• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Selective thermal emission and infrared camouflage based on layered media

    2023-04-22 02:05:12QingxingJIXueynCHENVinentLAUDEJunLIANGGuodongFANGChngguoWANGRsoulALAEEMumerKADIC
    CHINESE JOURNAL OF AERONAUTICS 2023年3期

    Qingxing JI, Xueyn CHEN, Vinent LAUDE, Jun LIANG,Guodong FANG, Chngguo WANG,*, Rsoul ALAEE, Mumer KADIC

    a National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150001, China

    b Institute FEMTO-ST, CNRS, University Bourgogne Franche-Comte′, Besanc?on 25000, France

    c Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, China

    d Department of Physics, University of Ottawa, Ottawa, K1N 6N5, Canada

    e Institute of Theoretical Solid State Physics, Karlsruhe Institute of Technology, Karlsruhe D-76131, Germany

    KEYWORDS Heat transfer manipulation;Infrared camouflage;Multilayer media;Selective thermal emission;Thermal illusion;Transfer matrix method

    Abstract Infrared camouflage based on artificial thermal metasurfaces has recently attracted significant attention.By eliminating thermal radiation differences between the object and the background, it is possible to hide a given object from infrared detection.Infrared camouflage is an important element that increases the survivability of aircraft and missiles,by reducing target susceptibility to infrared guided threats.Herein,a simple and practicable design is theoretically presented based on a multilayer film for infrared stealth,with distinctive advantages of scalability,flexible fabrication,and structural simplicity.The multilayer medium consists of silicon substrate,carbon layer and zinc sulfide film,the optical properties of which are determined by transfer matrix method.By locally changing the thickness of the coating film, the spatial tunability and continuity in thermal emission are demonstrated.A continuous change of emissive power is further obtained and consequently implemented to achieve thermal camouflage functionality.In addition, other functionalities, like thermal illusion and thermal coding, are demonstrated by thickness-engineered multilayer films.

    1.Int roduction

    Thermal metamaterials have been designed to realize unusual effective thermal properties in order to create extraordinary devices such as thermal cloaks, concentrators, sensors or illusion devices.1–21These devices are based on heat conduction engineering including via the thermal conductivity tensor and the heat capacity.Furthermore, manipulation of out-of-plane radiation is more widely studied in radiative cooling and thermal camouflage.Thermal camouflage refers to techniques that make a hot object invisible over the background, which finds potentials in aeronautics, infrared signature suppression and other military applications, i.e., enhances the survivability of aircraft, missiles and even soldiers by evading infrared detection.22–24

    Thermal camouflage can be realized by matching the detected radiative temperature of an object with its surroundings.By eliminating thermal radiation differences between the object and the background, it is possible to hide or disguise a given object from an infrared camera.According to the Stefan-Boltzmann law,the detected intensity emitted from an object is proportional to the surface emissivity and to the fourth power of the thermodynamic temperature.Therefore,one can achieve thermal camouflage by controlling surface temperatures through transformation thermotics and thermo-regulation systems or by tuning the surface emissivity.25–32The latter has the advantage of being passive and that does not require an additional energy source.Currently, infrared stealth has been mainly realized by controlling the surface emissivity using metamaterials or metasurfaces33–39, phase-changing materials40–42and stimuli-responsive structures43–46,resulting in adaptive thermal camouflage47–52and multispectral camouflage.53–56

    The thermal metamaterial approach is the main paradigm for infrared camouflage.It requires exploring micro- and nano-structures with well-designed geometries that demonstrate the desired optical properties, which implies complicated fabrication.Besides, this type of surface emissivity control relies on fine tuning the feature size of wavelengthscale structures.It is therefore challenging to obtain a continuously changing surface emissivity.Researchers introduced multilayer medium micro-structures to modulate thermal radiation,which proves easy and flexible for fabrication.25,35,51,56However, the reported works have focused on camouflaging a given object with uniform temperature.33–35,37,39,57To perfectly camouflage a continuously changing thermal field, which widely exists in practical applications,the required emissivity profile is position-dependent and varies continuously.This problem was tackled by employing a form of discretization, in which a step-wise approximation of ideal emissivity parameters was made at the sacrifice of camouflage performance.39

    In this work,we propose a simple strategy to realize thermal camouflage based on infrared-transparent thin films thickness engineering.Using this simple approach, we demonstrate spatial tunability and continuity in thermal emission.By locally changing the thickness of the coating film, we obtain a continuous change of emissive power and consequently implement the desired thermal functionalities.This technique of thermal radiation manipulation has the following advantages: (A) In theory, perfect camouflage can be achieved since the required continuously changing thermal radiation can be realized by a calculated thickness distribution that is also continuous, without further discretization and approximation.(B) The same surface emissivity can be obtained with coating films of different thickness, allowing for size flexibility in fabrication.(C)Structural simplicity follows from the fact that only bilayer films are employed.

    2.Methods and results

    2.1.Working principle of infrared camera

    We first recall the working principle of an infrared camera(see Fig.1).Effective radiation detected by an infrared camera includes three parts, i.e., object radiation Pobj=εoλPbλ(To),ambient reflection Pr=RoλPbλ(Ta) and air radiation Pa=εaPbλ(Ta), which can be expressed as.

    where τaλand εaλare air transmittance and emissivity respectively, Roλand εoλare object reflectivity and emissivity respectively, and Toand Taare temperatures of the object and ambient surroundings respectively.Pbλis the black-body radiation received by an infrared camera.The camera transforms the received radiation into signal voltage and further interprets the voltage as scale functions, based on which radiation temperatures are plotted in the camera images.Here we consider‘‘hot objects”where Toand εoλare correspondingly much larger than Taand Roλ.Taking a human(skin emissivity 0.97 and body temperature 310 K) in room temperature 293 K as an example,ambient reflection is around only 0.8%of the object radiation.Besides, air radiation is always small and even negligible.Therefore,in the following work,we modulate thermal emission and realize infrared functionalities mainly by tuning Pobj.

    2.2.Design scheme

    Our design is based on a film-substrate system depicted in Fig.2(a).Optical properties of the multilayered structure are analytically obtained using the transfer matrix method.The transmission matrix of the j-th layer is expressed as.

    Using Planck’s law,the spectral radiance of an object in the atmosphere window is given by.

    Fig.1 Working principle of an infrared camera.

    Fig.2 Optical properties of designed layered media.

    Eq.(6) demonstrates that the perceived radiation by an infrared camera can be effectively tuned by engineering the emissivity of the metasurface.A thermal infrared camera integrates the received energy over its operational wavelength and transfers the integration values to the recorded temperatures in thermal images, which can be expressed by.

    where φλis a parameter related to the lens area and spectral responsivity of an infrared camera.φλis invariant for a given infrared camera.41The detected temperature Trof an object recorded in infrared images is equal to the real temperature T if and only if the object is a black-body and the air transmittance τaλ=1.Tris directly related to Pobj(T )which is dependent on both the emissivity εobj(tuned by the film thickness d in this work) and the real temperature T.To achieve perfect thermal camouflage,the recorded temperature Tr(or PobjT( ))should be spatially constant.Considering that each surface unit has a different temperature, we tune the spectral emissivity of each unit to make Tr(or Pobj(T )) the same over the whole sample by depositing over each unit a thin film of the corresponding thickness.We emphasize that the proposed strategy is also applicable to thermal radiation illusion or coding.

    2.3.Design method

    We now realize thermal radiation modulation by engineering optical properties of the surface.For clarity,the design process for the general case is outlined through a specific example.Let us focus on the integrated radiation power Pobj(T )in the operating wavelength range 8–14 μm that is directly related to the observed temperatures in the infrared images of the infrared camera.We choose carbon as the ground layer with a thickness of 4 μm, leading to zero transmission Toλ=0.Silicon is chosen as a substrate.Then, we use a dielectric layer made of zinc sulfide(ZnS)as a transparent material within the range of wavelengths 8–14 μm(see Fig.2(a)),and the optical properties are from Refs.37,58 On the basis of energy balance, we calculate the emissivity from Eq.(5).Spectral emissivity for various film thicknesses is shown in Fig.2(b) and (c).With an increment of film thickness from 3.5 μm to 3.9 μm,the emissivity peak shifts from 0.93 at wavelength 10.7 μm to 0.92 at wavelength 11.8 μm.The emissivity as a function of thickness of ZnS and wavelength is depicted in Fig.2(c).It can be seen that one can control the emissivity by engineering the thickness of ZnS.Within the wavelength range 8–14 μm, the emissivity varies from 0.356 to 0.96.It is noted that other materials may also be considered to design the multilayer medium structure shown in Fig.2(a).For instance, if we replace ZnS with germanium, the emissivity varies from 0.351 to 0.941, which is almost the same as for ZnS.The selection of film materials should be made so that the tailorable emissivity range is as large as possible.Optical properties of the selected materials are shown in the supporting information.We conduct finite element analysis to verify the calculated spectral emissivity for the designed multilayer media, as shown in Fig.2(b).The Finite Element Analysis (FEA) results perfectly agree with the results predicted by Eq.(5).The simulation is conducted by the commercial software COMSOL Multiphysics with the optics module.The unit cell in Fig.2(a) is modeled except for the silicon substrate,because the carbon layer here ensures zero transmittance.For the simulation of the EM behavior,the excitation Electromagnetics (EM) wave propagates along the z-axis as a plane wave.From the simulation results, we obtain the S-parameters and further obtain the reflectivity and transmittivity.Absorptivity/emissivity is finally got on the basis of energy balance and Kirchhoff’s law.

    Using Eq.(6),the radiated power is calculated as a function of ZnS thickness and temperature(see Fig.2(d)).For example,the integrated power Pobj(T )=72.72 W ?m-2is shown by a white iso-contour line in Fig.2(d).Objects having temperatures spanning the range 330–400 K would be effectively detected to have the same emissive power if their surfaces were deposited with a dielectric layer whose thickness is determined by the corresponding white iso-contour line.

    In the following, we outline the process to achieve camouflage functionality based on the multilayer medium approach.Fig.3(a) shows a continuous temperature distribution generated by imposing temperature difference ΔT = 40 K at the two ends of the silicon substrate (thermal conductivity ks=1.3 W ?m-1?K-1).The side length of the simulated plate is 100 mm.The surface is in contact with air with natural convection coefficient 2 W ?m-2?K-1at temperature 340 K.We plot the temperature at different×positions in Fig.3(b).Note that the temperature is uniform along the y direction.Fig.3(c)shows the integrated radiation power at three typical positions along the observed line (namely A, B and C), where it is observed that higher temperatures result in larger radiation powers,in general.The first step is to select a desired radiation power Pobjthat all points can achieve with a selected film thickness.The possible range of the integrated radiation power is outlined in grey area.The camouflaged temperatures range from 340 K to 380 K (see Fig.3(b)).We select the thickness profile shown in Fig.3(d) for Pobj(T )=72.72 W ?m-2.The observed uniform camera temperature is shown in Fig.3(a)with black line for the designed film with inhomogeneous thickness.The camera temperature field is obtained using Eq.(7), where φλis obtained using blackbody radiation.Therefore, the heat spot located at the center is hidden for an infrared camera.This illustrating case demonstrates the thermal camouflage functionality by selective emission and thickness engineering.Note that other integrated radiation powers are also applicable if and only if they fall into the grey area.The difference is that we will obtain different thickness distributions with those in Fig.3(d)and further observe different detected camera temperatures with those in Fig.3(b), as may be predicted by Eq.(7).For a selected integrated radiation power, there exist not only one set of potential thickness distribution that can realize thermal camouflage effects.We marked, in Fig.3(c), two groups of available film thickness that can achieve the same integrated radiation power and hence the same emission modulation performance.This size flexibility will add much convenience to practical applications.

    3.Results and discussion

    Based on the approach above, we can engineer the whole surface emissivity (thickness) to realize thermal functionalities such as camouflage, illusion, and coding (see Fig.4).In Fig.4(a)–(c), thermal camouflage functionality is demonstrated.We aim to thermally hide a heat source of radius 2 mm located at the center of the silicon substrate.The required layer thickness is the smallest at the central position and increases from the center outward, as shown in Fig.4(b).The camera temperature field is uniform (Tr=319.8 K)after film deposition,and thus the heat spot in the background plate is invisible to the detector,demonstrating perfect camouflage functionality, as shown in Fig.4(c).

    Fig.3 Outline of the process to realize thermal camouflage.

    By tailoring the distribution of the thickness of the coating film, we further obtain the thermal coding functionality in Fig.4(d)–(f).In a uniform thermal field with T=360 K (see Fig.4(d)),we leave out a sub-area‘‘HI”and deposit a coating layer of thickness 0.5 μm everywhere else (see Fig.4(e)).As a result, the heat signature‘‘HI”(camera temperature 360 K)emerges from the background thermal field (camera temperature 319.8 K depicted in Fig.4(f)).We determine coating layer thicknesses using the radiation power of Pobj(T )=72.72 W ?m-2.

    We then demonstrate the thermal illusion functionality in Fig.4(g)–(i), where the heat signature‘‘NO”is observed instead of the original message‘‘YES”to confuse observers.This illusion functionality is also realized by properly engineering the film thickness.The surface is divided into three subregions:‘‘YES”,‘‘NO”, and background (see Fig.4(h)).We deposit the sub-regions‘‘YES”and background with film thicknesses 0.3 μm and 0.5 μm, respectively, whereas subregion‘‘NO”remains uncoated.After deposition, the sign‘‘NO”will be observed in the camera image instead of the original sign‘‘YES”(see Fig.4(i)).We emphasize that more functionalities can be obtained through the proposed flexible film thickness engineering strategy.

    In our design,a very important aspect is the huge scale difference between variations of physical quantities (such as the temperature)inside the layer thickness and in the lateral directions.However, the layer thickness is of the order of a few microns,and the thermal gradient and thus the thermal distribution only change significantly over very large lateral distances.Considering a meter-size object and a temperature difference between the two sides of ΔT=100 K, then at the scale of a typical infrared wavelength of 10 μm, the temperature change is only about 10-3K.At that scale, the temperature variation can be considered continuous and the local change in thickness will not lead to any significant lateral scattering.Based on this reasoning, in the coding and illusion devices depicted in Fig.4(d)–(f)and Fig.4(g)–(i),the apparent discontinuities in the thickness and temperature can be made continuous to avoid scattering from the edges.Here we have ignored this aspect in the plots as the discontinuities can be smoothed out easily.In addition, thermal conduction in the slab when varying the local thickness is also neglected.Consider the camouflage case in Fig.4(a)–(c) where the silicon plate is built with thermal conductivity ks=1.3 W ?m-1?K-1and thickness 2 mm.The surface is coated with a ZnS layer with thermal conductivity 25 W ?m-1?K-1and a typical thickness 0.7 μm.Assume that the temperature range is 1 K in the thickness direction, and then the temperature over the ZnS layer thickness direction only changes by 2.6×10-5K which is negligible and makes few influences on the radiation power.Therefore,surface temperature difference due to conduction is safely ignored.

    Fig.4 Demonstration of different thermal functionalities.

    In this work, we achieve selective emission based on thin film thickness engineering with predefined materials, yet practical implementation may demand diversity in design parameters due to the possible unavailability of material properties and manufacture deviations.Therefore,in the next step we will consider to obtain selective emission based on machine learning,which will intelligently establish the relation between deign parameters (film properties, thickness, etc.) and emissivity spectrum.16,59–62Such a data driven approach will demonstrate flexibility and accuracy in realizing functionalities like thermal camouflage, illusion and so on.

    4.Conclusions

    A multilayer film based selective emission strategy was proposed and investigated for applications in infrared camouflage,thermal coding and thermal illusion.Through thickness engineering, the emissivity can be tuned continuously over a large range.The technique features advantages of a simple structure,easy fabrication and size flexibility.Our work provides an alternative solution to infrared stealth and other thermal radiation management technology based on selective emission.From the current study, the following conclusions are drawn.

    1.For the established multilayer medium,the surface emissivity can be tuned from 0.356 to 0.96 within the wavelength range 8–14 μm, by changing the film thickness.Using this multilayer media approach, spatial tunability and continuity in thermal emission are demonstrated.

    2.Perfect camouflage can be achieved since the required continuously changing thermal radiation is realized by a calculated thickness distribution that is also continuous,without further discretization and approximation.For a given heat source, different solutions of film thickness are applicable,allowing for size flexibility in practical implementation.

    3.Other thermal functionalities,i.e.,thermal coding and thermal illusion,are also realized by simple film thickness engineering, following structural simplicity.

    Declaration of Competing Interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgements

    This work was supported by the EIPHI Graduate School(No.ANR-17-EURE-0002), the French Investissements d’Avenir program, project ISITEBFC (No.ANR-15-IDEX-03), and the National Natural Science Foundation of China (Nos.12172102,11872160 and 11732002).Rasoul ALAEE acknowledges the support of the Alexander von Humboldt Foundation through the Feodor Lynen Fellowship.

    Appendix A.Supplementary material

    Supplementary data to this article can be found online at https://doi.org/10.1016/j.cja.2022.08.004.

    欧美bdsm另类| 国产久久久一区二区三区| 国产欧美日韩精品一区二区| 精品国产亚洲在线| 高清日韩中文字幕在线| 午夜老司机福利剧场| 欧美黄色淫秽网站| 国产熟女xx| 大型黄色视频在线免费观看| 国产成人福利小说| 国产美女午夜福利| 看片在线看免费视频| 日本黄色视频三级网站网址| 国产高清视频在线观看网站| tocl精华| 亚洲在线自拍视频| 熟女电影av网| 久久中文看片网| 久久久久国内视频| 亚洲国产中文字幕在线视频| 国产视频内射| 在线天堂最新版资源| 亚洲av五月六月丁香网| 国产极品精品免费视频能看的| 久久久久亚洲av毛片大全| 国产精品香港三级国产av潘金莲| 亚洲av免费在线观看| 深爱激情五月婷婷| 亚洲精品影视一区二区三区av| 最近最新免费中文字幕在线| 中国美女看黄片| av女优亚洲男人天堂| 欧美另类亚洲清纯唯美| 成人一区二区视频在线观看| 熟妇人妻久久中文字幕3abv| 又黄又爽又免费观看的视频| 激情在线观看视频在线高清| av在线蜜桃| 日韩免费av在线播放| 又粗又爽又猛毛片免费看| 男女下面进入的视频免费午夜| 久久精品夜夜夜夜夜久久蜜豆| 久久精品国产自在天天线| 国产精品影院久久| 91久久精品电影网| 亚洲成人久久性| 国产男靠女视频免费网站| 18禁黄网站禁片免费观看直播| avwww免费| www国产在线视频色| 中亚洲国语对白在线视频| 欧美成人一区二区免费高清观看| 中亚洲国语对白在线视频| 51国产日韩欧美| 国内久久婷婷六月综合欲色啪| 两个人看的免费小视频| 午夜视频国产福利| 美女高潮的动态| 久久午夜亚洲精品久久| 麻豆久久精品国产亚洲av| av在线蜜桃| 午夜影院日韩av| 精品国产三级普通话版| 国产黄a三级三级三级人| 波多野结衣高清作品| 欧美日韩中文字幕国产精品一区二区三区| 99国产综合亚洲精品| 国产精品久久视频播放| 51国产日韩欧美| 成人18禁在线播放| 亚洲av中文字字幕乱码综合| 中文字幕av在线有码专区| 国产伦在线观看视频一区| 手机成人av网站| 午夜福利18| 亚洲熟妇熟女久久| 午夜老司机福利剧场| 国产日本99.免费观看| or卡值多少钱| 久久精品91蜜桃| av在线蜜桃| avwww免费| 五月伊人婷婷丁香| 国产主播在线观看一区二区| 伊人久久大香线蕉亚洲五| 国产99白浆流出| 精品一区二区三区视频在线观看免费| 精品国产亚洲在线| 亚洲成人精品中文字幕电影| 一进一出好大好爽视频| 亚洲精品粉嫩美女一区| 日日干狠狠操夜夜爽| 高清毛片免费观看视频网站| 一级黄片播放器| 久久伊人香网站| 看片在线看免费视频| 成人国产综合亚洲| 每晚都被弄得嗷嗷叫到高潮| 草草在线视频免费看| a级毛片a级免费在线| 亚洲成a人片在线一区二区| 国产伦在线观看视频一区| 搡老岳熟女国产| 女生性感内裤真人,穿戴方法视频| 长腿黑丝高跟| 观看美女的网站| 精品熟女少妇八av免费久了| 老司机午夜福利在线观看视频| 久久久久久久亚洲中文字幕 | 97超级碰碰碰精品色视频在线观看| 色综合欧美亚洲国产小说| 中文字幕久久专区| h日本视频在线播放| 此物有八面人人有两片| 天堂动漫精品| 国产亚洲欧美98| 少妇高潮的动态图| 欧美午夜高清在线| 亚洲欧美激情综合另类| www日本在线高清视频| 久久精品夜夜夜夜夜久久蜜豆| 桃红色精品国产亚洲av| 香蕉久久夜色| 香蕉av资源在线| 亚洲国产色片| 亚洲欧美日韩东京热| 精品国产三级普通话版| bbb黄色大片| 欧美高清成人免费视频www| 成人三级黄色视频| 嫁个100分男人电影在线观看| 窝窝影院91人妻| 亚洲美女黄片视频| 久久久久九九精品影院| 国产精品亚洲美女久久久| 热99在线观看视频| 精品欧美国产一区二区三| 一区二区三区国产精品乱码| 18禁黄网站禁片免费观看直播| 成人无遮挡网站| 国内精品久久久久精免费| 亚洲精品在线观看二区| 免费看十八禁软件| 免费av观看视频| 国产一区二区在线观看日韩 | 特级一级黄色大片| www.999成人在线观看| 国产真实乱freesex| 搡老熟女国产l中国老女人| 亚洲片人在线观看| 无人区码免费观看不卡| 日韩精品中文字幕看吧| 国产三级黄色录像| 成熟少妇高潮喷水视频| 久久久久久人人人人人| 亚洲aⅴ乱码一区二区在线播放| 中文在线观看免费www的网站| 精品电影一区二区在线| 久久久久久久精品吃奶| 一区二区三区国产精品乱码| 亚洲美女视频黄频| 最近在线观看免费完整版| 国产亚洲精品av在线| 国产主播在线观看一区二区| 女警被强在线播放| 亚洲欧美日韩东京热| 美女黄网站色视频| 别揉我奶头~嗯~啊~动态视频| 国产成+人综合+亚洲专区| 丰满的人妻完整版| 久久久国产成人精品二区| 亚洲欧美日韩东京热| 高清日韩中文字幕在线| 国产亚洲精品久久久com| tocl精华| 成人av一区二区三区在线看| 婷婷精品国产亚洲av在线| 亚洲熟妇中文字幕五十中出| 国产精品 国内视频| 国产真实乱freesex| 久久久久久久亚洲中文字幕 | 99久久九九国产精品国产免费| 亚洲成人精品中文字幕电影| 欧美日韩中文字幕国产精品一区二区三区| 久久久色成人| 中文在线观看免费www的网站| 国产探花极品一区二区| 国产精品影院久久| 床上黄色一级片| 亚洲最大成人手机在线| 国内久久婷婷六月综合欲色啪| 精品不卡国产一区二区三区| 国产精品av视频在线免费观看| 午夜精品在线福利| 99国产精品一区二区三区| 国产私拍福利视频在线观看| 非洲黑人性xxxx精品又粗又长| 日韩精品中文字幕看吧| 哪里可以看免费的av片| 亚洲精品乱码久久久v下载方式 | 久久精品国产99精品国产亚洲性色| 国内精品久久久久精免费| 成人精品一区二区免费| 久久精品影院6| 深爱激情五月婷婷| 欧美丝袜亚洲另类 | 国产高清有码在线观看视频| 又爽又黄无遮挡网站| 欧美+日韩+精品| 亚洲真实伦在线观看| 俄罗斯特黄特色一大片| 成人鲁丝片一二三区免费| 国产亚洲精品av在线| 国产三级中文精品| 19禁男女啪啪无遮挡网站| 美女cb高潮喷水在线观看| 色尼玛亚洲综合影院| h日本视频在线播放| 国产主播在线观看一区二区| 久久亚洲真实| 日本一本二区三区精品| 两个人的视频大全免费| 国产精品一区二区三区四区久久| 欧美成狂野欧美在线观看| 亚洲在线自拍视频| 国产高潮美女av| 国产欧美日韩精品亚洲av| 国产美女午夜福利| 91在线观看av| 好男人电影高清在线观看| 偷拍熟女少妇极品色| 国产亚洲欧美98| 日韩精品中文字幕看吧| 国内精品美女久久久久久| 欧美一区二区国产精品久久精品| 尤物成人国产欧美一区二区三区| 日韩成人在线观看一区二区三区| 在线免费观看不下载黄p国产 | 在线国产一区二区在线| 日韩欧美三级三区| 亚洲av不卡在线观看| 12—13女人毛片做爰片一| 欧美在线一区亚洲| 国产伦一二天堂av在线观看| 国产一区二区激情短视频| www国产在线视频色| 12—13女人毛片做爰片一| 男女视频在线观看网站免费| 亚洲欧美日韩东京热| 久久久久久国产a免费观看| 国产高清videossex| 午夜影院日韩av| 久久九九热精品免费| 亚洲无线观看免费| 久久久久久国产a免费观看| 亚洲不卡免费看| 欧美又色又爽又黄视频| 日韩有码中文字幕| 999久久久精品免费观看国产| 女人十人毛片免费观看3o分钟| 日日摸夜夜添夜夜添小说| 亚洲激情在线av| 国产单亲对白刺激| 国产精品久久久久久亚洲av鲁大| 午夜精品久久久久久毛片777| 国产毛片a区久久久久| 亚洲国产欧美人成| 中文字幕久久专区| 国产成年人精品一区二区| 亚洲人成网站在线播| 男人舔奶头视频| 欧美乱妇无乱码| 国语自产精品视频在线第100页| 国产亚洲欧美在线一区二区| 亚洲欧美日韩高清在线视频| 久久精品国产清高在天天线| 久久伊人香网站| 国产三级在线视频| 国产美女午夜福利| 欧美一区二区精品小视频在线| 69av精品久久久久久| 91九色精品人成在线观看| 天堂动漫精品| xxx96com| 精品国产美女av久久久久小说| 亚洲人成伊人成综合网2020| 亚洲成人久久性| 精品久久久久久久末码| 老司机在亚洲福利影院| 中文字幕熟女人妻在线| 波多野结衣巨乳人妻| 色吧在线观看| 尤物成人国产欧美一区二区三区| 日韩 欧美 亚洲 中文字幕| 午夜激情福利司机影院| 嫩草影视91久久| 成年人黄色毛片网站| 精品福利观看| 丝袜美腿在线中文| 国内精品一区二区在线观看| 国产高清有码在线观看视频| 亚洲最大成人中文| 91在线精品国自产拍蜜月 | 男女视频在线观看网站免费| 激情在线观看视频在线高清| 亚洲欧美日韩卡通动漫| 国产伦在线观看视频一区| 亚洲精品国产精品久久久不卡| 精品久久久久久久久久久久久| 成人三级黄色视频| 国产精品久久久久久久久免 | 无遮挡黄片免费观看| 国产精品久久视频播放| 国产乱人伦免费视频| 欧美日韩乱码在线| 日韩国内少妇激情av| 少妇的逼好多水| 麻豆国产av国片精品| 国产精品av视频在线免费观看| av视频在线观看入口| 香蕉久久夜色| 观看美女的网站| 国产亚洲精品av在线| 九色成人免费人妻av| www.熟女人妻精品国产| 久久精品国产亚洲av香蕉五月| 久久久国产成人精品二区| 亚洲真实伦在线观看| 可以在线观看的亚洲视频| 在线天堂最新版资源| 亚洲av日韩精品久久久久久密| 成人亚洲精品av一区二区| 亚洲精品在线美女| 欧美成人性av电影在线观看| 小蜜桃在线观看免费完整版高清| 国产精品一及| 桃色一区二区三区在线观看| 在线天堂最新版资源| 亚洲av电影在线进入| 最新在线观看一区二区三区| 岛国在线观看网站| 久久久久久久久久黄片| 无人区码免费观看不卡| 国语自产精品视频在线第100页| 国产成人福利小说| 国产v大片淫在线免费观看| 国产极品精品免费视频能看的| 在线观看美女被高潮喷水网站 | 久久6这里有精品| 天堂网av新在线| 丁香欧美五月| 成人性生交大片免费视频hd| 成人国产综合亚洲| 亚洲熟妇熟女久久| 一进一出抽搐动态| АⅤ资源中文在线天堂| 男人和女人高潮做爰伦理| 啦啦啦韩国在线观看视频| 国产成人系列免费观看| 久久久色成人| 又黄又爽又免费观看的视频| 99在线人妻在线中文字幕| xxxwww97欧美| 九九在线视频观看精品| 亚洲av一区综合| 午夜精品一区二区三区免费看| 日韩欧美精品v在线| 国产欧美日韩一区二区精品| 岛国在线观看网站| 国产精品日韩av在线免费观看| 丰满人妻熟妇乱又伦精品不卡| 亚洲 国产 在线| 欧美成人a在线观看| 成人精品一区二区免费| 黄色视频,在线免费观看| 99热精品在线国产| 淫秽高清视频在线观看| 亚洲午夜理论影院| 国产伦人伦偷精品视频| 精品福利观看| 男人的好看免费观看在线视频| 99视频精品全部免费 在线| 一本久久中文字幕| 免费在线观看影片大全网站| 国产真实乱freesex| 国内少妇人妻偷人精品xxx网站| 亚洲人与动物交配视频| 亚洲自拍偷在线| 成人鲁丝片一二三区免费| 91av网一区二区| 成人亚洲精品av一区二区| 精品国产三级普通话版| 真实男女啪啪啪动态图| 97超视频在线观看视频| 国产激情偷乱视频一区二区| 免费看美女性在线毛片视频| 欧美精品啪啪一区二区三区| 免费看十八禁软件| 舔av片在线| 国产伦在线观看视频一区| 18禁美女被吸乳视频| 日韩精品中文字幕看吧| 国产成人影院久久av| 欧美日韩黄片免| 久久久国产成人免费| 欧美三级亚洲精品| 国产美女午夜福利| 亚洲欧美日韩无卡精品| svipshipincom国产片| 丰满的人妻完整版| 免费观看精品视频网站| 国产精品自产拍在线观看55亚洲| 欧美乱色亚洲激情| 日韩av在线大香蕉| 日本黄色视频三级网站网址| 一进一出抽搐动态| 美女大奶头视频| 蜜桃久久精品国产亚洲av| 久久精品夜夜夜夜夜久久蜜豆| 国产av一区在线观看免费| 18禁国产床啪视频网站| 国产精品一区二区免费欧美| 久久久久久久午夜电影| 99国产精品一区二区三区| 免费搜索国产男女视频| 熟女电影av网| bbb黄色大片| 村上凉子中文字幕在线| 欧美日韩亚洲国产一区二区在线观看| 丰满人妻一区二区三区视频av | 亚洲成人免费电影在线观看| 亚洲成av人片免费观看| 精品人妻偷拍中文字幕| 久久精品国产99精品国产亚洲性色| 国产精品香港三级国产av潘金莲| 国产高清三级在线| or卡值多少钱| 少妇高潮的动态图| 欧美成狂野欧美在线观看| 91字幕亚洲| 少妇的丰满在线观看| avwww免费| 九色国产91popny在线| 97超视频在线观看视频| 久久久久久久久中文| 精品免费久久久久久久清纯| av天堂中文字幕网| 可以在线观看的亚洲视频| 国产野战对白在线观看| 欧美中文综合在线视频| 老汉色av国产亚洲站长工具| 亚洲国产欧美网| 成人午夜高清在线视频| 99视频精品全部免费 在线| 成人av在线播放网站| 亚洲乱码一区二区免费版| 99热这里只有精品一区| 免费高清视频大片| 无限看片的www在线观看| 亚洲精品影视一区二区三区av| 国产一级毛片七仙女欲春2| 一进一出抽搐动态| 午夜福利欧美成人| 欧美一级a爱片免费观看看| 欧美性猛交黑人性爽| 成人永久免费在线观看视频| 日韩欧美精品免费久久 | 国产一区二区在线av高清观看| 亚洲无线观看免费| 怎么达到女性高潮| 欧美性猛交黑人性爽| 亚洲最大成人中文| 亚洲成av人片免费观看| 男女午夜视频在线观看| 日本三级黄在线观看| 亚洲av成人av| 韩国av一区二区三区四区| 亚洲aⅴ乱码一区二区在线播放| 欧美三级亚洲精品| 桃色一区二区三区在线观看| 国产精品久久久人人做人人爽| 欧美最黄视频在线播放免费| 国产黄色小视频在线观看| 在线观看免费视频日本深夜| 午夜激情福利司机影院| 国产精品av视频在线免费观看| 中文字幕久久专区| 搡老妇女老女人老熟妇| 国产极品精品免费视频能看的| 老司机午夜十八禁免费视频| 国产免费av片在线观看野外av| 日韩大尺度精品在线看网址| 岛国视频午夜一区免费看| 99热这里只有是精品50| 啦啦啦观看免费观看视频高清| 97人妻精品一区二区三区麻豆| 国内精品久久久久久久电影| 国产乱人视频| 日韩有码中文字幕| 国内少妇人妻偷人精品xxx网站| 精品熟女少妇八av免费久了| 国产高潮美女av| 在线观看免费午夜福利视频| 久久久久久人人人人人| 在线观看免费午夜福利视频| 午夜福利高清视频| 女警被强在线播放| 欧美+亚洲+日韩+国产| 少妇人妻精品综合一区二区 | 51国产日韩欧美| 神马国产精品三级电影在线观看| x7x7x7水蜜桃| 精品人妻1区二区| 老司机午夜十八禁免费视频| 精品人妻1区二区| 97超级碰碰碰精品色视频在线观看| 亚洲美女视频黄频| 少妇的逼水好多| 天天躁日日操中文字幕| 大型黄色视频在线免费观看| 亚洲不卡免费看| 久久久久久久午夜电影| 波野结衣二区三区在线 | 动漫黄色视频在线观看| 夜夜夜夜夜久久久久| 18禁国产床啪视频网站| 国产伦在线观看视频一区| 桃红色精品国产亚洲av| 亚洲欧美日韩无卡精品| 人妻丰满熟妇av一区二区三区| 精品免费久久久久久久清纯| 国产免费一级a男人的天堂| 91麻豆av在线| 麻豆国产97在线/欧美| 岛国在线观看网站| 亚洲成人久久爱视频| 日韩精品青青久久久久久| 国产麻豆成人av免费视频| 天堂网av新在线| 国产一区二区三区视频了| 日本 欧美在线| 久久精品国产亚洲av涩爱 | 1000部很黄的大片| 在线观看免费午夜福利视频| 神马国产精品三级电影在线观看| 国产亚洲欧美98| 五月伊人婷婷丁香| 丰满人妻熟妇乱又伦精品不卡| 99热只有精品国产| 日韩大尺度精品在线看网址| 色综合站精品国产| netflix在线观看网站| 51午夜福利影视在线观看| 老司机在亚洲福利影院| 十八禁人妻一区二区| 不卡一级毛片| 51国产日韩欧美| 午夜福利在线在线| 亚洲av不卡在线观看| 久久香蕉国产精品| 婷婷精品国产亚洲av| 无人区码免费观看不卡| 91麻豆精品激情在线观看国产| 国产午夜精品论理片| 禁无遮挡网站| 3wmmmm亚洲av在线观看| 少妇的逼水好多| 高清毛片免费观看视频网站| 丁香欧美五月| 国产激情偷乱视频一区二区| 亚洲精华国产精华精| 免费看a级黄色片| 国产成人a区在线观看| 51午夜福利影视在线观看| ponron亚洲| 亚洲精品乱码久久久v下载方式 | 欧美最新免费一区二区三区 | svipshipincom国产片| 综合色av麻豆| 亚洲精品在线美女| 精品午夜福利视频在线观看一区| 久久久久久国产a免费观看| 国产老妇女一区| 狂野欧美激情性xxxx| 日本精品一区二区三区蜜桃| 亚洲国产精品合色在线| 非洲黑人性xxxx精品又粗又长| 丰满人妻一区二区三区视频av | 亚洲性夜色夜夜综合| 不卡一级毛片| 法律面前人人平等表现在哪些方面| or卡值多少钱| 日本黄大片高清| 欧美日韩亚洲国产一区二区在线观看| 午夜福利免费观看在线| 精品人妻偷拍中文字幕| 欧洲精品卡2卡3卡4卡5卡区| 18禁在线播放成人免费| 99久久久亚洲精品蜜臀av| 99久久成人亚洲精品观看| 亚洲av电影在线进入| 亚洲中文字幕一区二区三区有码在线看| 欧美另类亚洲清纯唯美| 国产国拍精品亚洲av在线观看 | av视频在线观看入口| 国产精品久久久久久亚洲av鲁大| 亚洲在线自拍视频| 免费搜索国产男女视频| 亚洲乱码一区二区免费版| 国产精品电影一区二区三区| 日韩欧美精品免费久久 | 久久亚洲真实| 国产午夜精品久久久久久一区二区三区 | 成人18禁在线播放| 性色av乱码一区二区三区2|