[摘要] 目的 探討激活大麻素Ⅱ型受體(CB2受體)對(duì)1-甲基-4-苯基吡啶離子(MPP+)處理的BV2小膠質(zhì)細(xì)胞M1/M2表型轉(zhuǎn)化的影響。
方法 培養(yǎng)BV2小膠質(zhì)細(xì)胞,將其分為對(duì)照組、MPP+組、JWH133(CB2受體激動(dòng)劑)+MPP+組、AM630(CB2受體抑制劑)+MPP+組、JWH133+AM630+MPP+組。應(yīng)用免疫印跡法檢測(cè)各組誘導(dǎo)型一氧化氮合酶(iNOS)和精氨酸酶-1(Arg-1)蛋白的表達(dá)。
結(jié)果 與對(duì)照組相比,MPP+組BV2小膠質(zhì)細(xì)胞iNOS蛋白表達(dá)明顯上升(F=9.825,q=6.346,P<0.01);JWH133預(yù)處理抑制MPP+誘導(dǎo)的iNOS蛋白的上調(diào)(q=5.714,P<0.01),此抑制作用可被AM630逆轉(zhuǎn)(q=4.154,P<0.05)。與MPP+組相比,JWH133預(yù)處理顯著上調(diào)Arg-1蛋白表達(dá)水平(F=5.800,q=5.520,P<0.01),此作用可被AM630所阻斷(q=4.155,P<0.05)。
結(jié)論
激活CB2受體可抑制MPP+處理的BV2小膠質(zhì)細(xì)胞M1極化,并且促進(jìn)BV2小膠質(zhì)細(xì)胞從M1型轉(zhuǎn)化為M2型。
[關(guān)鍵詞] 受體,大麻酚,CB2;大麻素受體激動(dòng)劑;小神經(jīng)膠質(zhì)細(xì)胞;表型;一氧化氮合酶Ⅱ型;精氨酸酶
[中圖分類號(hào)] R338.2
[文獻(xiàn)標(biāo)志碼] A
[文章編號(hào)] 2096-5532(2023)02-0195-04
doi:10.11712/jms.2096-5532.2023.59.022
[開(kāi)放科學(xué)(資源服務(wù))標(biāo)識(shí)碼(OSID)]
[網(wǎng)絡(luò)出版] https://kns.cnki.net/kcms/detail/37.1517.R.20230303.0855.003.html;2023-03-03 16:37:49
帕金森?。≒D)是一種以中腦黑質(zhì)多巴胺能神經(jīng)元進(jìn)行性退化為特征的神經(jīng)退行性疾病。神經(jīng)炎癥是PD的主要病理因素之一,小膠質(zhì)細(xì)胞是參與調(diào)節(jié)神經(jīng)炎癥的重要細(xì)胞。研究表明,小膠質(zhì)細(xì)胞分為經(jīng)典激活型(M1型)和選擇性激活型(M2型)。M1型小膠質(zhì)細(xì)胞持續(xù)產(chǎn)生促炎遞質(zhì),如誘導(dǎo)型一氧化氮合酶(iNOS)、白細(xì)胞介素1β(IL-1β)等;M2型小膠質(zhì)細(xì)胞分泌抗炎因子和神經(jīng)營(yíng)養(yǎng)因子,如精氨酸酶-1(Arg-1)、腦源性神經(jīng)營(yíng)養(yǎng)因子(BDNF)等。因此,有效調(diào)控小膠質(zhì)細(xì)胞的表型狀態(tài),可能成為未來(lái)治療PD的新策略。
近些年研究表明,大麻素Ⅱ型受體(CB2受體)主要分布在小膠質(zhì)細(xì)胞上,激活CB2受體可以抑制小膠質(zhì)細(xì)胞的激活,進(jìn)而調(diào)節(jié)神經(jīng)炎癥。有研究報(bào)道,激活CB2受體可調(diào)節(jié)小膠質(zhì)細(xì)胞M1/M2極化,進(jìn)而減輕出血性腦病的腦損傷。然而,激活CB2受體對(duì)1-甲基-4-苯基吡啶離子(MPP+)處理的小膠質(zhì)細(xì)胞表型影響目前尚不清楚。本研究應(yīng)用MPP+處理BV2小膠質(zhì)細(xì)胞建立體外PD模型,觀察CB2受體激動(dòng)劑JWH133對(duì)MPP+誘導(dǎo)的BV2細(xì)胞不同表型標(biāo)志物iNOS和Arg-1表達(dá)的影響,以及CB2受體拮抗劑AM630的阻斷效應(yīng)。
1 材料和方法
1.1 實(shí)驗(yàn)材料
BV2小膠質(zhì)細(xì)胞購(gòu)于中國(guó)科學(xué)院上海細(xì)胞庫(kù);DMEM高糖培養(yǎng)液和胎牛血清購(gòu)自以色列Biological Industries(BI)公司;青霉素/鏈霉素溶液購(gòu)自索萊寶公司;MPP+、CB2受體激動(dòng)劑JWH133和CB2受體抑制劑AM630購(gòu)自美國(guó)Sigma-Aldrich公司;兔抗iNOS和β-actin抗體購(gòu)自美國(guó)Proteintech公司;兔抗Arg-1抗體購(gòu)自美國(guó)Cell Signaling公司;HRP標(biāo)記山羊抗兔IgG購(gòu)自中國(guó)愛(ài)必信公司;ECL發(fā)光液購(gòu)于中國(guó)雅酶公司。
1.2 細(xì)胞培養(yǎng)及分組
BV2小膠質(zhì)細(xì)胞用DMEM高糖培養(yǎng)液進(jìn)行培養(yǎng),該培養(yǎng)液中含有體積分?jǐn)?shù)0.10的胎牛血清和體積分?jǐn)?shù)0.01的青霉素/鏈霉素。細(xì)胞置于溫度為37 ℃、含體積分?jǐn)?shù)0.05 CO2的培養(yǎng)箱中培養(yǎng)。細(xì)胞培養(yǎng)2~3 d后進(jìn)行傳代,將狀態(tài)良好的細(xì)胞接種于六孔板中,進(jìn)行下一步實(shí)驗(yàn)。將BV2細(xì)胞分為對(duì)照組(A組)、MPP+組(B組)、JWH133+MPP+組(C組)、AM630+MPP+組(D組)以及JWH133+AM630+MPP+組(E組)。A組不做任何處理;B組使用200 μmol/L的MPP+處理小膠質(zhì)細(xì)胞24 h;C組先加入1 μmol/L的JWH133預(yù)處理小膠質(zhì)細(xì)胞40 min,再加入200 μmol/L的MPP+共處理細(xì)胞24 h;D組先加入1 μmol/L的AM630預(yù)處理小膠質(zhì)細(xì)胞40 min,再加入200 μmol/L MPP+共處理細(xì)胞24 h;E組同時(shí)使用1 μmol/L的JWH133和1 μmol/L的AM630預(yù)處理細(xì)胞40 min,再加入200 μmol/L MPP+共處理細(xì)胞24 h。
1.3 免疫印跡法檢測(cè)iNOS和Arg-1蛋白的表達(dá)
各組BV2小膠質(zhì)細(xì)胞經(jīng)過(guò)藥物處理后,用PBS洗滌3次,每孔加入100 μL RIPA裂解緩沖液冰上裂解30 min。
用刮板將細(xì)胞刮下,經(jīng)離心(12 000 r/min,30 min,4 ℃)提取細(xì)胞蛋白。使用BCA試劑盒測(cè)定蛋白質(zhì)濃度。將含有20 μg蛋白質(zhì)的樣品通過(guò)十二烷基硫酸鈉聚丙烯酰胺凝膠進(jìn)行電泳分離,
隨后轉(zhuǎn)移到聚偏二氟乙烯(PVDF)膜上。將膜放進(jìn)50 g/L 脫脂牛奶中,室溫封閉2 h,分別加入iNOS(1∶2 000)、Arg-1(1∶1 000)和β-actin(1∶5 000)一抗4 ℃孵育過(guò)夜。用TBST洗3次,每次10 min,加入山羊抗兔IgG(1∶10 000)二抗室溫孵育1 h。應(yīng)用ECL發(fā)光液顯影,然后使用Image J軟件分析iNOS和Arg-1蛋白表達(dá)。
1.4 統(tǒng)計(jì)學(xué)分析
應(yīng)用Graphpad Prism 7.0軟件進(jìn)行統(tǒng)計(jì)學(xué)分析,實(shí)驗(yàn)數(shù)據(jù)以±s表示,多組比較采用單因素方差分析(One-way ANOVA),然后采用Turkey法進(jìn)行組間兩兩比較,P<0.05表示差異具有統(tǒng)計(jì)學(xué)意義。
2 結(jié) 果
2.1 JWH133對(duì)MPP+處理的小膠質(zhì)細(xì)胞iNOS蛋白表達(dá)的影響
與對(duì)照組相比較,MPP+組BV2小膠質(zhì)細(xì)胞iNOS蛋白表達(dá)水平顯著增加,差異具有統(tǒng)計(jì)意義(F=9.825,q=6.346,P<0.01);與MPP+組比較,JWH133+MPP+組iNOS蛋白表達(dá)顯著降低,差異具有統(tǒng)計(jì)學(xué)意義(q=5.714,P<0.01);而JWH133的作用可以被AM630逆轉(zhuǎn),JWH133+AM630+MPP+組BV2小膠質(zhì)細(xì)胞iNOS蛋白的表達(dá)水平較JWH133+MPP+組有所上調(diào),差異具有統(tǒng)計(jì)學(xué)意義(q=4.154,P<0.05)。見(jiàn)表1。
2.2 JWH133對(duì)MPP+處理的小膠質(zhì)細(xì)胞Arg-1蛋白表達(dá)的影響
與MPP+組相比較,JWH133+MPP+組BV2小膠質(zhì)細(xì)胞Arg-1蛋白的表達(dá)水平顯著上調(diào),差異具有統(tǒng)計(jì)學(xué)意義(F=5.800,q=5.520, P<0.01);而JWH133+AM630+MPP+組BV2小膠質(zhì)細(xì)胞Arg-1蛋白的表達(dá)水平較JWH133+MPP+組有所下降,差異具有統(tǒng)計(jì)學(xué)意義(q=4.155,P<0.05)。見(jiàn)表1。
3 討 論
PD是全球第二常見(jiàn)的神經(jīng)退行性疾病,其典型的臨床癥狀有靜止性震顫、姿勢(shì)不穩(wěn)、運(yùn)動(dòng)遲緩和肌僵直等。PD發(fā)病過(guò)程中,伴隨著過(guò)度的氧化應(yīng)激和神經(jīng)炎癥等病理改變,導(dǎo)致黑質(zhì)多巴胺能神經(jīng)元進(jìn)行性丟失。目前,左旋多巴替代治療是臨床治療PD的重要手段,但是卻不能抑制PD的進(jìn)展。因此,探究導(dǎo)致多巴胺能神經(jīng)元死亡的確切機(jī)制,有針對(duì)性地尋找治療靶點(diǎn),是目前改善PD療效的關(guān)鍵。神經(jīng)炎癥是促使PD進(jìn)展的重要病理因素。TIWARI等發(fā)現(xiàn),過(guò)度的神經(jīng)炎癥會(huì)破壞神經(jīng)元。并且有研究表明,在PD病人的大腦黑質(zhì)中,小膠質(zhì)細(xì)胞被異常激活,從而誘發(fā)炎癥反應(yīng)。因此,小膠質(zhì)細(xì)胞的激活可能是影響PD進(jìn)展的重要因素之一。小膠質(zhì)細(xì)胞具有高度可塑性的特征,活化的小膠質(zhì)細(xì)胞會(huì)出現(xiàn)兩種表型,包括促炎的M1型和抗炎的M2型。在神經(jīng)退行性疾病中會(huì)伴隨著慢性炎癥,導(dǎo)致不同表型小膠質(zhì)細(xì)胞的比例失衡。有研究報(bào)道,米諾環(huán)素能促進(jìn)小膠質(zhì)細(xì)胞M2極化,抑制M1極化,有助于神經(jīng)元存活和神經(jīng)功能恢復(fù)?,F(xiàn)有觀點(diǎn)認(rèn)為,促進(jìn)M1型小膠質(zhì)細(xì)胞轉(zhuǎn)化為M2型可改善周圍神經(jīng)元的炎癥,進(jìn)而發(fā)揮神經(jīng)保護(hù)作用。
近年來(lái),越來(lái)越多的研究證實(shí),大麻素具有神經(jīng)保護(hù)和調(diào)節(jié)運(yùn)動(dòng)的功能。有體外實(shí)驗(yàn)研究表明,Δ9四氫大麻二醇(Δ9-THC)能抵抗1-甲基-4-苯基-1,2,3,6-四氫吡啶(MPTP)誘導(dǎo)的細(xì)胞毒作用,可能是治療PD的有前途的藥物。而大麻素的生理效應(yīng)主要是由大麻素Ⅰ型受體(CB1受體)和CB2受體介導(dǎo)的。其中CB2受體主要在膠質(zhì)細(xì)胞中表達(dá),研究表明,存在慢性炎癥的大腦組織中,CB2受體聚集于激活的小膠質(zhì)細(xì)胞中。CB2受體敲除的小鼠大腦中,神經(jīng)炎癥水平明顯升高?,F(xiàn)有觀點(diǎn)認(rèn)為,CB2受體的神經(jīng)保護(hù)作用是由于其對(duì)小膠質(zhì)細(xì)胞表型的影響,激活CB2受體促進(jìn)小膠質(zhì)細(xì)胞由具有神經(jīng)損傷作用的M1型轉(zhuǎn)化為具有神經(jīng)保護(hù)作用的M2型。本研究應(yīng)用MPP+制備體外PD模型,探究激活CB2受體對(duì)BV2小膠質(zhì)細(xì)胞表型的影響。結(jié)果顯示,MPP+處理的BV2小膠質(zhì)細(xì)胞iNOS蛋白表達(dá)顯著增加,表明BV2小膠質(zhì)細(xì)胞主要為M1型;CB2受體激動(dòng)劑JWH133預(yù)處理可抑制MPP+誘導(dǎo)的iNOS蛋白表達(dá)上調(diào),表明激活CB2受體對(duì)M1型小膠質(zhì)細(xì)胞具有抑制作用。進(jìn)一步使用CB2受體抑制劑AM630進(jìn)行驗(yàn)證,結(jié)果顯示JWH133的作用被阻斷。此外,MPP+處理的小膠質(zhì)細(xì)胞Arg-1蛋白表達(dá)與對(duì)照組比較無(wú)明顯變化。推測(cè)產(chǎn)生該現(xiàn)象的原因是:①M(fèi)PP+是具有神經(jīng)毒性的藥物,可刺激小膠質(zhì)細(xì)胞釋放大量的炎癥因子,對(duì)于抗炎因子Arg-1的釋放無(wú)直接作用;②小膠質(zhì)細(xì)胞為了應(yīng)對(duì)MPP+的毒性刺激產(chǎn)生了自我抗炎的保護(hù)作用,從而使Arg-1的水平保持不變;③MPP+對(duì)M1型小膠質(zhì)細(xì)胞的影響更顯著,本實(shí)驗(yàn)中MPP+的用量可能對(duì)M2型小膠質(zhì)細(xì)胞未產(chǎn)生明顯的影響。本文研究結(jié)果與之前的有關(guān)研究結(jié)果一致。本文結(jié)果還顯示,JWH133預(yù)處理顯著上調(diào)Arg-1蛋白表達(dá)水平,表明激活CB2受體促進(jìn)BV2小膠質(zhì)細(xì)胞由M1型向M2型轉(zhuǎn)化,而該作用可以被AM630逆轉(zhuǎn)。
綜上所述,JWH133激活CB2受體可以抑制MPP+處理的BV2小膠質(zhì)細(xì)胞M1極化,同時(shí)促進(jìn)BV2小膠質(zhì)細(xì)胞從M1型向M2型轉(zhuǎn)化。本文結(jié)果為以激活CB2受體調(diào)節(jié)小膠質(zhì)細(xì)胞表型轉(zhuǎn)化作為靶點(diǎn)的PD治療提供了實(shí)驗(yàn)基礎(chǔ),但是CB2受體對(duì)小膠質(zhì)細(xì)胞表型的調(diào)節(jié)作用仍未明確。有研究表明,JWH133通過(guò)核因子E2相關(guān)因子2(Nrf2)/血紅素加氧酶1(HO-1)通路改善促炎M1巨噬細(xì)胞極化,從而顯示出抗肥胖炎癥作用。另外有研究表明,JWH133可通過(guò)環(huán)磷酸腺苷(cAMP)/蛋白激酶A(PKA)途徑促進(jìn)小膠質(zhì)細(xì)胞M2極化,參與生發(fā)基質(zhì)出血誘導(dǎo)后CB2受體介導(dǎo)的抗炎作用。因此,JWH133對(duì)MPP+誘導(dǎo)的小膠質(zhì)細(xì)胞表型調(diào)節(jié)作用可能也與cAMP/PKA或者Nrf2/HO-1通路相關(guān),但具體的機(jī)制通路仍需要進(jìn)一步研究。
[參考文獻(xiàn)]
FORNO L S. Neuropathology of Parkinson’s disease. Journal of Neuropathology and Experimental Neurology, 1996,55(3):259-272.
SKAPER S D, GIUSTI P, FACCI L. Microglia and mast cells: two tracks on the road to neuroinflammation. The FASEB Journal, 2012,26(8):3103-3117.
BENSON M J, MANZANERO S, BORGES K. Complex alterations in microglial M1/M2 markers during the development of epilepsy in two mouse models. Epilepsia, 2015,56(6):895-905.
SUGAMA S, TAKENOUCHI T, CHO B P, et al. Possible roles of microglial cells for neurotoxicity in clinical neurodege-nerative diseases and experimental animal models. Inflammation amp; Allergy Drug Targets, 2009,8(4):277-284.
MARTINEZ F O, GORDON S. The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000prime Reports, 2014,6:13.
WALTER L, STELLA N. Cannabinoids and neuroinflammation. British Journal of Pharmacology, 2004,141(5):775-785.
LISBOA S F, GOMES F V, GUIMARAES F S, et al. Microglial cells as a link between cannabinoids and the immune hypothesis of psychiatric disorders. Frontiers in Neurology, 2016,7:5.
TAO Y H, LI L, JIANG B, et al. Cannabinoid receptor-2 stimulation suppresses neuroinflammation by regulating microglial M1/M2 polarization through the cAMP/PKA pathway in an experimental GMH rat model. Brain, Behavior, and Immunity, 2016,58:118-129.
BRAAK H, RB U, DEL TREDICI K. Cognitive decline correlates with neuropathological stage in Parkinson’s disease. Journal of the Neurological Sciences, 2006,248(1-2):255-258.
MORE S V, CHOI D K. Promising cannabinoid-based therapies for Parkinson’s disease: motor symptoms to neuroprotection. Molecular Neurodegeneration, 2015,10:17.
UTSUMI H, OKUMA Y, KANO O, et al. Evaluation of the efficacy of pramipexole for treating levodopa-induced dyskinesia in patients with Parkinson’s disease. Internal Medicine (Tokyo, Japan), 2013,52(3):325-332.
HIRSCH E C, HUNOT S. Neuroinflammation in Parkinson’s disease: a target for neuroprotection The Lancet Neurology, 2009,8(4):382-397.
TIWARI P C, PAL R. The potential role of neuroinflammation and transcription factors in Parkinson disease. Dialogues in Clinical Neuroscience, 2017,19(1):71-80.
MORE S V, KUMAR H, KIM I S, et al. Cellular and mole-
cular mediators of neuroinflammation in the pathogenesis of Parkinson’s disease. Mediators of Inflammation, 2013,2013:952375.
MALEK N, POPIOLEK-BARCZYK K, MIKA J, et al. Anandamide, acting via CB2 receptors, alleviates LPS-induced neuroinflammation in rat primary microglial cultures. Neural Plasticity, 2015,2015:130639.
LU Y N, ZHOU M M, LI Y, et al. Minocycline promotes functional recovery in ischemic stroke by modulating microglia polarization through STAT1/STAT6 pathways. Biochemical Pharmacology, 2021,186:114464.
ZEISSLER M L, EASTWOOD J, MCCORRY K, et al. Delta-9-tetrahydrocannabinol protects against MPP+ toxicity in SH-SY5Y cells by restoring proteins involved in mitochondrial biogenesis. Oncotarget, 2016,7(29):46603-46614.
CRISTINO L, BISOGNO T, DI MARZO V. Cannabinoids and the expanded endocannabinoid system in neurological di-
sorders. Nature Reviews Neurology, 2020,16(1):9-29.
CASTILLO P E, YOUNTS T J, CHVEZ A E, et al. Endocannabinoid signaling and synaptic function. Neuron, 2012,76(1):70-81.
TERNIANOV A, PREZ-ORTIZ J M, SOLESIO M E, et al. Overexpression of CB2 cannabinoid receptors results in neuroprotection against behavioral and neurochemical alterations induced by intracaudate administration of 6-h(huán)ydroxydopamine. Neurobiology of Aging, 2012,33(2):421.e1-421.16.
BENITO C, NEZ E, TOLN R M, et al. Cannabinoid CB2 receptors and fatty acid amide hydrolase are selectively overexpressed in neuritic plaque-associated glia in Alzheimer’s disease brains. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 2003,23(35):11136-11141.
JAVED H, AZIMULLAH S, HAQUE M E, et al. Cannabinoid type 2 (CB2) receptors activation protects against oxidative stress and neuroinflammation associated dopaminergic neurodegeneration in rotenone model of Parkinson’s disease. Frontiers in Neuroscience, 2016,10:321.
KLEGERIS A, BISSONNETTE C J, MCGEER P L. Reduction of human monocytic cell neurotoxicity and cytokine secretion by ligands of the cannabinoid-type CB2 receptor. British Journal of Pharmacology, 2003,139(4):775-786.
STELLA N. Cannabinoid and cannabinoid-like receptors in microglia, astrocytes, and astrocytomas. Glia, 2010,58(9):1017-1030.
黃河靈,高玉元,聶坤,等. 巨噬細(xì)胞移動(dòng)抑制因子介導(dǎo)MPP+/MPTP誘導(dǎo)的小膠質(zhì)細(xì)胞NLRP3炎癥小體的激活. 南方醫(yī)科大學(xué)學(xué)報(bào), 2021,41(7):972-979.
ZHOU P, WENG R H, CHEN Z Y, et al. TLR4 signaling in MPP+-induced activation of BV-2 cells. Neural Plasticity, 2016,2016:5076740.
MA L, JIA J, LIU X Y, et al. Activation of murine microglial N9 cells is attenuated through cannabinoid receptor CB2 signaling. Biochemical and Biophysical Research Communications, 2015,458(1):92-97.
WU Q, MA Y N, LIU Y, et al. CB2R agonist JWH-133 attenuates chronic inflammation by restraining M1 macrophage polarization via Nrf2/HO-1 pathway in diet-induced obese mice. Life Sciences, 2020,260:118424.
(本文編輯 馬偉平)
青島大學(xué)學(xué)報(bào)(醫(yī)學(xué)版)2023年2期