Since (xk,yk)∈Lμ(z0),if Steps 2 is accepted,then from (3.2) andσ ∈(0,0.5),we can know that

    Otherwise,we obtain that (3.3) holds.We have

    which indicates that (xk+1,yk+1)∈Lμ(z0).We complete the proof.

    The following theorem gives the global convergence of Algorithm 3.1 and the boundedness of the iteration sequence generated by Algorithm 3.1.

    Assumption 3.1The solution set of NCP (1.1) is nonempty and bounded.

    Theorem 3.1Suppose thatFis aP0function,and assume that the sequence{zk}is generated by Algorithm 3.1.The following three statements are valid.

    (a) limk→∞‖H(zk)‖2=0 and limk→∞μk=0.

    (b) Every accumulation point of the sequence{(xk,yk)}is a solution ofNCP(F).

    (c) If Assumption 3.1 is satisfied,then the sequence{(xk,yk)}is bounded.

    Proof(a) LetK1andK2be the sets of iteration indexksuch that the next iteratek+1 is obtained through Step 2 and step 3,respectively.(a) can be proved as follows:Case 1 IfK1is infinite,from (3.2) andσ ∈(0,0.5],we can know that

    Formμk=σkμ0and (3.10),we have limk(∈K1)→∞μk=0.

    Case 2 Suppose that the setK1is finite,thenk ∈K2for allksufficiently large.In the following we assume on the contrary that

    From (3.6) and Lemma 3.2,we obtain that

    whereσ?=Hmin{1,H}/γ.Then,by Lemmas 3.1,3.2,we obtain that the sequence{(xk,yk),k ∈K2}is bounded.Thus,{zk,k ∈K2}is bounded.Subsequently if necessary,we may assume that there exists a pointz?=(μ?,x?,y?)∈R++×R2nsuch that

    It is easy to see that

    From‖H(z?)‖2>0,we have limk→∞λk=0,thus,the stepsize:=λk/δdoes not satisfy the line search criterion (3.3) for any sufficiently largek;i.e.,the following inequality holds:

    for any sufficiently largek,which implies that

    Fromμ?>0,we know thatH(z) is continuously differentiable atz?.Letk →∞,then the above inequality gives

    In addition,by taking parts of the limit on (3.1),we have

    Combining (3.11) with (3.12) we have

    which contradicts the fact thatδ ∈(0,1) andμ0/γ <1.This implies thatH(z?)=0.Thus,μ?=0 by the definition ofH(z).

    In addition,by (3.3),(3.2) and Lemma 3.2,we obtain that{‖H(zk)‖2}and{μk}are monotonically decreasing.Therefore,putting together Case 1 and Case 2,we can know that statement (a) is true.

    (b) Recalling the definition ofH(z) and limk→∞‖H(zk)‖2=0,a simple continuity argument implies that every accumulation point of the sequence{(xk,yk)}is a solution of NCP.

    (c) Similar to the proof of Theorem 3.6 (b) in [20],we can easily obtain that (c) holds.

    4.Local Quadratic Convergence

    In order to discuss the local quadratic convergence of Algorithm 3.1,we need the concept of semismoothness,which was introduced originally by Mifflin[13]for functionals.QI and SUN[14]extended the definition of semismooth function to a vector-valued function.A locally Lipschitz functionF:Rm1→Rm2,which has the generalized Jacobian?F(x)as in Clarke[15],is said to be semismooth atx ∈Rm1if limV ∈?F(x+th′), h′→h, t↓0{V h′}exists for anyh ∈Rm1.F(·) is said to be strongly semismooth atxifFis semismooth atx,and for anyV ∈?F(x+h),h →0,it follows that

    Lemma 4.1[14]Suppose thatΨ:Rn →Rmis a locally Lipschitzian function.Then

    (a)Ψ(·)has generalized Jacobian?Ψ(x)as in[15].AndΨ′(x;h),the directional derivative ofΨatxin the directionh,exists for anyh ∈RnifΨis semismooth atx.Also,Ψ:Rn →Rmis semismooth atx ∈Rnif and only if all its component functions are.

    (b)Ψ(·) is strongly semismooth atxif and only if for anyV ∈?Ψ(x+h),h →0,

    Suppose thatz?is an accumulation point of the sequence{zk}generated by Algorithm 3.1.Then,the assumptions made in Theorem 3.1 indicate thatH(z?)=0 and (x?,y?) is a solution ofNCP(F).Since a vector-valued function is strongly semismooth if and only if all its component functions are strongly semismooth,by Lemma 4.1,we obtain the following lemma.

    Lemma 4.2Let functionΦandHbe defined by (1.4) and (1.3),respectively.Then

    (a)Φ(·,·,·) is strongly semismooth on R+×R2n.

    (b)IfF′(x)is Lipschitz continuous on Rn×n,thenHis strongly semismooth on R+×R2n.

    ProofIt is not difficult to show thatc ?d,(c ?d)2is a strongly semismooth for all(c,d)∈R2.By recalling the definition ofΦand the fact that the composition of strongly semismooth functions is strongly semismooth,we obtain immediately thatΦ(·,·,·)is strongly semismooth at all points R++×R2n,we prove (a).IfF′(x) is Lipschitz continuous on Rn×n,thenxi ?Fi(x),(xi ?Fi(x))2are all strongly semismooth on Rnfor alli ∈I.It is easy to see from Lemma 4.1 that (b) holds.

    Assumption 4.1F′(x) is Lipschitz continuous on Rn×n.

    Theorem 4.1Assume that Assumptions 3.1 and 4.1 are satisfied andz?=(0,x?,y?)is an accumulation point of the infinite sequence{zk}generated by Algorithm 3.1.If allV ∈?H(z?) are nonsingular,then the whole sequence{zk}converges toz?and the relationshold for all sufficiently largek.

    ProofIt follows from Theorem 3.1 thatH(z?)=0.Because allV ∈?H(z?) are nonsingular,then for allzksufficiently close toz?,we have

    whereC >0 is some constant.By Lemma 4.2(ii),we know thatH(z)is strongly semismooth atz?.Hence,for allzksufficiently close toz?,we have

    On the other hand,we know thatH(z) is strongly semismooth atz?which implies thatH(·)locally Lipschitz continuous nearz?,that is,for allzksufficiently close toz?,we have

    Similar to the proof of Theorem 3.1 in [16],for allzksufficiently close toz?,we get

    Then,becauseH(z)is strongly semismooth atz?by Lemma 4.2,H(z)must be local Lipschitz.

    Therefore,for allzksufficiently close toz?,we obtain that

    In view of the updating rule in Step 2 of the smoothing Newton method,(4.6) implies that the smoothing Newton method eventually executes the fast step only forksufficiently large,i.e.,there exists an indexk0such thatk ∈K1and=zkfor allk ≥k0.Therefore,for allk ≥k0,we have

    which,together with (4.6),implies

    Then,for allzksufficiently close toz?,we haveμk+1=.The whole proof is completed.

    5.Numerical Experiment

    In this section,we test our algorithm on some typical test problems.The stopping criterion we used for our algorithm is

    for someε>0.Throughout the numerical experiments,the parameters used in the algorithm areε=10?10,σ=0.5,δ=0.1,μ0=10?2,γ=‖H(z0)‖2/μ0andα=0.95,and sety0=F(x0).All the programming is implemented in MATLAB 7.1.The test problems are introduced as follows: In the first two linear test problems,we have the formF(x)=Mx+qand choose the initial pointx0=(1,1,···,1)T.We summarize the results of our algorithm for several values of the dimensionnin Table 1 and Table 2,respectively.In the last three nonlinear test problems,we choose difference initial points and the numerical results are listed in Table 3,Table 4 and Table 5,respectively.

    LCP 1This linear complementary problem is one for which Murty has shown that principal pivot method I is known to run in a number of pivots exponential in the number of variables in the problem (see [17]),where

    Tab.1 LCP1 Numerical results

    Tab.2 LCP2 Numerical results

    Tab.3 NCP1 Numerical results

    Tab.4 NCP2 Numerical results

    Tab.5 NCP3 Numerical results

    Tab.6 Results of our algorithm by random initial points

    LCP 2This is a linear complementarity problem,where

    NCP 1This problem is a nonlinear complementarity problem from Kojima-Shindoet[18]

    NCP 3This problem is a nonlinear complementarity problem from Kanzow(see [19]).It is obtained by five different definitions,where

    From Tables 1-5,we see that the algorithm can solve these problems efficiently.From Column 4 of the five tables,we know that‖H‖2tends to 0 rapidly at the end of the algorithm.This shows the quadratic convergence behavior of our method.

    To illustrate the stability of our algorithm,we use the algorithm to solve problems NCP1,NCP2 and NCP3 for the initial pointx0which is produced randomly in (0,10).The number of the iterations is listed in Table 6.

    6.Conclusions

    Based on the ideas developed in smoothing Newton methods,we approximated the solution of the equivalent system of nonsmooth equations of nonlinear complementarity problem withP0-function andR0-function by making use of a new smoothing function.Then we presented a so-called one-step smoothing-type algorithm to solve the parameterized smooth equations.We have shown that Algorithm 3.1 converges globally and has local quadratic convergence result if the NCP(F) (1.1) satisfies a non-singularity condition andF′(x) is Lipschitz continuous on Rn×n.Numerical experiments show that the algorithm is efficient.Furthermore,these experiments demonstrate the quadratic convergence.

    猜你喜歡
    王婷
    湖北工程學(xué)院美術(shù)與設(shè)計(jì)學(xué)院教師王婷作品
    當(dāng)自卑遇見(jiàn)自卑
    關(guān)聯(lián)方披露準(zhǔn)則修訂建議
    王婷
    “悅讀”理念指導(dǎo)下的小學(xué)英語(yǔ)繪本閱讀教學(xué)實(shí)踐與探究
    奇險(xiǎn)太行
    炎黃地理(2019年10期)2019-09-10 07:22:44
    An Analysis of the Image of Room in Pinter’s Plays
    An Appreciation of Symbols in Invisible Man
    不能丟的信任
    A movie review of Jodhaa Akbar
    亚洲av日韩在线播放| 国产视频首页在线观看| 高清av免费在线| 日韩av免费高清视频| 久久午夜综合久久蜜桃| 国产一区二区在线观看av| 亚洲国产av新网站| 各种免费的搞黄视频| 精品一区在线观看国产| 一区二区三区免费毛片| 狂野欧美激情性bbbbbb| 亚洲图色成人| 午夜久久久在线观看| 久久久久精品久久久久真实原创| 成人国产av品久久久| 在线亚洲精品国产二区图片欧美 | 久久99热6这里只有精品| 色视频在线一区二区三区| 高清午夜精品一区二区三区| 亚洲av免费高清在线观看| 日韩一本色道免费dvd| 国产乱来视频区| 成人黄色视频免费在线看| 国产av一区二区精品久久| 好男人视频免费观看在线| 街头女战士在线观看网站| 91成人精品电影| 亚洲成人手机| 日本与韩国留学比较| 永久网站在线| 欧美三级亚洲精品| 两个人免费观看高清视频 | 亚洲精品视频女| 成人国产麻豆网| 久久人人爽人人爽人人片va| 热re99久久国产66热| 简卡轻食公司| 亚洲国产精品国产精品| h视频一区二区三区| 日韩电影二区| 18禁动态无遮挡网站| 国产精品久久久久成人av| 9色porny在线观看| 中文精品一卡2卡3卡4更新| 精品久久久久久久久亚洲| 午夜福利网站1000一区二区三区| 国产男女超爽视频在线观看| 人人妻人人爽人人添夜夜欢视频 | 国产精品麻豆人妻色哟哟久久| 另类精品久久| 亚洲精品456在线播放app| 91成人精品电影| 精品少妇黑人巨大在线播放| 亚洲精品视频女| 一区二区三区乱码不卡18| 麻豆成人午夜福利视频| 观看免费一级毛片| 国产欧美亚洲国产| 欧美精品一区二区大全| 中国三级夫妇交换| 在线观看免费高清a一片| 少妇熟女欧美另类| h视频一区二区三区| 亚洲av二区三区四区| 亚洲精品日韩在线中文字幕| 搡女人真爽免费视频火全软件| 亚洲国产精品一区三区| 久久久久网色| 国产深夜福利视频在线观看| 人妻一区二区av| 国产免费一级a男人的天堂| 欧美三级亚洲精品| 国产极品天堂在线| 成人毛片a级毛片在线播放| 成人毛片60女人毛片免费| 色94色欧美一区二区| 国产探花极品一区二区| 男人添女人高潮全过程视频| 国产高清三级在线| 亚洲图色成人| 黑人巨大精品欧美一区二区蜜桃 | 寂寞人妻少妇视频99o| 黄色日韩在线| 欧美日韩综合久久久久久| 色94色欧美一区二区| av天堂中文字幕网| 国产黄片美女视频| 日韩精品有码人妻一区| 国产高清国产精品国产三级| 国产成人aa在线观看| 欧美精品高潮呻吟av久久| 亚洲国产日韩一区二区| 欧美日韩在线观看h| 日本猛色少妇xxxxx猛交久久| 亚洲高清免费不卡视频| 狂野欧美白嫩少妇大欣赏| 丁香六月天网| 国产av精品麻豆| 3wmmmm亚洲av在线观看| 校园人妻丝袜中文字幕| 国产亚洲一区二区精品| 国产伦在线观看视频一区| 久久久久久久久久久久大奶| 日日撸夜夜添| 日韩欧美精品免费久久| 亚洲精品中文字幕在线视频 | 久久99精品国语久久久| 国国产精品蜜臀av免费| 2021少妇久久久久久久久久久| 久久久久久久大尺度免费视频| 亚洲丝袜综合中文字幕| 亚洲av欧美aⅴ国产| 我的女老师完整版在线观看| 精品久久久精品久久久| 在线观看人妻少妇| 黑丝袜美女国产一区| 成人黄色视频免费在线看| 亚洲精品国产色婷婷电影| 亚洲四区av| 国产精品伦人一区二区| 国产成人午夜福利电影在线观看| 日本黄大片高清| 99久久中文字幕三级久久日本| 午夜福利视频精品| 自线自在国产av| 伊人久久精品亚洲午夜| 欧美精品一区二区免费开放| 久久99热这里只频精品6学生| 日韩av免费高清视频| 97超视频在线观看视频| 99久久中文字幕三级久久日本| av免费在线看不卡| 视频区图区小说| 美女主播在线视频| 午夜av观看不卡| 精品国产乱码久久久久久小说| 美女主播在线视频| 亚洲欧美成人综合另类久久久| 久久久久精品久久久久真实原创| 99热国产这里只有精品6| 亚洲av成人精品一二三区| 久久久久精品久久久久真实原创| 七月丁香在线播放| 黑人高潮一二区| 2018国产大陆天天弄谢| 亚洲怡红院男人天堂| 久久人人爽人人爽人人片va| 啦啦啦在线观看免费高清www| 各种免费的搞黄视频| 人人妻人人澡人人看| 亚洲天堂av无毛| 少妇人妻 视频| 亚洲av.av天堂| 高清av免费在线| 国产亚洲欧美精品永久| 成人特级av手机在线观看| 亚洲欧洲精品一区二区精品久久久 | 欧美成人精品欧美一级黄| 国产91av在线免费观看| 亚洲第一av免费看| 两个人的视频大全免费| 欧美另类一区| 麻豆乱淫一区二区| 日本欧美视频一区| 夜夜看夜夜爽夜夜摸| 亚洲国产精品专区欧美| 美女内射精品一级片tv| 国产日韩欧美亚洲二区| 美女大奶头黄色视频| 精品久久久久久久久av| 五月天丁香电影| 国产一区有黄有色的免费视频| 成人亚洲欧美一区二区av| 日本vs欧美在线观看视频 | 亚洲欧美成人精品一区二区| 国产精品无大码| 丰满迷人的少妇在线观看| 麻豆精品久久久久久蜜桃| 午夜影院在线不卡| av国产精品久久久久影院| 天堂8中文在线网| 一区二区三区四区激情视频| 国产在视频线精品| 欧美日韩av久久| 成人二区视频| 欧美日韩亚洲高清精品| 极品少妇高潮喷水抽搐| 成人美女网站在线观看视频| 两个人免费观看高清视频 | 国产精品秋霞免费鲁丝片| 一本色道久久久久久精品综合| 中国国产av一级| av女优亚洲男人天堂| 国产精品国产av在线观看| 精品久久久久久久久亚洲| 最近手机中文字幕大全| 亚洲无线观看免费| 在线观看三级黄色| 国产91av在线免费观看| 男人舔奶头视频| 亚洲精品久久午夜乱码| 国产日韩欧美亚洲二区| 一区二区三区精品91| 亚洲成人手机| 亚洲人成网站在线观看播放| 极品人妻少妇av视频| 久久久久网色| 成人亚洲精品一区在线观看| 一级a做视频免费观看| 国产无遮挡羞羞视频在线观看| 波野结衣二区三区在线| 日韩制服骚丝袜av| 男人爽女人下面视频在线观看| 免费人成在线观看视频色| 国内少妇人妻偷人精品xxx网站| 多毛熟女@视频| 国产日韩欧美视频二区| 黄色一级大片看看| 少妇人妻 视频| 一本一本综合久久| 亚洲精品一二三| 欧美亚洲 丝袜 人妻 在线| 美女xxoo啪啪120秒动态图| 特大巨黑吊av在线直播| 插逼视频在线观看| 97在线视频观看| 久久久久久久大尺度免费视频| 色94色欧美一区二区| 我的女老师完整版在线观看| 国产中年淑女户外野战色| 国产精品99久久久久久久久| 国产精品秋霞免费鲁丝片| 国产亚洲精品久久久com| 日韩精品免费视频一区二区三区 | 观看美女的网站| 久久人人爽人人片av| 九草在线视频观看| 亚洲精品乱久久久久久| 一本久久精品| 免费黄色在线免费观看| 亚洲精品成人av观看孕妇| 国产亚洲精品久久久com| 欧美丝袜亚洲另类| av线在线观看网站| 日韩电影二区| 日韩,欧美,国产一区二区三区| 男的添女的下面高潮视频| 久久久久精品久久久久真实原创| 国产精品免费大片| 久久精品久久精品一区二区三区| 亚洲国产色片| 免费黄网站久久成人精品| 在线观看免费视频网站a站| 成人午夜精彩视频在线观看| av福利片在线观看| 少妇的逼好多水| 亚洲精品成人av观看孕妇| 亚洲欧美日韩东京热| 九色成人免费人妻av| 99热全是精品| 欧美日本中文国产一区发布| 日本午夜av视频| 亚洲国产色片| 精品酒店卫生间| 日韩三级伦理在线观看| 我要看日韩黄色一级片| 人妻人人澡人人爽人人| 黄色视频在线播放观看不卡| 午夜精品国产一区二区电影| 大又大粗又爽又黄少妇毛片口| 99国产精品免费福利视频| 国产精品一区二区性色av| 亚洲美女黄色视频免费看| 欧美精品国产亚洲| 青青草视频在线视频观看| av女优亚洲男人天堂| 内地一区二区视频在线| 十八禁高潮呻吟视频 | 精品人妻偷拍中文字幕| 成人影院久久| 狠狠精品人妻久久久久久综合| 夜夜看夜夜爽夜夜摸| 成人特级av手机在线观看| 晚上一个人看的免费电影| 大香蕉久久网| 亚洲自偷自拍三级| 久久99热6这里只有精品| 亚洲无线观看免费| 亚洲国产最新在线播放| 黑人巨大精品欧美一区二区蜜桃 | 男人狂女人下面高潮的视频| av.在线天堂| 国产视频首页在线观看| 亚洲不卡免费看| av天堂中文字幕网| 日韩精品有码人妻一区| 校园人妻丝袜中文字幕| 亚洲精品成人av观看孕妇| 一级av片app| 亚洲人成网站在线观看播放| 国产男人的电影天堂91| 97在线人人人人妻| 精品国产一区二区久久| 韩国高清视频一区二区三区| 天天躁夜夜躁狠狠久久av| 午夜91福利影院| 免费看光身美女| 精品一区在线观看国产| 久久久a久久爽久久v久久| 久久99蜜桃精品久久| 美女内射精品一级片tv| 久久这里有精品视频免费| 亚洲成人av在线免费| 精品午夜福利在线看| 欧美丝袜亚洲另类| 大话2 男鬼变身卡| 一级二级三级毛片免费看| 国产亚洲av片在线观看秒播厂| 这个男人来自地球电影免费观看 | 精品酒店卫生间| 少妇人妻 视频| 国产免费视频播放在线视频| 人人妻人人看人人澡| 亚洲欧洲国产日韩| 亚洲国产色片| 日韩熟女老妇一区二区性免费视频| 中文精品一卡2卡3卡4更新| 国产精品蜜桃在线观看| 交换朋友夫妻互换小说| videossex国产| 蜜桃在线观看..| 亚洲av男天堂| 成人二区视频| 三级国产精品欧美在线观看| 91久久精品国产一区二区成人| av在线app专区| 男人舔奶头视频| 亚洲高清免费不卡视频| h视频一区二区三区| 亚洲美女视频黄频| 51国产日韩欧美| av福利片在线观看| 成人漫画全彩无遮挡| 丁香六月天网| 99热国产这里只有精品6| 水蜜桃什么品种好| 日本免费在线观看一区| 91在线精品国自产拍蜜月| av黄色大香蕉| 最新的欧美精品一区二区| 校园人妻丝袜中文字幕| 免费人成在线观看视频色| 亚洲欧洲国产日韩| 热re99久久精品国产66热6| 精品熟女少妇av免费看| 国产高清有码在线观看视频| 国产午夜精品一二区理论片| 国产精品国产三级国产av玫瑰| 热re99久久精品国产66热6| 国产成人精品久久久久久| 日日爽夜夜爽网站| 色5月婷婷丁香| xxx大片免费视频| 极品教师在线视频| 伊人亚洲综合成人网| 国产av国产精品国产| 国产一区有黄有色的免费视频| 国产精品一区二区在线观看99| 如日韩欧美国产精品一区二区三区 | 狂野欧美白嫩少妇大欣赏| 国产伦理片在线播放av一区| 婷婷色综合大香蕉| 国产精品久久久久成人av| 熟妇人妻不卡中文字幕| 纵有疾风起免费观看全集完整版| 久久人人爽av亚洲精品天堂| 国产色爽女视频免费观看| 欧美日韩视频精品一区| 下体分泌物呈黄色| 精品酒店卫生间| 国产欧美另类精品又又久久亚洲欧美| 97精品久久久久久久久久精品| 波野结衣二区三区在线| 成人影院久久| 亚洲av不卡在线观看| 黄色日韩在线| 免费av中文字幕在线| 国产视频内射| 欧美日韩综合久久久久久| 成人18禁高潮啪啪吃奶动态图 | 97超视频在线观看视频| 久久久久国产精品人妻一区二区| av有码第一页| 少妇的逼好多水| 老熟女久久久| 亚洲精品,欧美精品| 婷婷色综合www| 少妇的逼水好多| 26uuu在线亚洲综合色| 一级毛片我不卡| 人人妻人人看人人澡| 菩萨蛮人人尽说江南好唐韦庄| 精品人妻熟女av久视频| 日韩熟女老妇一区二区性免费视频| 国产精品欧美亚洲77777| 内地一区二区视频在线| 午夜日本视频在线| 亚洲va在线va天堂va国产| 伦精品一区二区三区| 国产男人的电影天堂91| 亚洲精品国产av蜜桃| 亚洲精品视频女| 最近手机中文字幕大全| 免费看光身美女| 有码 亚洲区| 97在线人人人人妻| 国产真实伦视频高清在线观看| 99久国产av精品国产电影| www.av在线官网国产| 久久国产亚洲av麻豆专区| 国产精品一区二区三区四区免费观看| 在线观看免费高清a一片| 国产精品一区二区在线观看99| 午夜91福利影院| 高清午夜精品一区二区三区| 亚洲精品日本国产第一区| 美女大奶头黄色视频| 最近2019中文字幕mv第一页| 黑丝袜美女国产一区| 日本av手机在线免费观看| 秋霞伦理黄片| 精品一区二区免费观看| 亚洲成人一二三区av| 在线看a的网站| 一二三四中文在线观看免费高清| 久久狼人影院| 久久久久精品久久久久真实原创| 欧美日本中文国产一区发布| 国产国拍精品亚洲av在线观看| 九九爱精品视频在线观看| 2022亚洲国产成人精品| 国产亚洲精品久久久com| 国产一区二区三区综合在线观看 | 日韩成人伦理影院| 亚洲自偷自拍三级| 亚洲av在线观看美女高潮| 国产精品成人在线| 久久久久精品性色| 成人亚洲精品一区在线观看| 亚洲情色 制服丝袜| 国产在线男女| 最新中文字幕久久久久| 国产精品一区www在线观看| 日韩av不卡免费在线播放| 性色av一级| 少妇丰满av| 中文字幕人妻熟人妻熟丝袜美| 亚洲国产欧美在线一区| a级一级毛片免费在线观看| 99九九线精品视频在线观看视频| 欧美日本中文国产一区发布| 好男人视频免费观看在线| 天堂中文最新版在线下载| 亚洲国产色片| 黄片无遮挡物在线观看| 99久久人妻综合| 成人国产av品久久久| 赤兔流量卡办理| 国产综合精华液| av有码第一页| 国产精品熟女久久久久浪| 亚洲激情五月婷婷啪啪| 18禁动态无遮挡网站| 一级毛片 在线播放| 日本欧美视频一区| 亚洲欧美成人精品一区二区| 欧美国产精品一级二级三级 | 欧美日韩国产mv在线观看视频| 在线看a的网站| 人妻系列 视频| 亚洲精品日韩av片在线观看| 免费黄网站久久成人精品| 爱豆传媒免费全集在线观看| 蜜桃在线观看..| 免费观看无遮挡的男女| 天堂中文最新版在线下载| 最近2019中文字幕mv第一页| 日韩中字成人| 国产日韩欧美在线精品| 丰满迷人的少妇在线观看| 看十八女毛片水多多多| 日韩亚洲欧美综合| 日韩av在线免费看完整版不卡| 另类精品久久| av免费在线看不卡| 中文在线观看免费www的网站| 国产伦精品一区二区三区视频9| 纯流量卡能插随身wifi吗| 亚洲欧美精品专区久久| 国产成人aa在线观看| 国产高清不卡午夜福利| 亚洲欧美日韩卡通动漫| 国产探花极品一区二区| 国产av国产精品国产| 肉色欧美久久久久久久蜜桃| 亚洲精品成人av观看孕妇| 日韩伦理黄色片| 日本欧美视频一区| 在线观看国产h片| 看免费成人av毛片| 最近手机中文字幕大全| 永久免费av网站大全| 另类精品久久| 我的女老师完整版在线观看| 欧美一级a爱片免费观看看| 欧美性感艳星| 99视频精品全部免费 在线| 久久精品夜色国产| 少妇人妻 视频| 成年女人在线观看亚洲视频| 最近中文字幕高清免费大全6| 黄色日韩在线| 最近的中文字幕免费完整| 亚洲精品日韩av片在线观看| 99热这里只有是精品50| 国产综合精华液| 免费av不卡在线播放| 国产成人aa在线观看| av福利片在线| 一级爰片在线观看| 视频中文字幕在线观看| 免费观看av网站的网址| 国产日韩欧美视频二区| 日日撸夜夜添| 在线播放无遮挡| 99九九在线精品视频 | 亚洲精品中文字幕在线视频 | 久久久久久久国产电影| 亚洲内射少妇av| 黄色配什么色好看| 曰老女人黄片| 99热国产这里只有精品6| 久久狼人影院| 日日摸夜夜添夜夜爱| 国产成人精品无人区| 晚上一个人看的免费电影| 欧美精品国产亚洲| 久久久久国产网址| 简卡轻食公司| 亚洲欧洲国产日韩| 赤兔流量卡办理| 美女内射精品一级片tv| 亚洲精品日韩在线中文字幕| 亚洲人成网站在线播| 一边亲一边摸免费视频| 精品酒店卫生间| 一级毛片我不卡| 精品熟女少妇av免费看| 成年人午夜在线观看视频| 男的添女的下面高潮视频| 国产老妇伦熟女老妇高清| 久久99一区二区三区| 五月天丁香电影| 国产成人精品无人区| 简卡轻食公司| 亚洲精品亚洲一区二区| 亚洲欧美日韩另类电影网站| 这个男人来自地球电影免费观看 | 亚洲内射少妇av| 国产伦精品一区二区三区四那| 国产亚洲最大av| 亚洲精品一二三| 91在线精品国自产拍蜜月| 久久久久久久久久久免费av| 亚洲成人手机| 欧美日韩一区二区视频在线观看视频在线| 春色校园在线视频观看| 大话2 男鬼变身卡| 最近的中文字幕免费完整| 免费人妻精品一区二区三区视频| 妹子高潮喷水视频| 婷婷色综合大香蕉| 日日啪夜夜爽| 亚洲国产精品一区三区| 制服丝袜香蕉在线| 久久久久久久国产电影| 亚洲精品国产成人久久av| 99视频精品全部免费 在线| 建设人人有责人人尽责人人享有的| 桃花免费在线播放| 伦精品一区二区三区| 国产老妇伦熟女老妇高清| 最新中文字幕久久久久| 国产成人午夜福利电影在线观看| 亚洲综合精品二区| 日本色播在线视频| a级一级毛片免费在线观看| 国产免费一区二区三区四区乱码| 国产精品偷伦视频观看了| 国产亚洲av片在线观看秒播厂| 日韩成人av中文字幕在线观看| 天天操日日干夜夜撸| 精品99又大又爽又粗少妇毛片| 91久久精品国产一区二区三区| 全区人妻精品视频| 美女视频免费永久观看网站| 啦啦啦在线观看免费高清www| 女人久久www免费人成看片| 婷婷色综合www| 国内少妇人妻偷人精品xxx网站| 三级国产精品片| 一区在线观看完整版| 黑人巨大精品欧美一区二区蜜桃 | 日本欧美视频一区| 激情五月婷婷亚洲|