• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    內(nèi)含k個H-點且邊界H-點數(shù)為3k+5的H-三角形

    2023-05-30 02:02:12朱偉麗魏祥林
    河北科技大學(xué)學(xué)報 2023年2期
    關(guān)鍵詞:河北師范大學(xué)阿基米德三元組

    朱偉麗 魏祥林

    摘 要:為了研究內(nèi)含k個H-點的H-多邊形的邊界特性和幾何結(jié)構(gòu),針對正六邊形阿基米德鋪砌,研究鋪砌上的H-三角形內(nèi)部H-點和邊界H-點的關(guān)系。首先,通過分析H-三角形的三元組(α,β,γ),確定所有可能滿足要求的三元組;其次,利用位級線理論和鋪砌點分布特性,排除不能實現(xiàn)的三元組;最后,證明內(nèi)含k個H-點且邊界H-點數(shù)為3k+5的H-三角形存在,且只有2種構(gòu)圖,并給出這2種構(gòu)圖的具體構(gòu)造。結(jié)果表明,在能夠確定三角形所有可能的三元組條件下,H-三角形滿足給定邊界點數(shù)的圖形結(jié)構(gòu)是確定的。研究結(jié)果豐富了阿基米德鋪砌的相關(guān)理論,也為阿基米德鋪砌相關(guān)問題的研究提供了重要的理論依據(jù)。

    關(guān)鍵詞:離散數(shù)學(xué);離散幾何;阿基米德鋪砌;正六邊形鋪砌;H-三角形;H-點

    H-triangle with k interior H-points and 3k+5 boundary H-points

    ZHU Weili,WEI Xianglin

    (School of Sciences, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, China)

    Abstract:In order to study the boundary characteristics and geometric structure of an H-polygon with k interior? H-points,the relationship between the interior H-points and boundary H-points of the H-triangle in a regular hexagonal Archimedean tiling was studied. Firstly, by analyzing the triple (α,β,γ)? of H-triangle, the triples that may meet the requirements were determined. Then, the impossible triples were excluded by using the theory of level and the distribution characteristics of tiling points. Finally, H-triangle with k interior H-points and 3k+5 boundary H-points was obtained. Considering there were only two types of configurations, the specific constructions of these two configurations were given. The results show that the configurations of the H-triangle which satisfies the given number of boundary H-points are certain under the condition that all possible triples of triangle can be determined. The research results enrich the related theories of Archimedean tiling, and provide an important theoretical basis for the research of related problems of Archimedean tiling.

    Keywords:discrete mathematics;discrete geometry;Archimedean tiling; regular hexagonal tiling; H-triangle; H-point

    離散與組合幾何1-2中的一個重要研究問題是阿基米德鋪砌[3問題,阿基米德鋪砌是指用一種或多種正多邊形鋪砌全平面,且要求鋪砌的每個頂點的特征相同。如果阿基米德鋪砌中圍繞一頂點的鋪砌元按環(huán)形循序是n1-邊形、n2-邊形等,則稱該鋪砌屬[n1,n2,…]型,阿基米德鋪砌共有11種4-8。正六邊形阿基米德鋪砌,即[6.6.6]鋪砌,是由邊長為單位長度的正六邊形構(gòu)成的平面鋪砌。設(shè)H是[6.6.6]鋪砌上正六邊形的頂點集,H中的點稱做H-點,頂點落在H上的多邊形稱為H-多邊形。1988年,DING等9針對[6.6.6]鋪砌給出了新的PICK型定理,為研究[6.6.6]鋪砌上的H-多邊形問題打下了基礎(chǔ)。

    3 結(jié) 語

    本文運(yùn)用H-三角形三元組(α,β,γ)的性質(zhì)和位級線理論,結(jié)合鋪砌點的分布特性,研究了[6.6.6]阿基米德鋪砌上H-三角形內(nèi)部H-點和邊界H-點的關(guān)系。證明了當(dāng)k取任意值時,內(nèi)含k個H-點、邊界H-點數(shù)為3k+5的H-三角形存在,并且只有2種構(gòu)圖。

    研究結(jié)論豐富了正六邊形阿基米德鋪砌的相關(guān)理論。2種構(gòu)圖的獲得對H-四邊形的同類問題研究至關(guān)重要,能夠提供有效的論證方法和分類技巧。但是,關(guān)于H-多邊形的研究仍不是很全面,在今后的研究中,將利用鋪砌理論、分劃理論、凸集理論等方法,深入研究H-多邊形的邊界點問題及相關(guān)應(yīng)用。

    參考文獻(xiàn)/References:

    [1] GRUBER P M.Convex and Discrete Geometry[M].Berlin:Springer,2007.

    [2] PACH J,AGARWAL P K.Combinatorial Geometry[M].New York:Wiley,1995.

    [3] GR?NBAUM B,SHEPHARD G C.Tilings and Patterns[M].New York:W.H. Freeman,1986.

    [4] WEI Xianglin,WANG Jianjun,GAO Feixing.A note on area of lattice polygons in an Archimedean tiling[J].Journal of Applied Mathematics and Computing,2015,48(1):573-584.

    [5] VASSALLO S F.Buffon type problems in Archimedean tilings[J].Universal Journal of Mathematics and Mathematical Sciences,2013,4:201-219.

    [6] EGGLETON R B.Tiling the plane with triangles[J].Discrete Mathematics,1974,7(1/2):53-65.

    [7] 徐倩.阿基米德鋪砌圖相關(guān)性質(zhì)的研究[D].石家莊:河北師范大學(xué),2014.

    XU Qian.Some Properties on Archimedean Tiling Graphs[D].Shijiazhuang:Hebei Normal University,2014.

    [8] 林松.阿基米德鋪砌相關(guān)性質(zhì)的研究[D].石家莊:河北師范大學(xué),2013.

    LIN Song.On Some Related Properties of Archimedean Tilings[D].Shijiazhuang:Hebei Normal University,2013.

    [9] DING REN,KO?ODZIEJCZYK K,REAY J.A new pick-type theorem on the hexagonal lattice[J].Discrete Mathematics,1988,68(2/3):171-177.

    [10]KOLODZIEJCZYK K.Hex-triangles with one interior H-point[J].Ars Combinatoria,2004,70:33-45.

    [11]WEI Xianglin,DING Ren.H-triangles with 3 interior H-points[J].Journal of Applied Mathematics and Computing,2008,27(1):117-123.

    [12]WEI Xianglin,DING Ren.H-triangles with k interior H-points[J].Discrete Mathematics,2008,308(24):6015-6021.

    [13]WEI Xianglin,GUO Zihuan.H-quadrilateral with one interior H-point[J].Ars Combinatoria,2020,152:257-262.

    [14]WEI Xianglin,GAO Feixing.A disproof of the conjecture about boundary H-points of H-triangles[J].Journal of Applied Mathematics and Computing,2016,51(1):299-313.

    [15]高飛星.正六邊形鋪砌上H-三角形邊界H-點數(shù)的研究[D].石家莊:河北科技大學(xué),2015.

    GAO Feixing.The Study about the Number of the Boundary H-points of H-triangle on the Regular Hexagonal Tiling[D].Shijiazhuang:Hebei University of Science and Technology,2015.

    [16]王華寧.正六邊形阿基米德鋪砌上H-多邊形邊界H-點的研究[D].石家莊:河北科技大學(xué),2020.

    WANG Huaning.The Study about the Boundary H-points of H-polygon on Regular Hexagonal Archimedean Tiling[D].Shijiazhuang:Hebei University of Science and Technology,2020.

    [17]KO?ODZIEJCZYK K,OLSZEWSKA D.A proof of Coleman′s conjecture[J].Discrete Mathematics,2007,307(15):1865-1872.

    [18]WANG Qi,GAO Feixing,WEI Xianglin.The number of boundary H-points of H-triangles[J].Ars Combinatoria,2017,132:3-9.

    [19]DING Ren,REAY J R,ZHANG Jianguo.Areas of generalizedH-polygons[J].Journal of Combinatorial Theory,Series A,1997,77(2):304-317.

    [20]曹鵬浩.關(guān)于H-點相關(guān)問題的研究[D].石家莊:河北師范大學(xué),2010.

    CAO Penghao.On Some Problems Related to H-points[D].Shijiazhuang:Hebei Normal University,2010.

    [21]魏祥林,王衛(wèi)琪.關(guān)于[4.8.8]鋪砌中橢圓上D-點數(shù)的研究[J].河北科技大學(xué)學(xué)報,2017,38(2):143-150.

    WEI Xianglin,WANG Weiqi.Research about the number of D-points of [4.8.8]-tiling in given ellipse[J].Journal of Hebei University of Science and Technology,2017,38(2):143-150.

    [22]KO?ODZIEJCZYK K.Realizable quadruples for Hex-polygons[J].Graphs and Combinatorics,2007,23(1):61-72.

    猜你喜歡
    河北師范大學(xué)阿基米德三元組
    基于語義增強(qiáng)雙編碼器的方面情感三元組提取
    軟件工程(2024年12期)2024-12-28 00:00:00
    基于帶噪聲數(shù)據(jù)集的強(qiáng)魯棒性隱含三元組質(zhì)檢算法*
    賀河北師范大學(xué)百廿校慶
    “阿基米德原理”知識鞏固
    河北師范大學(xué)美術(shù)與設(shè)計學(xué)院油畫作品選登
    驗證阿基米德原理
    解讀阿基米德原理
    關(guān)于余撓三元組的periodic-模
    阿基米德原理知多少
    高等學(xué)校書法創(chuàng)作教學(xué)摭談——以河北師范大學(xué)為例
    渝中区| 南乐县| 简阳市| 广南县| 南宫市| 安泽县| 普兰店市| 长汀县| 双城市| 莱阳市| 鹤壁市| 富阳市| 太和县| 阳新县| 汉川市| 德保县| 新宁县| 屏南县| 泰宁县| 志丹县| 东莞市| 兰考县| 长丰县| 辽源市| 怀柔区| 天峻县| 池州市| 高淳县| 陇南市| 南澳县| 亳州市| 汽车| 蒙山县| 九龙城区| 郴州市| 定兴县| 通城县| 社会| 沈丘县| 天水市| 扬州市|