• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The Influence of Sea Sprays on Drag Coefficient at High Wind Speed

    2023-03-17 05:35:56SHIHongyuanLIQingjieWANGZhaoweiZHANGXuriLIHuaqingXINGHaoandZHANGKuncheng
    Journal of Ocean University of China 2023年1期

    SHI Hongyuan, LI Qingjie, WANG Zhaowei, ZHANG Xuri, LI Huaqing, XING Hao, and ZHANG Kuncheng

    The Influence of Sea Sprays on Drag Coefficient at High Wind Speed

    SHI Hongyuan1), 2), *, LI Qingjie3), WANG Zhaowei2), *, ZHANG Xuri1), LI Huaqing1), XING Hao1), and ZHANG Kuncheng4)

    1)Centre for Ports and Coastal Disaster Mitigation, Ludong University, Yantai 264025, China 2) The Center for Ports and Maritime Safety (CPMS), Dalian Maritime University, Dalian1160263,China 3) Marine Environmental Monitoring Central Station, State Oceanic Administration, Yantai 264025, China 4) Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Sciences, Nanning 530025, China

    Field and laboratory observations indicate that the variation of drag coefficient with wind speed at high winds is different from that under low-to-moderate winds. By taking the effects of wave development and sea spray into account, a new parameterization of drag coefficient applicable from low to extreme winds is proposed. It is shown that, under low-to-moderate wind conditions so that the sea spray effects could be neglected, the nondimensional aerodynamic roughness first increases and then decreases with the increasing wave age; whereas under high wind conditions, the drag coefficient decreases with the increasing wind speed due to the modification of the logarithmic wind profile by the effect of sea spray droplets produced by bursting bubbles or wind tearing breaking wave crests. The drag coefficients and sea surface aerodynamic roughnesses reach their maximum values vary under different wave developments. Correspondingly, the reduction of drag coefficient under high winds reduces the increasing rate of friction velocity with increasing wind speed.

    sea spray; wave age; drag coefficient; high wind speed

    1 Introduction

    The primary driving force for waves is sea surface wind stress. The parameterization of it is necessary for the research of air-sea interaction. Many studies have been done to determine sea surface wind stress through parameterization of drag coefficient during the past decades. Wind stress can be estimated through the bulk aerodynamic method with the equation in terms of drag coefficientd.

    where,ais the density of air,*is the friction velocity and10is the wind speed at 10-meter height above mean sea level. Drag coefficientdwas determined as constant in early research. From different field and laboratory observations, researchers obtained different linear relationships between wind speed and drag coefficient (, Shep- pard, 1958; Zubkovskii and Kravchenko, 1967; Smith and Banke, 1975; Smith, 1980; Wu, 1980; Donelan, 1982; Yelland and Taylor, 1996; Fairall, 2003; Chao, 2019). However, the parameterization between wind speed and drag coefficient determined by different researchers varies significantly indicated that the drag coefficient might not only depend on the wind speed, but also other factors, such as the wave development parameters containing wave age (Andreas, 2004; Makin, 2005; Liu, 2012a, 2012b, 2012c) and Reynolds numberR(Shi, 2013; Shi and Jiang, 2015). In order to get accurated, some researchers also used data assimilation to optimize the parameterization (Peng, 2013; Peng and Li, 2015; Li, 2016; Li, 2021).

    The drag coefficient has a one-to-one correspondence relationship with the aerodynamic roughness0through

    Here, the reference height is 10m, and=0.4 is the vonKarman constant. The sea surface roughness is widely used in numerical models to estimate sea surface wind stress. Charnock (1995) presented the famous Charnock relation

    whereis the acceleration of gravity, andis the Charnock parameter or nondimensional roughness length.was taken as an constant and different researchers presented various values which indicated that sea surface roughness depended only on wind speed . As recognized, sea surface roughness depends not only on wind speed, but also on wave development. Stewart (1974) proposed an extended Charnock relation, in which the Charnock parameter was considered as a function of wave age*:

    where*is defined as*=p/*, in whichpis the phase speed of the spectral peak. Masuda and Kusaba (1987) further gave an exponential relationship between the Charnock parameter and the wave age:

    As recognized, wave state has an important impact on wind stress (, Toba, 1990; Drennan, 2003; Fang, 2015; Li, 2020; Rajesh, 2020). Concerning the relationship between the Charnock parameterand the wave age*, there are mainly two different, even opposite, kinds of viewpoints. One viewpoint believes that the nondimensional sea surface roughness decreases with the increasing wave age (Donelan, 1990; Drennan, 2003). The other viewpoint considers that the nondimensional sea surface roughness increases with the increasing wave age (Toba, 1990; Sugimori, 2000). The differences were determined by different researchers based on field and laboratory observations (Jones and Toba, 2001).

    Recent research (Powell, 2003; Donelan, 2004; Powell, 2006;Potter, 2015) found that the drag coefficientddecreases under high wind speed. According to the existing field and laboratory observations, the reason why coefficient drag decreases under high wind conditions dues to the existence of sea foams. As the surface wind increases, the wave breaking and wind tearing of wave crests disrupts the air-sea interface and generates the sea sprays. There are two viewpoints explaining the influence sea spray affecting on drag coefficientd. Markin (2005) assumed that a thin spray droplet suspension layer prevent the air-sea momentum transportation. Andreas (2004) assumed that sea spray droplets extracts momentum from the near-surface wind and therefor slows it which causes the characteristics under high wind speed. Comparing the equations of Makin (2005) and Andreas (2004), we think that Andreas’s viewpoint expresses the effect of sea spray on wind stress directly, and Troitskaya(2018, 2019) approved it. Therefore, we select Andreas (2004)’s theory to do further research. It is worth noting that both Andreas (2004) and Makin (2005) did not discuss the effect of wave state on drag coefficient. We know that there is not only wind but also wave existing in the actual sea surface (Liu, 2012a). As an important element in the ocean, wave always exists, which will continuously affect the air-sea interaction, and then affect the parameterized expression of drag coefficient. This study thus aims to propose a new parameterization for wind stress applicable from low to high wind conditions, with both wave state and sea spray effects being taken into consideration.

    2 Wave State Affected Drag Coefficient Under Low-to-Moderate Winds

    As recognized, the wave stage has an important impact on the wind stress. SCOR (Scientific Committee on Oceanic Research) workgroup 101 (Jones and Toba, 2001) presented a relationship which is expressed through Eq. (2) by analyzing and synthesizing a large number of field and laboratory observations.

    The SCOR relationship contains the two viewpoints mentioned above. Using Eqs. (1)–(2) and (6), for given wind speeds10and wave agesdefined as=p/10, the corresponding drag coefficients can be calculated through iter- ation andpis the peak phase velocity. Fig.1 shows that the nondimensional sea surface roughness first increases and then decreases with the increasing wave age, and it agrees well with the field and laboratory observational data.

    Fig.1 The relationship between drag coefficient and wind speed under different wave age.

    It should be noted that, since the SCOR relation is determined mainly from observations under low-to-moderate wind conditions, without the consideration of other fac- tors such as sea sprays, it is not appropriate to apply this relation to high wind conditions. This paper will extend it to extreme wind condition.

    3 Sea Spray Affected Wind Stress Under High Winds

    As mentioned above, the wind stress levels off or decreases when the wind speed exceeds hurricane force. Andeas (2004) assumed that sea spray droplets extract momentum from the near-surface wind and therefor cause these characteristics under high wind speed. Andreas and Emanuel (2001) and Andreas (2004) divided the total air-sea momentum fluxtinto two parts: one supported by the airaand the other supported by the sea spraysp(Raupach, 1991), so the drag coefficient considering the effect of sea spray can be expressed through

    In order to obtaind,sp, the first step is to obtain the air-sea momentum flux supported by the sea spraysp. Andreas and Emanuel (2001) proposed the parameterization ofspthrough:

    Here,wis the density of seawater, andloandhiare the lower and upper radius limits of the droplets that are important in this process. Typically,lo≈1μm andhi≈500μm.sp(0) is the speed of spray droplets before they fall back into the sea and d/d0is the sea spray generation function (SSGF) which quantifies how many spray droplets with initial radius0are produced per square meter of surface per second per micrometer increment in droplet radius. Andreas and Emanuel (2001) assumed that all droplets with radii up to 500μmwill be essentially traveling at the local wind speed. And Schmidt (1982)’s measurements of particle speed and wind speed in blowing snow corroborate this conclusion. Therefore,sp(0) is independent of0, we can calculate it through

    and the roughness0can be modeled with Charnock’s relation,

    d/d0, the sea spray generation function (SSGF), which is more directly related sea spray heat fluxes is usually considered to be a function of wind speed and droplet radius (, Monahan, 1986; Andreas, 1992) while some studies, have found that the SSGF also depends on surface wave development (Iida, 1992; Zhao, 2006; Liu, 2015).

    Taking Wu’s (1980) as initial drag coefficient parameterization, according to the proposed parameterization of SSGF and using Eqs. (1)–(11), we can calculate the proportion of sea spraymomentum flux to the total momentum flux (Fig.2). One can see that under all wave age conditions, the proportion of that increases with the surface wind continuously.

    4 The New Parameterization of Drag Coefficient

    In our research, we find that the sea spray momentum fluxspdepends more strongly on windsea Reynolds numberRand we give the new fitting equation (Eq. (13)). Fig.3 also showsspas a function ofR.

    Inserting Eqs. (1), (13) and (6) into Eq. (7) and rearranging terms, we get:

    Fig.2 the proportion of sea spray momentum flux to the total momentum flux.

    According to the new proposed parameterization, for given wind speeds10and wave ages, the corresponding drag coefficients can be calculated through iteration. Fig.4 shows the corresponding relation between drag coefficient and wind speed under different wave developments. One can find that under high winds the drag coefficient decreases with increasing wind speed. This is in agreement with the first characteristic of the existing measurements under high wind conditions mentioned above. Sea sprays generated by wave breaking and wind tearing wave crests modify the wind profile and prevent the water surface from being dragged by the wind directly, which in turn, reduces the drag coefficient and levels off the wind stress under high winds.

    It is also shown in Fig.4 that as for the wage state effects especially under low-to-moderate winds, there are two conditions: 1) Younger waves usually correspond to larger drag coefficients when wind speed less than 10ms?1. 2) When wind speed more than 10ms?1and less than 15ms?1, for wage age smaller than 0.4, younger waves usually correspond to smaller drag coefficients, whereas for wave age larger than 0.4, mature waves correspond to smaller drag coefficients. The later condition is consistent with the SCOR relation (Jones and Toba, 2001). However, under high wind conditions, the interaction between wave state effects and sea spray effects makes the dependence of drag coefficient on wind speed more complicated. Generally, younger waves generate less sea sprays from wave breaking, thus less impact from sea sprays on the drag coefficient; whereas older waves could be affected by sea spray obviously. We can also find that, for small wave ages(,<0.2), sea spray effects on drag coefficient are hardly seen for wind speed up to 50ms?1.

    The wind speed of drag coefficients reaching their maximum values vary under different wave developments. For wage age less than 0.6, the wind speed of the drag coefficients reaching their maximum values exceeds 50ms?1; whereas for wage age larger than 0.6, the wind speed lies in 25–45ms?1. It can also be noticed that, under most wave ages (larger than 0.1) the larger the wage age, the lower wind speed at which the drag coefficient begin to decrease or level off.

    Fig.4 The relation between drag coefficient and wind speed under different wave developments.

    5 Validation and Discussion

    As mentioned above, the new proposed parameterization would be the same as the SCOR relation under low-to-moderate wind conditions when sea spray effects are negligible. The detailed validation for the SCOR relation can be found in Jones and Toba (2001). In this study, we will mainly focus on the behavior of the new proposed relationship under high wind conditions. Some recent labo- ratory (Donelan, 2004) and field (Powell, 2006) data sets with observations under high winds described below are used to be compared with the new relationship.

    Donelan(2004) utilized the Air-Sea Interaction Facility at the University of Miami to examine the wind stress under high winds. The facility includes a tank that is 15m long and 1m wide with its height of 1m. It can generate winds along the centerline in the range of 0 to 30ms?1. They adopted three methods including profile, eddy correlation, and momentum budget of water control volume to estimate wind stress and thus drag coefficient under different winds. Their results show a saturation of the drag coefficient once the wind speed exceeds 33ms?1. From Fig.5, one can see that the new presented relation can cover the range of the existing laboratory observation well, and can explain the scatter of current measurements to some extent. The reduction of the drag coefficient under high wind conditions is shown in both the observations and the presented relation for different wave states.

    Fig.5 Comparison between the drag coefficient and wind speed relations under different wave ages, corresponding to the wave age and sea spray related parameterization and laboratory observations under high winds. The red markers with dash-dotted lines are laboratory measurements from Donelan et al. (2004) through different methods. PM, profile method; MB, momentum budget method; RS, Reynolds stress method.

    Powell (2006) found that the drag coefficient increases with wind up to 41ms?1and then decrease with increasing wind. He also analyzed the azimuthal dependence of the drag coefficient for hurricanes. As in Black(2007), a storm can be divided into three regions: 1) rear sector (151?–240? relative to the storm motion vector) with waves moving with the wind, 2) right sector (21?–150?) with waves moving outward by up to 45? relative to the wind, and 3) left front sector (241?–20?) where waves travel outward at 60?–90? to the wind. Fig.6 shows the comparison of the relation between drag coefficient and wind speed for the new presented wave state and sea spray related parameterization with the observational data for different sectors of tropical cyclones from Powell (2006) when analyzing the azimuthal dependence of the drag coefficient for hurricanes. From Fig.6, one can see that the new presented relation can cover the range of the existing field observation well, although there are some points that deviate the curve farther. This result is better than Liu (2012b)’s who extend the SCOR relation to high wind by adopting Markin (2005)’s theory.

    Fig.6 The relation between drag coefficient and wind speed under different wave ages (β), corresponding to the wave age and sea spray related parameterization, together with the observations from Powell (2006) for different sectors.

    6 Conclusions

    Parameterization of air-sea momentum flux is one of the fundamental processes that connect atmosphere, waves and ocean. In this study, a drag coefficient parameterization applicable from low to extreme winds is proposed by considering the effects of wave state and sea spray on air-sea momentum flux. According to the new presented para- meterization, under low wind conditions when the effect of sea spray could be neglected, the drag coefficient increases with the increasing wind, while under high wind conditions, the drag coefficient does not increase, but decreases with the increasing wind speed due to the effect of sea spray, and this agrees well with recent observations under high winds.

    As the wave state and sea spray would affect the air-sea momentum flux as well as air-sea heat and mass fluxes, the new presented parameterization could be used in coupled atmosphere-wave-ocean modeling systems. However, it should be noted that the new proposed parameterization needs to be further validated through simultaneously meas- ured wind and wave data especially under high wind conditions. More field and laboratory experiments should also be conducted to investigate the dependence of wind stress on other factors.

    Acknowledgements

    The efforts of the researchers who obtained and published the data sets used in this study as well as their funding organizations are much appreciated. This study is supported by the National Key R&D Program of China (No. 2018YFB1501901), the National Natural Science Foundation of China (Nos. 51909114, U1806227 and U1906231), and the Guangxi Key Laboratory of Marine EnvironmentalScience, Guangxi Academy of Sciences (No. GXKLHY21-04).

    Andreas, E. L., 1992. Sea spray and the turbulent air-sea heat fluxes., 97: 11429-11441.

    Andreas, E. L., 2004. Spray stress revisited., 34: 1429-1440.

    Andreas, E. L., and Decosmo, J., 2002. The signature of sea spray in the HEXOS turbulent heat flux data., 103: 303-333.

    Andreas, E. L., and Emanuel, K. A., 2001. Effects of sea spray on tropical cyclone intensity., 58: 3741-3751.

    Black, P. G., D’Asaro, E. A., Drennan, W. M., French, J. R., Niiler, P. P., Sanford, T. B.,, 2007. Air-sea exchange in hurricanes: Synthesis of observations from the coupled boundary layer air-sea transfer experiment., 88 (3): 357-374.

    Chao, G. F., Shao, C. X., Wu, X. R., and Liu, K. X., 2019. Study on air-sea momentum exchange coefficient based on buoy data, 34 (3): 35-42 (in Chinese with English abstract).

    Charnock, H., 1955. Wind stress on a water surface., 81: 639-640.

    Donelan, M. A., 1982. The dependence of the aerodynamic drag coefficient on wave.. Boston, 381-387.

    Donelan, M. A., 1990. Air-sea interaction.In:LéMehauté, B., and Hanes, D. M., eds., Wiley, New York, 239-292.

    Donelan, M. A., Haus, B. K., Reul, N., Plant, W. J., Stiassnie, M., Graber, H. C.,, 2004. On the limiting aerodynamic roughness of the ocean in very strong winds., 31: L18306, DOI: 10.1029/2004GL019460.

    Drennan, W. M., Graber, H. C., Hauser, D., and Quentin, C., 2003. On the wave age dependence of wind stress over pure wind seas., 108 (C3): 8062, DOI: 10.1029/2000JC000715.

    Fairall, C. W., Bradley, E. F., Hare, J. E., Grachev, A. A., and Edson, J. B., 2003. Bulk parameterization of air-sea fluxes: Updates and verification for the COARE algorithm., 16: 571-591.

    Fang, P. Z., Zhao, B. K., Zhang, S., Zeng, Z. H., and Lin, W., 2015. An observation of behavior of nearshore drag coefficient with moderate to strong wind speed., 31 (5): 713-720.

    Iida, N., Toba, Y., and Chaen, M., 1992. A new expression for the production rate of sea water droplets on the sea surface., 48: 439-460.

    Jones, I. S. F., and Toba, Y., 2001.. Cambridge University Press, Cambridge, UK, 307pp, DOI: 10. 1017/CBO9780511552076.

    Li, D. L., Staneva, J., Bidlot, J. R., Grayek, S., Zhu, Y. C., and Yin, B. S., 2021. Improving regional model skills during typhoon events: A case study for super typhoon Lingling over the Northwest Pacific Ocean., 8: 1-22, DOI: 10.3389/fmars.2021.613913.

    Li, D. L., Staneva, J., Grayek, S., Behrens, A., Feng, J. L., and Yin, B. S., 2020. Skill assessment of an atmosphere-wave regional coupled model over the East China Sea with a focus on typhoons., 11 (3): 1-25, https://doi.org/10.3390/atmos11030252.

    Li, F. N., Song, J. B., He, H. L., Li, S., Li, X., and Guan, S. D., 2016. Assessment of surface drag coefficient parametrizations based on observations and simulations using the weather research and forecasting model., 4: 327-336.

    Liu, B., Guan, C. L., and Xie, L. A., 2012a. The wave state and sea spray related parameterization of wind stress applicable from low to extreme winds., 117: C00J22, DOI: 10.1029/2011JC007786.

    Liu, B., Guan, C. L., Xie, L. A., and Zhao, D. L., 2012b. An investigation of the effects of wave state and sea spray on an idealized typhoon using an air-sea coupled modeling system., 29: 391-406.

    Liu, B., Guan, C. L., Xie, L. A., and Zhao, D. L., 2015. Derivation of a wave-state-dependent sea spray generation function and its application in estimating sea spray heat flux., 58: 1862-1871, DOI: 10.1007/s11430-015-5169-4.

    Liu, L., Fei, J. F., Huang, X. G., and Cheng, X. P., 2012c. The development of atmosphere-current-wave fully coupled model and its application during a typhoon process., 61 (14): 149201.

    Makin, V. K., 2005. A note on the drag of the sea surface at hurricane winds., 115: 169-176, DOI: 10.1007/s10546-004-3647-x.

    Masuda, A., and Kusaba, T., 1987. On the local equilibrium of winds and wind-waves in relation to surface drag., 43 (1): 28-36.

    Monahan, E. C., Spiel, D. E., and Davidson, K. L., 1986.. Springer, New York, 167-174.

    Peng, S., and Li, Y., 2015. A parabolic model of drag coefficient for storm surge simulation in the South China Sea., 5: 15496, http://dx.doi.org/10.1038/srep15496.

    Peng, S., Li, Y., and Xie, L., 2013. Adjusting the wind stress drag coefficient in storm surge forecasting using an adjoint technique.,30: 590-608.

    Potter, H., Graber, H. C., Williams, N. J., Collins, C. O., Ramos, R. J., and Drennan, W. M., 2015.measurements of momentum fluxes in typhoons., 72: 104-118.

    Powell, M. D., 2006. Drag coefficient distribution and wind speed dependence in tropical cyclones. Final report to the NOAA JHT program. Atlantic Oceanographic and Meteorological Lab- oratory, Miami, Florida, 26pp.

    Powell, M. D., Vickery, P. J., and Reinhold, T. A., 2003. Reduced drag coefficient for high wind speeds in tropical cyclones.,422: 279-283.

    Rajesh, K. R., Sandeepan, B. S., and David, M. H., 2020. Impact of different sea surface roughness on surface gravity waves using a coupled atmosphere-wave model: A case of Hurricane Isaac (2012)., 70: 421-433.

    Raupach, M. R., 1991. Saltation layers, vegetation canopies and roughness lengths., 1: 83-96.

    Schmidt, R. A., 1982. Vertical pro?les of wind speed, snow concentration, and humidity in blowing snow., 23: 223-246.

    Sheppard, P. A., 1958. Transfer across the Earth’s surface and through the air above., 84: 205-224.

    Shi, J., and Jiang, G. R., 2015. The influence of wind wave state on sea surface roughness., 46 (6): 1255-1262.

    Shi, J., Zhou, L., and Yang, L. Y., 2013. Influence of sea spray droplets on drag coefficient in high wind speed.,62 (3): 1-9.

    Smith, S. D., 1980. Wind stress and heat flux over the ocean in gale force winds.,10: 709-726.

    Smith, S. D., and Banke, E. G., 1975. Variation of the sea surface drag coefficient with wind speed., 101: 665-673, DOI: 10.1002/qj.49710142920.

    Stewart, R. W., 1974. The air-sea momentum exchange., 16: 151-167.

    Sugimori, Y., Akiyama, M., and Suzuki, N., 2000. Ocean measurement and climate prediction-expectation for signal processing., 4: 209-222.

    Toba, Y., Iida, N., Kawamura, H., Ebuchi, N., and Jones, L. S. F., 1990. Wave dependence of sea-surface wind stress., 20: 705-721.

    Troitskaya, Y., Kandaurov, A., Ermakova, O., Kozlov, D., Sergeev, D., and Zilitinkevich, S., 2018. The ‘bag breakup’ spume droplet generation mechanism at high winds. Part I: Spray generation function., 48 (9): 2167-2188.

    Troitskaya, Y., Sergeev, D., Kandaurov, A., and Vdovin, M., 2019. The effect of foam on waves and the aerodynamic roughness of the water surface at high winds.,49 (4): 959-981.

    Wu, J., 1980. Wind-stress coeffcients over sea surface near neutral conditions–A revisit., 10: 727-740.

    Yelland, M. J., and Taylor, P. K., 1996. Wind stress measurements from the open ocean., 26: 541-558.

    Zhao, D. L., Toba, Y., Sugioka, K. I., and Komori, S., 2006. New sea spray generation function for spume droplets., 111: C02007, DOI: 02010.01029/02005JC002960.

    Zubkovskii, S. L., and Kravchenko, T. K., 1967. Direct measurements of some turbulence in the near-water layer., 3: 127-135.

    (June 2, 2021; revised June 29, 2021; accepted July 19, 2021)

    ? Ocean University of China, Science Press and Springer-Verlag GmbH Germany 2022

    Corresponding authors. E-mail: hyshi@ldu.edu.cn

    E-mail: wzw1128@dlmu.edu.cn

    (Edited by Xie Jun)

    国产精品久久久久久精品电影| 精品久久久久久久久久免费视频| 日日摸夜夜添夜夜爱| 成年女人看的毛片在线观看| 一级毛片aaaaaa免费看小| av在线播放精品| 我要搜黄色片| 国产一区二区三区在线臀色熟女| www日本黄色视频网| 亚洲精品亚洲一区二区| 国产高潮美女av| 欧美丝袜亚洲另类| 99热只有精品国产| 精品少妇黑人巨大在线播放 | 国产男人的电影天堂91| 国产一区二区亚洲精品在线观看| 校园人妻丝袜中文字幕| 春色校园在线视频观看| 露出奶头的视频| 女人十人毛片免费观看3o分钟| 亚洲婷婷狠狠爱综合网| 麻豆国产av国片精品| 日日干狠狠操夜夜爽| 男人的好看免费观看在线视频| 狂野欧美白嫩少妇大欣赏| 久久99热6这里只有精品| 精品一区二区三区视频在线| 一夜夜www| 亚洲精品粉嫩美女一区| 亚洲av成人av| 18禁黄网站禁片免费观看直播| 嫩草影视91久久| 天天一区二区日本电影三级| 国产v大片淫在线免费观看| 99在线视频只有这里精品首页| 亚洲熟妇中文字幕五十中出| 精品人妻视频免费看| 国产高清不卡午夜福利| 伦精品一区二区三区| av黄色大香蕉| 麻豆国产av国片精品| 国产精品乱码一区二三区的特点| 赤兔流量卡办理| 日韩在线高清观看一区二区三区| 天堂av国产一区二区熟女人妻| 十八禁国产超污无遮挡网站| 99久久成人亚洲精品观看| 直男gayav资源| 国产日本99.免费观看| 亚洲最大成人手机在线| 午夜免费激情av| 一个人免费在线观看电影| 91久久精品国产一区二区三区| 黑人高潮一二区| 免费看a级黄色片| 国产极品精品免费视频能看的| 欧美区成人在线视频| 日本成人三级电影网站| 国内精品一区二区在线观看| 欧美绝顶高潮抽搐喷水| 内射极品少妇av片p| 日韩成人伦理影院| 黄色日韩在线| 中文亚洲av片在线观看爽| 国产视频一区二区在线看| 国产成人a区在线观看| 精品午夜福利视频在线观看一区| 国产亚洲精品久久久com| 午夜精品在线福利| 免费人成视频x8x8入口观看| 夜夜爽天天搞| 深夜精品福利| 狂野欧美激情性xxxx在线观看| 久久精品综合一区二区三区| 欧美激情在线99| 99久国产av精品国产电影| 国产人妻一区二区三区在| 男人狂女人下面高潮的视频| 丝袜喷水一区| 天堂av国产一区二区熟女人妻| 青春草视频在线免费观看| 黄色欧美视频在线观看| 中文资源天堂在线| 国产成人精品久久久久久| 成人av一区二区三区在线看| 国产高潮美女av| 欧美最新免费一区二区三区| 亚洲美女搞黄在线观看 | 亚洲av不卡在线观看| 麻豆乱淫一区二区| 啦啦啦啦在线视频资源| 欧美xxxx性猛交bbbb| 深爱激情五月婷婷| 免费观看人在逋| 夜夜爽天天搞| 性插视频无遮挡在线免费观看| 男女视频在线观看网站免费| 国产淫片久久久久久久久| 久久人人爽人人片av| 亚洲不卡免费看| 99精品在免费线老司机午夜| 伦精品一区二区三区| 国产女主播在线喷水免费视频网站 | 1000部很黄的大片| 午夜福利视频1000在线观看| 亚洲欧美中文字幕日韩二区| 国产综合懂色| 网址你懂的国产日韩在线| 国产精品av视频在线免费观看| 丝袜美腿在线中文| 国产麻豆成人av免费视频| 直男gayav资源| 色综合色国产| 亚洲美女黄片视频| a级毛片a级免费在线| 禁无遮挡网站| 国内精品久久久久精免费| 悠悠久久av| 哪里可以看免费的av片| 国产精品久久视频播放| 在线免费观看不下载黄p国产| 国产69精品久久久久777片| 欧美高清性xxxxhd video| 国产在线精品亚洲第一网站| 成人一区二区视频在线观看| 日本精品一区二区三区蜜桃| 亚洲精品色激情综合| 草草在线视频免费看| 国产精品爽爽va在线观看网站| 国产精品一区二区三区四区久久| 久久精品影院6| 深爱激情五月婷婷| 性色avwww在线观看| 91在线精品国自产拍蜜月| 女生性感内裤真人,穿戴方法视频| 国产成人91sexporn| 99热网站在线观看| 国产伦精品一区二区三区视频9| 成人三级黄色视频| 大又大粗又爽又黄少妇毛片口| 国产av麻豆久久久久久久| 日韩大尺度精品在线看网址| 国产精品野战在线观看| 成人美女网站在线观看视频| 亚洲中文日韩欧美视频| 淫妇啪啪啪对白视频| 国产v大片淫在线免费观看| 国产又黄又爽又无遮挡在线| 国产欧美日韩精品一区二区| 亚洲成av人片在线播放无| 日韩欧美在线乱码| 国产伦在线观看视频一区| av福利片在线观看| 成人亚洲欧美一区二区av| 别揉我奶头 嗯啊视频| 日本三级黄在线观看| 欧美潮喷喷水| 成年版毛片免费区| 久久精品人妻少妇| 国产成人91sexporn| 一个人免费在线观看电影| 国产成人影院久久av| 蜜桃亚洲精品一区二区三区| 久久久久久久久中文| 午夜福利在线观看免费完整高清在 | 午夜激情欧美在线| 欧美另类亚洲清纯唯美| 亚洲在线观看片| 大香蕉久久网| 亚洲成人久久性| 男女下面进入的视频免费午夜| 成人特级av手机在线观看| 久久久久国内视频| 国产精品久久久久久久久免| 国产欧美日韩精品一区二区| 在线观看免费视频日本深夜| 女同久久另类99精品国产91| 成人一区二区视频在线观看| 真人做人爱边吃奶动态| 91狼人影院| 高清午夜精品一区二区三区 | 欧美不卡视频在线免费观看| 成年女人看的毛片在线观看| 一区福利在线观看| 毛片一级片免费看久久久久| 久久精品国产亚洲网站| 精品国内亚洲2022精品成人| 免费看光身美女| 日本免费一区二区三区高清不卡| 国产一区二区在线观看日韩| 高清日韩中文字幕在线| 91久久精品国产一区二区三区| 最后的刺客免费高清国语| 欧美极品一区二区三区四区| 久久久精品大字幕| 国产精品亚洲一级av第二区| 在线观看av片永久免费下载| 午夜福利在线观看免费完整高清在 | 内地一区二区视频在线| 日韩成人伦理影院| av福利片在线观看| 在线观看66精品国产| 亚洲性久久影院| 精品不卡国产一区二区三区| 最好的美女福利视频网| 国产精品国产三级国产av玫瑰| 亚洲欧美日韩无卡精品| 一进一出好大好爽视频| 国内精品一区二区在线观看| 国产亚洲精品综合一区在线观看| 少妇高潮的动态图| 国产亚洲精品久久久久久毛片| 国产精品一区二区性色av| 欧美最黄视频在线播放免费| 免费人成在线观看视频色| 国产精品乱码一区二三区的特点| 免费av不卡在线播放| 熟女电影av网| 中文字幕av成人在线电影| www日本黄色视频网| 久久久成人免费电影| 亚洲av免费在线观看| 深爱激情五月婷婷| 女人十人毛片免费观看3o分钟| 国产亚洲精品久久久com| 国内精品宾馆在线| 久久精品夜色国产| 毛片一级片免费看久久久久| 欧美xxxx性猛交bbbb| 日韩高清综合在线| 亚洲五月天丁香| 韩国av在线不卡| 精品日产1卡2卡| 又爽又黄a免费视频| 亚洲精华国产精华液的使用体验 | 精品少妇黑人巨大在线播放 | 亚洲av一区综合| 午夜亚洲福利在线播放| 12—13女人毛片做爰片一| 日日摸夜夜添夜夜添av毛片| 啦啦啦观看免费观看视频高清| 免费av观看视频| 中文亚洲av片在线观看爽| 精华霜和精华液先用哪个| 露出奶头的视频| 日本黄色片子视频| 午夜免费男女啪啪视频观看 | 日韩av在线大香蕉| 日本黄色片子视频| 人人妻人人看人人澡| 波多野结衣高清无吗| 色综合站精品国产| 三级毛片av免费| 精品99又大又爽又粗少妇毛片| 赤兔流量卡办理| 亚洲精品日韩在线中文字幕 | 亚洲av一区综合| 国产成人aa在线观看| 99热这里只有是精品50| 男女啪啪激烈高潮av片| 狂野欧美激情性xxxx在线观看| 成人鲁丝片一二三区免费| 看片在线看免费视频| 国产一级毛片七仙女欲春2| 丰满的人妻完整版| 少妇猛男粗大的猛烈进出视频 | 男插女下体视频免费在线播放| 亚洲在线自拍视频| 日韩人妻高清精品专区| 中文字幕熟女人妻在线| 国产v大片淫在线免费观看| 人人妻人人澡人人爽人人夜夜 | 国产一区亚洲一区在线观看| 国产黄色视频一区二区在线观看 | 日韩亚洲欧美综合| 精品久久久久久久久久免费视频| 18禁黄网站禁片免费观看直播| 国产美女午夜福利| 女同久久另类99精品国产91| 亚洲婷婷狠狠爱综合网| 亚洲国产精品合色在线| 嫩草影院精品99| 午夜精品一区二区三区免费看| 一区福利在线观看| 国产91av在线免费观看| 自拍偷自拍亚洲精品老妇| 简卡轻食公司| 午夜福利在线观看免费完整高清在 | 亚洲精品影视一区二区三区av| 国产成人一区二区在线| 激情 狠狠 欧美| 乱码一卡2卡4卡精品| 男人舔女人下体高潮全视频| 女的被弄到高潮叫床怎么办| 欧美日韩在线观看h| 国产麻豆成人av免费视频| 精品一区二区三区视频在线观看免费| 国产成人影院久久av| 99久久九九国产精品国产免费| 床上黄色一级片| 精品人妻一区二区三区麻豆 | 少妇熟女欧美另类| 嫩草影视91久久| 插阴视频在线观看视频| 亚洲精品一卡2卡三卡4卡5卡| а√天堂www在线а√下载| 久久久欧美国产精品| 国产精品人妻久久久影院| 亚洲av不卡在线观看| 此物有八面人人有两片| 国产美女午夜福利| 精品一区二区三区人妻视频| 亚洲四区av| 亚洲专区国产一区二区| 日韩av在线大香蕉| 日韩精品中文字幕看吧| а√天堂www在线а√下载| 欧美日韩国产亚洲二区| 乱人视频在线观看| 免费av观看视频| 天堂√8在线中文| 观看免费一级毛片| 久久这里只有精品中国| 午夜福利成人在线免费观看| 日本与韩国留学比较| 亚洲欧美中文字幕日韩二区| ponron亚洲| 日本欧美国产在线视频| 1000部很黄的大片| 亚洲国产精品成人久久小说 | 亚洲国产欧洲综合997久久,| 成人美女网站在线观看视频| 十八禁网站免费在线| 十八禁国产超污无遮挡网站| 91麻豆精品激情在线观看国产| 亚洲国产精品久久男人天堂| 国产精品久久久久久精品电影| 蜜桃久久精品国产亚洲av| 欧美日韩精品成人综合77777| 成人鲁丝片一二三区免费| 婷婷精品国产亚洲av在线| 日韩 亚洲 欧美在线| ponron亚洲| 在线免费十八禁| 三级国产精品欧美在线观看| 亚洲四区av| 欧美日韩一区二区视频在线观看视频在线 | 欧美一区二区亚洲| 尾随美女入室| 精品免费久久久久久久清纯| 亚洲国产精品合色在线| 国产精品久久久久久av不卡| 欧美区成人在线视频| 成人无遮挡网站| 免费av不卡在线播放| 免费搜索国产男女视频| .国产精品久久| 美女内射精品一级片tv| 日本成人三级电影网站| 我要搜黄色片| 午夜福利成人在线免费观看| 久久久久久久久久成人| 国产男靠女视频免费网站| 天美传媒精品一区二区| 观看免费一级毛片| 身体一侧抽搐| 中文字幕熟女人妻在线| 色尼玛亚洲综合影院| 午夜福利在线观看免费完整高清在 | 国内精品一区二区在线观看| 婷婷六月久久综合丁香| 给我免费播放毛片高清在线观看| 免费观看精品视频网站| 久久人人精品亚洲av| 俺也久久电影网| 国产激情偷乱视频一区二区| 精品一区二区免费观看| 亚洲国产精品成人久久小说 | 天美传媒精品一区二区| 99热这里只有是精品50| 久久欧美精品欧美久久欧美| 中国美女看黄片| 亚洲av中文字字幕乱码综合| 日韩欧美精品v在线| 色播亚洲综合网| 精品久久久久久久久久免费视频| 天天躁夜夜躁狠狠久久av| 久久久久久大精品| 国产视频内射| 国产精品国产高清国产av| 九色成人免费人妻av| 久久精品国产99精品国产亚洲性色| 国内精品一区二区在线观看| av免费在线看不卡| 18禁在线无遮挡免费观看视频 | 免费在线观看影片大全网站| 床上黄色一级片| 夜夜夜夜夜久久久久| 成年女人看的毛片在线观看| 免费大片18禁| 99热这里只有是精品50| 免费看a级黄色片| 一区二区三区四区激情视频 | 欧美成人精品欧美一级黄| 你懂的网址亚洲精品在线观看 | 黄色一级大片看看| 亚洲国产欧洲综合997久久,| 麻豆乱淫一区二区| av天堂中文字幕网| a级毛片免费高清观看在线播放| 国产单亲对白刺激| 不卡一级毛片| 一个人免费在线观看电影| 午夜久久久久精精品| 久久热精品热| 亚洲欧美日韩卡通动漫| 丝袜喷水一区| 亚洲精品日韩av片在线观看| 最近手机中文字幕大全| 免费av观看视频| 亚洲美女视频黄频| 麻豆成人午夜福利视频| 日本熟妇午夜| 国产精品人妻久久久影院| 啦啦啦啦在线视频资源| 欧美区成人在线视频| 中文字幕熟女人妻在线| 久久精品国产鲁丝片午夜精品| 久久热精品热| 亚洲高清免费不卡视频| 91在线观看av| 亚州av有码| 极品教师在线视频| 91久久精品电影网| 听说在线观看完整版免费高清| 老女人水多毛片| 1000部很黄的大片| or卡值多少钱| 中出人妻视频一区二区| 精品不卡国产一区二区三区| 亚洲熟妇熟女久久| 美女 人体艺术 gogo| 国内精品一区二区在线观看| 十八禁网站免费在线| 一进一出抽搐动态| 少妇熟女aⅴ在线视频| 久久热精品热| 日韩成人av中文字幕在线观看 | 婷婷色综合大香蕉| 午夜激情福利司机影院| 国产高潮美女av| 亚洲四区av| 黄色日韩在线| 女人十人毛片免费观看3o分钟| 麻豆一二三区av精品| 日本精品一区二区三区蜜桃| 欧美高清性xxxxhd video| 久久人人精品亚洲av| 国产美女午夜福利| 亚洲第一区二区三区不卡| 91久久精品国产一区二区成人| 日韩在线高清观看一区二区三区| 免费电影在线观看免费观看| 国产精品伦人一区二区| 男人舔奶头视频| 成人性生交大片免费视频hd| 网址你懂的国产日韩在线| 免费大片18禁| 国内精品久久久久精免费| 成人国产麻豆网| a级毛色黄片| 22中文网久久字幕| 国产亚洲精品久久久com| 精品福利观看| 色播亚洲综合网| 国语自产精品视频在线第100页| 女人十人毛片免费观看3o分钟| 欧美绝顶高潮抽搐喷水| 国产精品女同一区二区软件| 免费av观看视频| 最近视频中文字幕2019在线8| 午夜免费男女啪啪视频观看 | 国产综合懂色| 久久精品国产清高在天天线| 亚洲精品乱码久久久v下载方式| 国产三级中文精品| 国产片特级美女逼逼视频| 中文亚洲av片在线观看爽| 观看美女的网站| 亚洲中文日韩欧美视频| 变态另类丝袜制服| 免费一级毛片在线播放高清视频| 有码 亚洲区| 日日摸夜夜添夜夜添小说| 哪里可以看免费的av片| 亚洲美女搞黄在线观看 | 欧美中文日本在线观看视频| 亚洲乱码一区二区免费版| 桃色一区二区三区在线观看| 男人舔奶头视频| 美女 人体艺术 gogo| 又粗又爽又猛毛片免费看| 国产麻豆成人av免费视频| 91午夜精品亚洲一区二区三区| 一进一出抽搐动态| 又粗又爽又猛毛片免费看| 中文字幕精品亚洲无线码一区| 天天躁夜夜躁狠狠久久av| 国产成人aa在线观看| 又粗又爽又猛毛片免费看| 中文字幕精品亚洲无线码一区| 欧美又色又爽又黄视频| 97超级碰碰碰精品色视频在线观看| 波多野结衣高清无吗| 欧美色欧美亚洲另类二区| 色在线成人网| 色av中文字幕| 婷婷六月久久综合丁香| 在线播放国产精品三级| 99久久中文字幕三级久久日本| 男女那种视频在线观看| 高清日韩中文字幕在线| 成人精品一区二区免费| 18禁在线无遮挡免费观看视频 | 国产精品久久久久久精品电影| 真人做人爱边吃奶动态| 亚洲五月天丁香| 日本免费一区二区三区高清不卡| 国产91av在线免费观看| 国产一区二区亚洲精品在线观看| h日本视频在线播放| 乱系列少妇在线播放| 在线观看一区二区三区| 99精品在免费线老司机午夜| 欧美在线一区亚洲| 又粗又爽又猛毛片免费看| 亚洲图色成人| 国国产精品蜜臀av免费| 看免费成人av毛片| 能在线免费观看的黄片| 国产精品av视频在线免费观看| 国产在线男女| 在线观看午夜福利视频| 人人妻人人澡欧美一区二区| 国产高清三级在线| 日本爱情动作片www.在线观看 | 欧美中文日本在线观看视频| 亚洲18禁久久av| 天天一区二区日本电影三级| 最近在线观看免费完整版| 黄片wwwwww| 99久久精品一区二区三区| 99久久无色码亚洲精品果冻| 男人舔奶头视频| 日韩欧美国产在线观看| 日韩欧美免费精品| 免费在线观看影片大全网站| 中文字幕免费在线视频6| 变态另类丝袜制服| 一个人看的www免费观看视频| 中文字幕精品亚洲无线码一区| 99热网站在线观看| 中文资源天堂在线| 国产精品嫩草影院av在线观看| 美女大奶头视频| 欧美最黄视频在线播放免费| 欧美成人a在线观看| av天堂在线播放| 乱码一卡2卡4卡精品| 日本免费a在线| 国内精品美女久久久久久| 成人亚洲精品av一区二区| 丰满乱子伦码专区| 欧美区成人在线视频| 干丝袜人妻中文字幕| 国产精品一区二区三区四区久久| 少妇高潮的动态图| 韩国av在线不卡| 精品乱码久久久久久99久播| 少妇熟女aⅴ在线视频| 国产成人aa在线观看| 香蕉av资源在线| 色5月婷婷丁香| 国内精品宾馆在线| 在线观看一区二区三区| 国产亚洲精品综合一区在线观看| 国产亚洲av嫩草精品影院| 看非洲黑人一级黄片| 在线国产一区二区在线| 一本久久中文字幕| 精品久久久久久久久亚洲| 麻豆一二三区av精品| 午夜免费激情av| eeuss影院久久| 午夜日韩欧美国产| 国内精品宾馆在线| 成人国产麻豆网| 搡老熟女国产l中国老女人| 1024手机看黄色片| 久久久成人免费电影| 久久久久久久久久成人| 能在线免费观看的黄片| 我的女老师完整版在线观看| 天天一区二区日本电影三级| 午夜激情福利司机影院| 五月玫瑰六月丁香| 亚洲av二区三区四区| 久久久国产成人精品二区| 变态另类丝袜制服| 九九在线视频观看精品| 成熟少妇高潮喷水视频| 淫秽高清视频在线观看| 身体一侧抽搐| 国产乱人偷精品视频| 日韩成人av中文字幕在线观看 |