胡維 劉科 朱毅 張傳濤
摘要:鮑曼不動桿菌是一種全球耐藥機會性革蘭陰性細菌,常引起生物被膜相關(guān)感染。鮑曼不動桿菌極易黏附在導(dǎo)管等醫(yī)療植入物和生物表面,形成生物被膜。由于生物被膜的存在,導(dǎo)致了鮑曼不動桿菌不易被清除,是導(dǎo)致鮑曼不動桿菌泛耐藥或多重耐藥的原因之一。因此,目前亟需開發(fā)預(yù)防和治療鮑曼不動桿菌生物被膜的新方法。本文就近幾年鮑曼不動桿菌生物被膜的預(yù)防和治療作一綜述,以期為鮑曼不動桿菌生物被膜相關(guān)感染的防治提供新思路。
關(guān)鍵詞:鮑曼不動桿菌;生物被膜;預(yù)防;治療
中圖分類號:R378 ?文獻標(biāo)志碼:A
Advances in the prevention and treatment of Acinetobacter baumannii biofilms
Hu Wei, Liu Ke, Zhu Yi, and Zhang Chuan-tao
(Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072)
Abstract Acinetobacter baumannii is a globally drug-resistant opportunistic Gram-negative bacterium that frequently causes biofilm-associated infections. Acinetobacter baumannii can easily adhere to medical implants and biological surfaces such as catheters to form biofilms. Due to the existence of biofilm, the removal of Acinetobacter baumannii is particularly difficult. Therefore, there is an urgent need to develop new methods to prevent and treat Acinetobacter baumannii biofilm. This article reviews the prevention and treatment of Acinetobacter baumannii biofilm infection in recent years, in order to provide new ideas for biofilm prevention and treatment of Acinetobacter baumannii.
Key words Acinetobacter baumannii; Bioflims; Prevention; Treatment
鮑曼不動桿菌是一種革蘭陰性致病菌,能產(chǎn)生多種毒力因子,如孔蛋白OmpA、細菌莢膜、生物被膜等[1]。在所有由革蘭陰性菌引起的醫(yī)院獲得性感染中,2%~10%為鮑曼不動桿菌感染[2]。鮑曼不動桿菌感染范圍廣泛,包括各種生物界面感染如傷口感染、心內(nèi)膜炎、腦膜炎以及各種醫(yī)療導(dǎo)管感染如尿路感染、呼吸機感染等。鮑曼不動桿菌感染最常見于肺部感染,主要發(fā)生在入住重癥監(jiān)護室并通過呼吸機呼吸的患者中,鮑曼不動桿菌引起的呼吸機相關(guān)性肺炎的死亡率為28%~68%[3]。我國2014—2020年耐藥菌監(jiān)測報告顯示,革蘭陰性菌占總耐藥菌比例的70%,其中鮑曼不動桿菌位列前5[4]。
生物被膜是微生物群體以及他們自身所分泌的細胞外聚合物的復(fù)合物[5]。生物被膜可以保護鮑曼不動桿菌使其生存于極其惡劣的環(huán)境中,并且極易黏附在醫(yī)療植入物和生物界面上,形成感染定植,最終難以去除。此外,生物被膜的存在使鮑曼不動桿菌在醫(yī)療機構(gòu)中或者水槽排水管等處駐留,導(dǎo)致了耐藥性的傳播[6]。鮑曼不動桿菌生物被膜相關(guān)感染和抗生素耐藥性日益上升的趨勢已成為最嚴(yán)重的公共衛(wèi)生問題之一。因此,本文就近幾年國內(nèi)外鮑曼不動桿菌生物被膜的防治作一綜述。
1 生物被膜的形成、結(jié)構(gòu)及其影響
細菌生物被膜的形成受自身群體感應(yīng)的調(diào)節(jié)[7]和所處環(huán)境以及細菌屬性的影響[8]。鮑曼不動桿菌的群體感應(yīng)系統(tǒng)由雙組分AbaI/AbaR系統(tǒng)組成,其通過調(diào)節(jié)AHL信號的表達來調(diào)節(jié)生物被膜的形成[9-10]。此外,鮑曼不動桿菌生物被膜形成過程與多重耐藥性和毒力因子的表達呈正相關(guān),如OmpA、Bap、I型菌毛、cus基因簇、AdeFGH、胞外多糖多聚-β-1和6-N-乙酰氨基葡萄糖等[11]。
細菌生物被膜主要由兩個部分組成,一個是其內(nèi)部的細菌群落,另一個是由細菌群落分泌的細胞外聚合物。內(nèi)部微細菌群落因分布在生物被膜不同區(qū)域,其獲得的氧氣和營養(yǎng)不同,導(dǎo)致代謝狀態(tài)也不同。在生物被膜的內(nèi)部深處常常存在“持留細胞”,能夠在抗生素存在壓力情況下存活,并導(dǎo)致了細菌耐受性[12]。細胞外聚合物是由細菌群落分泌的蛋白質(zhì)、細胞外多糖、細胞外DNA和其他微量成分組成的。生物被膜基質(zhì)成分的物理和化學(xué)性質(zhì)與其特定的作用相結(jié)合,產(chǎn)生了整體生物被膜的機械韌性。這些特性使細胞外聚合物能夠保護常駐細胞免受干燥、化學(xué)擾動和殺死捕食者[13]。細菌的生物被膜是一個天然保護屏障,既有助于細菌抵抗抗生素毒性,又給細菌提供了一個緊密安全的場地,促使耐藥基因更加快捷地傳播[14]。
鮑曼不動桿菌經(jīng)常引起生物被膜相關(guān)感染,這些感染對抗生素治療具有極強的耐藥性[8]。在多項臨床鮑曼不動桿菌分離株的研究中,約90%以上的分離株產(chǎn)生生物被膜,并且約占一半比例的菌株擁有強生物被膜形成能力,擁有更強生物被膜形成者具有更廣泛的多重耐藥特性[15-18]。
2 生物被膜的防治策略
近些年來,多重耐藥的鮑曼不動桿菌感染率一直呈上升趨勢,而生物被膜的形成為其重要的耐藥機制之一,因此亟須積極開發(fā)針對生物被膜的治療手段。生物被膜的防治主要分為預(yù)防生物被膜的形成和破壞已經(jīng)形成的成熟生物被膜兩個方面。
2.1 亞抑制濃度抗生素
抗生素是治療細菌感染的傳統(tǒng)治療方法,多黏菌素和替加環(huán)素是治療碳青霉烯類耐藥鮑曼不動桿菌最好的選擇[19]。但是近年來鮑曼不動桿菌對多黏菌素耐藥率日漸上升[20]。多項非劣性薈萃分析表明,替加環(huán)素與各種感染的死亡率增加有關(guān)[21-22],但目前替加環(huán)素試驗中死亡率增加的根本原因尚不確定,所以臨床醫(yī)生傾向于使用小劑量的替加環(huán)素。尋找替代替加環(huán)素和多黏菌素的有效抗生素顯得尤為迫切。近年來針對抗生素的亞抑制濃度研究顯示,亞抑菌濃度的阿奇霉素、替加環(huán)素、米諾環(huán)素、多黏菌素、阿米卡星、美羅培南、甲氧芐啶和磺胺甲惡唑的聯(lián)合使用均有抑制鮑曼不動桿菌生物被膜形成的作用[23-27],其中亞抑制濃度的米諾環(huán)素效果最顯著,能夠抑制96%的生物被膜產(chǎn)生,其作用機制目前尚未闡明[25]。亞抑制濃度的替加環(huán)素處理鮑曼不動桿菌后生物被膜形成下降與生物被膜蛋白表達呈正相關(guān),其可能的機制是下調(diào)外排泵的表達,尤其是AdeFGH[24]。亞抑制濃度的甲氧芐啶和磺胺甲惡唑通過抑制Csu Pilus的表達來防止生物被膜的形成,其機制可能為抑制葉酸合成[27]。而對于其他抗生素,則有很大部分在亞抑制濃度下能夠誘導(dǎo)細菌的生物被膜產(chǎn)生,亞抑制濃度的抗生素抑制生物被膜形成的能力給醫(yī)療植入物的感染帶來了預(yù)防的希望。
阿奇霉素和多黏菌素對鮑曼不動桿菌成熟生物被膜具有很強的清除作用[28-29],抗生素組合比單獨使用具有更強的生物被膜清除和殺菌作用,美羅培南加舒巴坦或舒巴坦加替加環(huán)素在治療48 h后顯示出強于單獨用藥100倍的殺菌效果,并且組合使用能更好地清除生物被膜[30]。亞胺培南和利福平單獨或聯(lián)合治療具有明顯的抗生物被膜作用,兩種抗生素組合顯示出良好的協(xié)同作用[31]。多黏菌素與頭孢他啶聯(lián)合使用,對AbaI/AbaR群體感應(yīng)缺陷的鮑曼不動桿菌菌株形成的穩(wěn)健生物被膜顯示出協(xié)同抗生物被膜作用[32]。近期開發(fā)了一系列新型膜活性抗菌劑2-氨基噻唑磺胺肟類化合物,其中一種苯甲酰衍生物在濃度為1 μg/mL時,抑制率為73.8%,表明其能根除已建立的生物被膜。同時該化合物能有效干擾細胞膜,抑制乳酸脫氫酶,導(dǎo)致細胞質(zhì)內(nèi)容物流出[33]。該研究表明,2-氨基噻唑磺胺肟類化合物可能是開發(fā)新型抗菌藥物的一個有希望的開端。
2.2 抗菌肽
抗菌肽是屬于生物體內(nèi)固有的免疫物質(zhì),因其具有廣譜抗菌和免疫調(diào)節(jié)等作用,被視為細菌感染治療的替代品??咕膐ctominin、SAAP148、兩親性多肽ZP3、天然抗菌肽bicarinalin和BP100治療所需濃度低,有很強的抗生物被膜和殺滅鮑曼不動桿菌作用,并且對哺乳動物細胞無明顯毒副作用[34-37]。在肽庫中鑒定并合成的兩種肽N10和NB2組合使用可以比單獨使用更好地阻止鮑曼不動桿菌形成生物被膜[38]。富含脯氨酸的肽Bac7(1-35)能明顯抑制鮑曼不動桿菌的生長,亞抑制濃度的Bac7(1-35)被內(nèi)化到鮑曼不動桿菌中,抑制細菌運動和生物被膜形成,而不誘導(dǎo)耐藥性[39]??咕呐c抗生素的不同組合可以改善部分抗菌肽治療濃度高的困境,并且具有良好的協(xié)同作用,例如抗菌肽WAM-1和LL-37和亞胺培南、阿米卡星、環(huán)丙沙星組合使用都顯示出協(xié)同作用[40],蜂毒肽和多黏菌素或者亞胺培南有協(xié)同治療作用[41]??咕腍p1404有毒性,研究者通過取代Hp1404的14個C末端殘基的氨基酸來設(shè)計抗菌肽,以降低毒性并提高抗菌活性,結(jié)果顯示模擬肽同樣具有良好的殺菌和抑制生物被膜形成作用,細胞毒性比Hp1404更低[42]。黃蜂肽AMPsAgelaia-MPI和Polybia-MPII對多重耐藥鮑曼不動桿菌黏附和血管支架上的生物被膜形成具有很好的抑制作用,并可以治療成熟的生物被膜[43]??咕牡姆N類豐富、免疫調(diào)節(jié)、作用迅速、選擇性強和不易引起耐藥的特點使其成為抗生素治療的理想替代品。但由于產(chǎn)量低、細胞毒性、體內(nèi)穩(wěn)定性差等使其在臨床應(yīng)用面臨一定程度的困難。合成抗菌肽類似物,提高合成效率,降低毒性,降低生產(chǎn)成本是推進其在臨床防治生物被膜的關(guān)鍵。
2.3 噬菌體
噬菌體在本質(zhì)上屬于病毒,特異性強,能靶向殺滅細菌,無毒副作用,不會破壞機體平衡。噬菌體AB7-IBB1、AB7-IBB2以及AB3及其內(nèi)溶素LysAB3對鮑曼不動桿菌生物被膜有顯著降解和殺菌作用[44-46]。此外,噬菌體組合治療顯示出強烈的抗生物被膜活性,并且其適應(yīng)過程將適應(yīng)噬菌體的宿主范圍增加了近3倍[47]。噬菌體和抗生素的聯(lián)合使用顯著減少了生物被膜生物量和持久的細菌清除作用[48]。
2.4 天然產(chǎn)物、中藥
近年隨著生物被膜研究的增多,許多天然產(chǎn)物已被證明對生物被膜有確切的治療作用。熊果酸及其酰胺衍生物對多黏菌素耐藥的鮑曼不動桿菌有良好的抗菌和抗生物被膜治療效果,其MIC范圍為78~156 μg/mL,在其亞抑制濃度下可抑制和根除>70%的生物被膜形成[49],較低的MIC值提示我們有望進一步開展體內(nèi)研究。甘草次酸、熊果酸和樺木酸、棕櫚油酸和肉豆蔻油酸被證明通過干擾AHL的信號來抑制鮑曼不動桿菌生物被膜的形成和對生物被膜進行破壞[50-51]。另外一些天然產(chǎn)物已被證明主要作用于其他生物被膜毒力因子而發(fā)揮抗生物被膜作用,猴桃和丁香的極性提取物表現(xiàn)出有效的抗生物被膜活性,顯著降低了生物被膜細胞外聚合物中蛋白質(zhì)、細胞外DNA和胞外多糖的含量[52]。α-山竹素下調(diào)bfmR、pgaA、pgaC、csuA/B、ompA、bap、katE和sodB基因的表達,從而對生物被膜的形成以及相關(guān)的毒力特征造成了影響,但它無法分解成熟的生物被膜[53]。桃金娘醇是一種雙環(huán)單萜,廣泛存在于多種植物中,桃金娘醇通過抑制鮑曼不動桿菌菌株的生物被膜相關(guān)毒力因子(如細胞外多糖、細胞表面疏水性、抗氧化劑、群聚和抽搐運動),發(fā)揮抗生物被膜作用。并且桃金娘醇增加了阿米卡星、環(huán)丙沙星、慶大霉素和甲氧芐啶對鮑曼不動桿菌的敏感性[54]。傳統(tǒng)中藥烏梅、黃連、五倍子和黃芩能抑制鮑曼不動桿菌生物被膜形成[55]。中藥、植物提取物和天然產(chǎn)物都是很好的抗菌藥物來源,研究其內(nèi)在的作用機制以及治療濃度有利于更好地將其作用于臨床。目前這方面的大部分研究都是基于體外進行,當(dāng)做體內(nèi)研究時,這些藥物的熱穩(wěn)定性、水溶解性和生物利用度等問題又將是進一步的挑戰(zhàn)。
2.5 小分子化合物
合成或者鑒定新的具有抗生物被膜作用的化合物,可以借助現(xiàn)代各種化合物數(shù)據(jù)庫、分子對接等技術(shù)手段,同時也可以從相似作用機制開發(fā)舊化合物的新用途。最近幾年virstatin被認為通過阻止其毒力因子、毒素共同調(diào)節(jié)菌毛的表達來削弱霍亂弧菌的毒力。Nait等[56]證明100 μmVirstatin同樣可以通過抑制菌毛的產(chǎn)生發(fā)揮顯著的抗鮑曼不動桿菌生物被膜作用。Raorane等[57]研究發(fā)現(xiàn)在16種鹵代吲哚中,5-碘吲哚能迅速抑制鮑曼不動桿菌生長,限制生物被膜的形成和運動,而且它還能以驚人的速度殺死細菌。越來越多的證據(jù)表明,吲哚及其衍生物對多重耐藥細菌具有抗菌和抗生物被膜活性[58]。篩選更大的吲哚衍生物數(shù)據(jù)庫,有利于開發(fā)我們治療耐藥菌及其生物被膜的新藥物。乳酸鋅、氟化亞錫和呋喃酮這3種生物被膜抑制劑在亞最小抑制濃度下能抑制多種耐藥鮑曼不動桿菌生物被膜的形成。這些生物被膜抑制劑與抗生素聯(lián)合使用時,多黏菌素在與乳酸鋅和氟化亞錫的聯(lián)合中分別出現(xiàn)拮抗和無差異,其他生物被膜抑制劑與替加環(huán)素或碳青霉烯類抗生素聯(lián)合使用時,部分為協(xié)同,部分為相加效應(yīng)[26]。Vijayakumar等[59]證明5-羥甲基糠醛通過抑制細胞外基質(zhì),包括多糖和蛋白質(zhì)等的產(chǎn)生和下調(diào)毒力基因來抑制初始生物被膜的形成和清除成熟生物被膜。OmpA是介導(dǎo)鮑曼不動桿菌耐藥性和免疫調(diào)節(jié)的關(guān)鍵毒力因子,同時也作為一種關(guān)鍵蛋白來調(diào)節(jié)鮑曼不動桿菌生物被膜的形成[8],一些研究針對篩選抑制OmpA表達的化合物發(fā)現(xiàn),生物被膜的形成能夠很明顯地被這些化合物抑制[60-61]。這些研究大部分為體外研究,離發(fā)現(xiàn)一種新的化合物或者說老藥新用時,還有一段很長的路要走。
2.6 新型分子材料
近些年來,隨著現(xiàn)代分子材料技術(shù)的快速發(fā)展,打破了傳統(tǒng)藥物的使用概念。新型藥物賦形劑如聚合物納米粒子、水凝膠、微球、金屬納米粒子和脂質(zhì)體等,每種分子材料都可以不同的方式結(jié)合藥物發(fā)揮作用。在最近幾年的研究中報道了氧化鋁納米顆粒、納米銀、含EDTA的納米乳、姜黃素摻雜的光激發(fā)磺胺嘧啶銀納米脂質(zhì)體、殼聚糖修飾的Fe3O4納米、納米復(fù)合材料(銀納米粒子涂有SH-PEG-NOTA并負載亞胺培南)抑制多重耐藥鮑曼不動桿菌的生物被膜形成、黏附以及破壞作用[62-67]。將真菌合成的納米銀涂覆在中心靜脈置管上顯示出顯著的抗生物被膜功效[68]。工程納米水結(jié)構(gòu)用來沖洗傷口,可以顯著減少鮑曼不動桿菌并明顯減少生物被膜面積[69]。這些新型分子材料可能是由于其分子量小,能很容易地通過肽聚糖屏障,進而導(dǎo)致菌細胞破壞[70]。新型材料的出現(xiàn)擴大了我們解決生物被膜的途徑,不僅因為其尺寸小具有殺菌作用,而且還能負載其他藥物達到定向治療的目標(biāo)。
2.7 酶
一些酶制劑可以通過降解鮑曼不動桿菌的細胞壁或細胞外聚合物來達到破壞生物被膜的目的。鮑曼不動桿菌內(nèi)源性溶菌酶樣蛋白Ablysin是針對細菌細胞壁的新型肽聚糖水解酶,在該酶的作用下鮑曼不動桿菌細菌細胞隨著濃度(250~2000 μg/mL)依賴性破裂,并伴隨著相關(guān)生物被膜的消除[71]。經(jīng)研究發(fā)現(xiàn)一個調(diào)節(jié)乙醇脫氫酶的基因是一種已知的細菌群體感應(yīng)分子,在大部分鮑曼不動桿菌臨床分離株中明顯上調(diào)。通過添加乙醇脫氫酶的抑制劑雙硫侖和活化劑?;撬嶙C明,前者顯著抑制細菌生長、運動和生物被膜形成;后者導(dǎo)致細菌生長、運動和生物被膜產(chǎn)生的劑量依賴性增加。通過找到關(guān)鍵作用的酶,相應(yīng)地根據(jù)其作用施加抑制劑或激活劑這也為生物被膜的治療提供了思路。群體猝滅還可以通過AHL內(nèi)酯酶對群體信號的酶促降解來實現(xiàn)。在Chow等[72]的研究中,首次展示了使用重組群體猝滅酶來破壞人類細菌病原體鮑曼不動桿菌的生物被膜形成。酶是人體化學(xué)反應(yīng)的重要調(diào)節(jié)劑,其穩(wěn)定性差,目前尚不能排除對其他生理反應(yīng)帶來影響。
2.8 其他
醫(yī)療環(huán)境中的生物被膜大部分黏附在醫(yī)療植入物上,異型鉗形鈀(Ⅱ)復(fù)合物涂層骨科植入物阻礙鮑曼不動桿菌的AbaI/AbaR群體感應(yīng)系統(tǒng)和生物被膜發(fā)育,可能是由于該復(fù)合物抑制了關(guān)鍵的群體感應(yīng)介導(dǎo)的毒力因子,如菌毛介導(dǎo)的表面運動和多糖的產(chǎn)生[73]。光動力滅活是一種有吸引力的治療多藥耐藥細菌感染的方法,通過添加生物或化學(xué)分子可以進一步增強陰離子光敏劑如赤蘚紅B的光敏效果,聯(lián)合乙酸和殼聚糖可以增強赤蘚紅介導(dǎo)的光動力滅活根除鮑曼不動桿菌浮游細胞和生物被膜細胞[74]。此外,疫苗和抗體的研發(fā)也可以作為耐藥菌治療的一種新手段。在一項小鼠模型和體外實驗中證明單獨使用單克隆抗體TRL1068即可產(chǎn)生破壞生物被膜的功效。此外,TRL1068與亞胺培南的聯(lián)合治療與單獨使用抗生素相比,顯示導(dǎo)管黏附細菌顯著減少[75]。
3 小結(jié)與展望
目前,鮑曼不動桿菌感染在醫(yī)院環(huán)境中較為常見,多重耐藥的鮑曼不動桿菌感染尤見于重癥監(jiān)護病房住院的危重患者中,鮑曼不動桿菌通過形成生物被膜而難以被消滅。本文將近幾年的一些預(yù)防和治療鮑曼不動桿菌生物被膜的研究進行了歸納和總結(jié),包括亞抑制濃度抗生素、抗菌肽、噬菌體、酶、中藥、天然化合物和新型分子材料等,通過其抑制生物被膜的形成或破壞成熟的生物被膜來以期達到更有效地控制鮑曼不動桿菌感染的目的。但是這些研究大部分是體外實驗,是否能夠用于臨床還需要進一步開展體內(nèi)實驗驗證。另外,本文中提到的一些如光動力療法、群體猝滅酶等新技術(shù)或者聯(lián)合治療為今后的研究提供了思路。
參 考 文 獻
Tiku V. Acinetobacter baumannii: Virulence strategies and host defense mechanisms[J]. DNA Cell Biol, 2022, 41(1): 43-48.
Joly-Guillou M L. Clinical impact and pathogenicity of Acinetobacter[J]. Clin Microbiol Infect, 2005, 11(11): 868-873.
Mohd Sazlly Lim S, Zainal Abidin A, Liew SM, et al. The global prevalence of multidrug-resistance among Acinetobacter baumannii causing hospital-acquired and ventilator-associated pneumonia and its associated mortality: A systematic review and meta-analysis. J Infect. 2019, 79(6): 593-600.
全國細菌耐藥監(jiān)測網(wǎng). 2020年全國細菌耐藥監(jiān)測報告[J]. 中華檢驗醫(yī)學(xué)雜志, 2022, 45(2): 122-136.
賈文祥. 微生物生物被膜研究的新進展[J]. 微生物學(xué)免疫學(xué)進展, 2012, 40(5): 7-15.
Bowler P, Murphy C, Wolcott R. Biofilm exacerbates antibiotic resistance: Is this a current oversight in antimicrobial stewardship[J]? Antimicrob Resist Infect Control, 2020, 9(1): 162.
Das R, Mehta D K. Microbial biofilm and quorum sensing inhibition: Endowment of medicinal plants to combat multidrug-resistant bacteria[J]. Curr Drug Targets, 2018, 19(16): 1916-1932.
Gedefie A, Demsis W, Ashagrie M, et al. Acinetobacter baumannii biofilm formation and its role in disease pathogenesis: A review[J]. Infect Drug Resist, 2021, 14: 3711-3719.
Law S K K, Tan H S. The role of quorum sensing, biofilm formation, and iron acquisition as key virulence mechanisms in Acinetobacter baumannii and the corresponding anti-virulence strategies[J]. Microbiol Res, 2022, 260: 127032.
董華興, 金懌陽, 程冠宇, 等. 群體淬滅在抑制鮑曼不動桿菌生物膜形成與耐藥中的研究進展[J]. 中國新藥與臨床雜志, 2021, 40(12): 801-805.
Eze E C, Chenia H Y, EI Zowalaty M E. Acinetobacter baumannii biofilms: Effects of physicochemical factors, virulence, antibiotic resistance determinants, gene regulation, and future antimicrobial treatments[J]. Infect Drug Resist, 2018, 11: 2277-2299.
Balaban N Q, Helaine S, Lewis K, et al. Definitions and guidelines for research on antibiotic persistence[J]. Nat Rev Microbiol, 2019, 17(7): 441-448.
Flemming H C, Wingender J, Szewzyk U, et al. Biofilms: an emergent form of bacterial life[J]. Nat Rev Microbiol, 2016, 14(9): 563-575.
Van Meervenne E, De Weirdt R, Van Coillie E, et al. Biofilm models for the food industry: Hot spots for plasmid transfer?[J]. Pathog Dis, 2014, 70(3): 332-338.
Yang C H, Su P W, Moi S H, et al. Biofilm formation in Acinetobacter baumannii: Genotype-phenotype correlation[J]. Molecules, 2019, 24(10): 1849.
Babapour E, Haddadi A, Mirnejad R, et al. Biofilm formation in clinical isolates of nosocomial Acinetobacter baumannii and its relationship with multidrug resistance[J]. Asian Pac J Trop Biomed, 2016, 6: 528-533.
Zeighami H, Valadkhani F, Shapouri R, et al. Virulence characteristics of multidrug resistant biofilm forming Acinetobacter baumannii isolated from intensive care unit patients[J]. BMC Infect Dis, 2019, 19(1): 629.
Bala M, Gupte S, Aggarwal P, et al. Biofilm producing multidrug resistant Acinetobacter species from a tertiary care hospital: A therapeutic challenge[J]. Int J Res Med Sci, 2016, 4(7): 3024-3026.
Sheng W H, Wang J T, Li S Y, et al. Comparative in vitro antimicrobial susceptibilities and synergistic activities of antimicrobial combinations against carbapenem-resistant Acinetobacter species: Acinetobacter baumannii versus Acinetobacter genospecies 3 and 13TU[J]. Diagn Microbiol Infect Dis, 2011, 70(3): 380-386.
Carrasco L D M, Dabul A N G, Boralli C M D S, et al. Polymyxin resistance among XDR ST1 carbapenem-resistant Acinetobacter baumannii clone expanding in a teaching hospital[J]. Front Microbiol, 2021, 12: 622704.
Prasad P, Sun J, Danner R L, et al. Excess deaths associated with tigecycline after approval based on noninferiority trials[J]. Clin Infect Dis, 2012, 54(12): 1699-1709.
DeDea L. FDA limits acetaminophen; risk of death with tigecycline[J]. JAAPA, 2012, 25(9): 16.
Camacho-Ortiz A, Lara-Medrano R, Martínez-Reséndez M F, et al. Azithromycin effect on multidrug resistant Acinetobacter baumannii biofilm production and composition[J]. Gac Med Mex, 2021, 157(5): 478-483.
Chen H, Cao J, Zhou C, et al. Biofilm formation restrained by subinhibitory concentrations of tigecyclin in Acinetobacter baumannii is associated with downregulation of efflux pumps[J]. Chemotherapy, 2017, 62(2): 128-133.
Beganovic M, Luther M K, Daffinee K E, et al. Biofilm prevention concentrations (BPC) of minocycline compared to polymyxin B, meropenem, and amikacin against Acinetobacter baumannii[J]. Diagn Microbiol Infect Dis, 2019, 94(3): 223-226.
Peng Q, Lin F, Ling B. In vitro activity of biofilm inhibitors in combination with antibacterial drugs against extensively drug-resistant Acinetobacter baumannii[J]. Sci Rep, 2020, 10(1): 18097.
Moon K H, Weber B S, Feldman M F. Subinhibitory concentrations of trimethoprim and sulfamethoxazole prevent biofilm formation by Acinetobacter baumannii through inhibition of Csu Pilus expression[J]. Antimicrob Agents Chemother, 2017, 61(9): e00778-17.
Yamabe K, Arakawa Y, Shoji M, et al. Direct anti-biofilm effects of macrolides on Acinetobacter baumannii: comprehensive and comparative demonstration by a simple assay using microtiter plate combined with peg-lid[J]. Biomed Res, 2020, 41(6): 259-268.
Sato Y, Ubagai T, Tansho-Nagakawa S, et al. Effects of colistin and tigecycline on multidrug-resistant Acinetobacter baumannii biofilms: Advantages and disadvantages of their combination[J]. Sci Rep, 2021, 11(1): 11700.
Wang Y C, Kuo S C, Yang Y S, et al. Individual or combined effects of meropenem, imipenem, sulbactam, colistin, and tigecycline on biofilm-embedded Acinetobacter baumannii and biofilm architecture[J]. Antimicrob Agents Chemother, 2016, 60(8): 4670-4676.
Wang Y, Bao W, Guo N, et al. Antimicrobial activity of the imipenem/rifampicin combination against clinical isolates of Acinetobacter baumannii grown in planktonic and biofilm cultures[J]. World J Microbiol Biotechnol, 2014, 30(12): 3015-3025.
Li Y, Wang B, Lu F, et al. Synergistic inhibitory effect of Polymyxin B in combination with ceftazidime against robust biofilm formed by Acinetobacter baumannii with genetic deficiency in AbaI/AbaR quorum sensing[J]. Microbiol Spectr, 2022, 10(1): e0176821.
Wang J, Zhang P L, Ansari M F, et al. Molecular design and preparation of 2-aminothiazole sulfanilamide oximes as membrane active antibacterial agents for drug resistant Acinetobacter baumannii[J]. Bioorg Chem, 2021, 113: 105039.
Jayathilaka E H T T, Rajapaksha D C, Nikapitiya C, et al. Antimicrobial and anti-biofilm peptide Octominin for controlling multidrug-resistant Acinetobacter baumannii[J]. Int J Mol Sci, 2021, 22(10): 5353.
de Breij A, Riool M, Cordfunke R A, et al. The antimicrobial peptide SAAP-148 combats drug-resistant bacteria and biofilms[J]. Sci Transl Med, 2018, 10(423): eaan4044.
Zeng P, Yi L, Xu J, et al. Investigation of antibiofilm activity, antibacterial activity, and mechanistic studies of an amphiphilic peptide against Acinetobacter baumannii[J]. Biochim Biophys Acta Biomembr, 2021, 1863(6):183600.
Eales M G, Ferrari E, Goddard A D, et al. Mechanistic and phenotypic studies of bicarinalin, BP100 and colistin action on Acinetobacter baumannii[J]. Res Microbiol, 2018, 169(6): 296-302.
Irani N, Basardeh E, Samiee F, et al. The inhibitory effect of the combination of two new peptides on biofilm formation by Acinetobacter baumannii[J]. Microb Pathog, 2018, 121: 310-317.
Dolzani L, Milan A, Scocchi M, et al. Sub-MIC effects of a proline-rich antibacterial peptide on clinical isolates of Acinetobacter baumannii[J]. J Med Microbiol, 2019, 68(8): 1253-1265.
Spencer J J, Pitts R E, Pearson R A, et al. The effects of antimicrobial peptides WAM-1 and LL-37 on multidrug-resistant Acinetobacter baumannii[J]. Pathog Dis, 2018, 76(2). doi: 10.1093/femspd/fty007.
Bardbari A M, Arabestani M R, Karami M, et al. Highly synergistic activity of melittin with imipenem and colistin in biofilm inhibition against multidrug-resistant strong biofilm producer strains of Acinetobacter baumannii[J]. Eur J Clin Microbiol Infect Dis, 2018, 37(3): 443-454.
Hong M J, Kim M K, Park Y. Comparative antimicrobial activity of Hp404 peptide and its analogs against Acinetobacter baumannii[J]. Int J Mol Sci, 2021, 22(11): 5540.
das Neves R C, Mortari M R, Schwartz E F, et al. Antimicrobial and antibiofilm effects of peptides from venom of social wasp and scorpion on multidrug-resistant Acinetobacter baumannii[J]. Toxins (Basel), 2019, 11(4): 216.
Yele A B, Thawal N D, Sahu P K, et al. Novel lytic bacteriophage AB7-IBB1 of Acinetobacter baumannii: Isolation, characterization and its effect on biofilm[J]. Arch Virol, 2012, 157(8): 1441-1450.
Thawal N D, Yele A B, Sahu P K, et al. Effect of a novel podophage AB7-IBB2 on Acinetobacter baumannii biofilm[J]. Curr Microbiol, 2012, 65(1): 66-72.
Zhang J, Xu L L, Gan D, et al. In vitro study of bacteriophage AB3 endolysin LysAB3 activity against Acinetobacter baumannii biofilm and biofilm-bound A. baumannii[J]. Clin Lab, 2018, 64(6): 1021-1030.
Blasco L, Bleriot I, González de Aledo M, et al. Development of an anti-Acinetobacter baumannii biofilm phage cocktail: Genomic adaptation to the host[J]. Antimicrob Agents Chemother, 2022, 66(3): e01923-21.
Grygorcewicz B, Wojciuk B, Roszak M, et al. Environmental phage-based cocktail and antibiotic combination effects on Acinetobacter baumannii biofilm in a human urine model[J]. Microb Drug Resist, 2021, 27(1): 25-35.
Usmani Y, Ahmed A, Faizi S, et al. Antimicrobial and biofilm inhibiting potential of an amide derivative [N-(2', 4'-dinitrophenyl)-3β-hydroxyurs-12-en-28-carbonamide] of ursolic acid by modulating membrane potential and quorum sensing against colistin resistant Acinetobacter baumannii[J]. Microb Pathog, 2021, 157: 104997.
Paul Bhattacharya S, Mitra A, Bhattacharya A, et al. Quorum quenching activity of pentacyclic triterpenoids leads to inhibition of biofilm formation by Acinetobacter baumannii[J]. Biofouling, 2020, 36(8): 922-937.
Nicol M, Alexandre S, Luizet J B, et al. Unsaturated fatty acids affect quorum sensing communication system and inhibit motility and biofilm formation of Acinetobacter baumannii[J]. Int J Mol Sci, 2018, 19(1): 214.
Tiwari V, Tiwari D, Patel V, et al. Effect of secondary metabolite of Actinidia deliciosa on the biofilm and extra-cellular matrix components of Acinetobacter baumannii[J]. Microb Pathog, 2017, 110: 345-351.
Sivaranjani M, Srinivasan R, Aravindraja C, et al. Inhibitory effect of α-mangostin on Acinetobacter baumannii biofilms - an in vitro study[J]. Biofouling, 2018, 34(5): 579-593.
Selvaraj A, Valliammai A, Sivasankar C, et al. Antibiofilm and antivirulence efficacy of myrtenol enhances the antibiotic susceptibility of Acinetobacter baumannii[J]. Sci Rep, 2020, 10(1): 21975.
譚俊青, 溫錦鳳, 李曉君, 等. 黃連等五種中藥顆粒劑對鮑曼不動桿菌生物被膜的作用研究[J]. 按摩與康復(fù)醫(yī)學(xué), 2021, 12(3): 45-47.
Nait Chabane Y, Mlouka M B, Alexandre S, et al. Virstatin inhibits biofilm formation and motility of Acinetobacter baumannii[J]. BMC Microbiol, 2014, 14: 62.
Raorane C J, Lee J H, Lee J. Rapid killing and biofilm inhibition of multidrug-resistant Acinetobacter baumannii strains and other microbes by iodoindoles[J]. Biomolecules, 2020, 10(8): 1186.
Lee J H, Wood T K , Lee J. Roles of indole as an interspecies and interkingdom signaling molecule[J]. Trends Microbiol, 2015, 23(11): 707-718.
Vijayakumar K, Thirunanasambandham R. 5-Hydroxymethylfurfural inhibits Acinetobacter baumannii biofilms:An in vitro study[J]. Arch Microbiol, 2021, 203(2): 673-682.
Na S H, Jeon H, Oh M H, et al. Screening of small molecules attenuating biofilm formation of Acinetobacter baumannii by inhibition of ompA promoter activity[J]. J Microbiol, 2021, 59(9): 871-878.
Na S H, Jeon H, Oh M H, et al. Therapeutic effects of inhibitor of ompA expression against carbapenem-resistant Acinetobacter baumannii strains[J]. Int J Mol Sci, 2021, 22(22): 12257.
Muzammil S, Khurshid M, Nawaz I, et al. Aluminium oxide nanoparticles inhibit EPS production, adhesion and biofilm formation by multidrug resistant Acinetobacter baumannii[J]. Biofouling, 2020, 36(4): 492-504.
Hetta H F, Al-Kadmy I M S, Khazaal S S, et al. Antibiofilm and antivirulence potential of silver nanoparticles against multidrug-resistant Acinetobacter baumannii[J]. Sci Rep, 2021, 11(1): 10751.
Ramalingam K, Lee V A. Antibiofilm activity of an EDTA-containing nanoemulsion on multidrug-resistant Acinetobacter baumannii[J]. Artif Cells Nanomed Biotechnol, 2018, 46(sup2): 737-743.
Pourhajibagher M, Partoazar A, Alaeddini M, et al. Photodisinfection effects of silver sulfadiazine nanoliposomes doped-curcumin on Acinetobacter baumannii: A mouse model[J]. Nanomedicine (Lond), 2020, 15(5): 437-452.
Wenjun W, Ziman W, Peiru S, et al. Antibacterial effect of chitosan-modified Fe3O4 nanozymes on Acinetobacter baumannii[J]. J Microbiol Biotechnol, 2022, 32(2): 263-267.
Li X, Gui R, Li J, et al. Novel multifunctional silver nanocomposite serves as a resistance-reversal agent to synergistically combat carbapenem-resistant Acinetobacter baumannii[J]. ACS Appl Mater Interfaces, 2021, 13(26): 30434-30457.
Neethu S, Midhun S J, Radhakrishnan E K, et al. Surface functionalization of central venous catheter with mycofabricated silver nanoparticles and its antibiofilm activity on multidrug resistant Acinetobacter baumannii[J]. Microb Pathog, 2020, 138: 103832.
Vaze N, Demokritou P. Using engineered water nanostructures (EWNS) for wound disinfection: Case study of Acinetobacter baumannii inactivation on skin and the inhibition of biofilm formation[J]. Nanomedicine, 2022, 42: 102537.
Ternullo S, Gagnat E, Julin K, et al. Liposomes augment biological benefits of curcumin for multitargeted skin therapy[J]. Eur J Pharm Biopharm, 2019, 144: 154-164.
Kim S, Jin J S, Lee D W, et al. Antibacterial activities of and biofilm removal by Ablysin, an endogenous lysozyme-like protein originated from Acinetobacter baumannii 1656-2[J]. J Glob Antimicrob Resist, 2020, 23: 297-302.
Chow J Y, Yang Y, Tay S B, et al. Disruption of biofilm formation by the human pathogen Acinetobacter baumannii using engineered quorum-quenching lactonases[J]. Antimicrob Agents Chemother, 2014, 58(3): 1802-1805.
Jothipandiyan S, Suresh D, Sankaran S V, et al. Heteroleptic pincer palladium(Ⅱ) complex coated orthopedic implants impede the AbaI/AbaR quorum sensing system and biofilm development by Acinetobacter baumannii[J]. Biofouling, 2022, 38(1): 55-70.
Fekrirad Z, Darabpour E, Kashef N. Eradication of Acinetobacter baumannii planktonic and biofilm cells through erythrosine-mediated photodynamic inactivation augmented by acetic acid and chitosan[J]. Curr Microbiol, 2021, 78(3): 879-886.
Xiong Y Q, Estellés A, Li L, et al. A human biofilm-disrupting monoclonal antibody potentiates antibiotic efficacy in rodent models of both Staphylococcus aureus and Acinetobacter baumannii Infections[J]. Antimicrob Agents Chemother, 2017, 61(10): e00904-17.
收稿日期:2022-07-04
作者簡介:胡維,女,生于1987年,在讀碩士研究生,主要研究方向為中醫(yī)呼吸與老年病方向, E-mail: 358816474@qq.com
通訊作者, E-mail: Zhangchuantao@cdutcm.edu.cn