郭燕,井宇航,王來剛,黃競(jìng)毅,賀佳,馮偉,鄭國(guó)清
基于無人機(jī)影像特征的冬小麥植株氮含量預(yù)測(cè)及模型遷移能力分析
郭燕1,2,3,井宇航1,4,王來剛1,2,3,黃競(jìng)毅5,賀佳1,2,3,馮偉4,鄭國(guó)清1,2,3
1河南省農(nóng)業(yè)科學(xué)院農(nóng)業(yè)經(jīng)濟(jì)與信息研究所,鄭州 450002;2農(nóng)業(yè)農(nóng)村部黃淮海智慧農(nóng)業(yè)技術(shù)重點(diǎn)實(shí)驗(yàn)室,鄭州 450002;3河南省農(nóng)作物種植監(jiān)測(cè)與預(yù)警工程研究中心,鄭州 450002;4河南農(nóng)業(yè)大學(xué)農(nóng)學(xué)院/省部共建小麥玉米作物學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室,鄭州 450046;5Department of Soil Science, University of Wisconsin-Madison, Madison, WI 53706, USA
【目的】氮素的精準(zhǔn)監(jiān)測(cè)和合理施用對(duì)小麥健康生長(zhǎng)、產(chǎn)量及品質(zhì)提升、減少農(nóng)田環(huán)境污染與資源浪費(fèi)尤為重要。為精準(zhǔn)監(jiān)測(cè)小麥生長(zhǎng)關(guān)鍵生育期植株氮含量,探索機(jī)器學(xué)習(xí)方法構(gòu)建的植株氮含量預(yù)測(cè)模型的遷移能力?!痉椒ā啃^(qū)試驗(yàn)于2020—2022年在河南省商水縣開展,在冬小麥拔節(jié)期、孕穗期、開花期和灌漿期,采用M600大疆無人機(jī)搭載K6多光譜成像儀獲取5波段(Red、Green、Blue、Rededge、Nir)多光譜影像。基于5個(gè)波段冠層反射率提取20種植被指數(shù)和40種紋理特征,采用相關(guān)分析從65個(gè)影像特征中篩選冬小麥植株氮含量敏感特征。基于篩選出的敏感特征,采用BP神經(jīng)網(wǎng)絡(luò)(BP)、隨機(jī)森林(RF)、Adaboost、支持向量機(jī)(SVR)4種機(jī)器學(xué)習(xí)回歸方法構(gòu)建植株氮含量預(yù)測(cè)模型,并對(duì)模型預(yù)測(cè)效果和在不同水處理?xiàng)l件下模型的遷移預(yù)測(cè)能力進(jìn)行分析。【結(jié)果】(1)植株氮含量與影像特征的相關(guān)系數(shù)通過0.01極顯著水平檢驗(yàn)的包括22個(gè)光譜特征和29個(gè)紋理特征。(2)4種機(jī)器學(xué)習(xí)回歸方法構(gòu)建的冬小麥植株氮含量預(yù)測(cè)模型存在差異,RF和Adaboost方法預(yù)測(cè)植株氮含量集中于95%的置信區(qū)間,多分布于1﹕1直線附近,而BP和SVR方法預(yù)測(cè)的植株氮含量分布相對(duì)較為分散;RF方法構(gòu)建的預(yù)測(cè)模型2最大,最小,MAE中等,分別為0.81、0.42%和0.29%;SVR方法構(gòu)建的預(yù)測(cè)模型2最小,和MAE較大,分別為0.66、0.54%和0.40%。(3)以W1處理(按需灌溉)實(shí)測(cè)植株氮含量為訓(xùn)練集,采用BP、RF、Adaboost和SVR方法構(gòu)建的模型對(duì)W0處理冬小麥植株氮含量遷移預(yù)測(cè)2分別為0.75、0.72、0.72和0.66;以W0處理(自然狀態(tài))實(shí)測(cè)植株氮含量為訓(xùn)練集,BP、RF、Adaboost和SVR方法構(gòu)建的模型對(duì)W1處理冬小麥植株氮含量遷移預(yù)測(cè)2分別為0.51、0.69、0.61和0.45?!窘Y(jié)論】4種機(jī)器學(xué)習(xí)方法構(gòu)建的冬小麥植株氮含量預(yù)測(cè)模型均表現(xiàn)出了較強(qiáng)的遷移預(yù)測(cè)能力,尤以RF和Adaboost方法構(gòu)建的模型預(yù)測(cè)效果和遷移能力為好。
無人機(jī);光譜特征;紋理特征;機(jī)器學(xué)習(xí);冬小麥植株氮含量;遷移能力
【研究意義】小麥?zhǔn)鞘澜缟喜シN面積最大、分布最廣泛的糧食作物。我國(guó)是小麥生產(chǎn)大國(guó),肩負(fù)扛穩(wěn)糧食安全的重任,2021年小麥產(chǎn)量占世界總產(chǎn)量的17%以上[1]。氮素作為保證小麥產(chǎn)量和質(zhì)量的關(guān)鍵元素,其精準(zhǔn)監(jiān)測(cè)和合理施用對(duì)小麥健康生長(zhǎng)、產(chǎn)量及品質(zhì)提升、減少農(nóng)田環(huán)境污染與資源浪費(fèi)尤為重要。因此,氮素含量的快速、無損、精準(zhǔn)監(jiān)測(cè)一直是學(xué)者們密切關(guān)注和研究的熱點(diǎn)[2-5],而如何提高氮素含量的預(yù)測(cè)精度及模型的普適性是一個(gè)難題。【前人研究進(jìn)展】目前,國(guó)內(nèi)外學(xué)者針對(duì)作物氮含量快速監(jiān)測(cè)和精準(zhǔn)預(yù)測(cè)方面開展了大量研究,從取樣分析到近地面、無人機(jī)、衛(wèi)星遙感的無損監(jiān)測(cè),在敏感波段篩選、植被指數(shù)構(gòu)建、預(yù)測(cè)方法優(yōu)化和精度提升等方面均取得了一定成果[6-11]。但是,不同研究尺度,數(shù)據(jù)的選擇和方法存在差異,面向田塊尺度精準(zhǔn)預(yù)測(cè)需求,高光譜數(shù)據(jù)光譜分辨率高,具有明顯優(yōu)勢(shì)[12-13],如張瀟元等[12]利用ASD小麥冠層高光譜數(shù)據(jù),基于特征波段構(gòu)建了SAVI(soil adjusted vegetation index)等14種不同的植被指數(shù)對(duì)小麥葉片氮含量進(jìn)行反演,多指數(shù)聯(lián)合相比單一植被指數(shù)可顯著提高精度,模型2為0.92以上,但較大范圍數(shù)據(jù)獲取時(shí)效率明顯偏低。隨著遙感技術(shù)的進(jìn)步,機(jī)載光譜成像儀也開始得到廣泛應(yīng)用,大大提高了數(shù)據(jù)獲取效率。尤其是近地面、機(jī)載高光譜數(shù)據(jù)對(duì)氮含量有益的預(yù)測(cè)結(jié)果,促進(jìn)了成本更低的無人機(jī)多光譜遙感數(shù)據(jù)在作物氮素快速監(jiān)測(cè)與反演中的應(yīng)用,但是無人機(jī)多光譜數(shù)據(jù)的光譜分辨率較低,影響氮含量的預(yù)測(cè)效果[4,13-14]。而另一方面,無人機(jī)多光譜數(shù)據(jù)超高空間分辨率影像豐富的紋理特征信息卻又容易被忽略。已有研究表明,紋理特征可以提升原始影像的光譜空間信息辨識(shí)度,在進(jìn)行作物參數(shù)預(yù)測(cè)和反演時(shí)可以提升精度[11,14-16],如賈丹等[15]在光譜分辨率為0.01 m時(shí),融合無人機(jī)多光譜影像光譜特征和紋理特征建立的冬小麥氮含量預(yù)測(cè)模型比單一植被指數(shù)或者紋理特征建立的模型精度提升10個(gè)百分點(diǎn)以上。因此,綜合分析光譜信息、紋理特征對(duì)作物氮素含量的敏感性,采用合適的方法建立植株氮含量預(yù)測(cè)模型,對(duì)提升氮素含量預(yù)測(cè)精度、提升模型適用性、降低成本具有重要意義。植株氮含量的預(yù)測(cè)與反演的方法主要包括統(tǒng)計(jì)模型和物理模型法,統(tǒng)計(jì)模型主要是利用一元回歸和多元回歸等方法建立線性、對(duì)數(shù)、冪函數(shù)等模型[11,15],如WALSH等[17]、楊福芹等[18]基于無人機(jī)影像提取植被指數(shù)和紋理特征,對(duì)春小麥和冬小麥的氮含量進(jìn)行了預(yù)測(cè),模型2范圍為0.58—0.84。物理模型主要是輻射傳輸模型和幾何光學(xué)模型,通過敏感性參數(shù)分析篩選特征波段,利用查找表法、人工神經(jīng)網(wǎng)絡(luò)法等方法反演作物氮含量[9,13],如JAY等[19]利用PROSAIL模型反演甜菜冠層氮含量,模型2為0.84。近年隨著數(shù)據(jù)挖掘技術(shù)的發(fā)展,支持向量機(jī)、神經(jīng)網(wǎng)絡(luò)、遺傳算法、隨機(jī)森林等方法越來越多應(yīng)用到作物氮含量等理化參數(shù)的預(yù)測(cè)與反演中,這些方法具有機(jī)器學(xué)習(xí)能力,在精度方面優(yōu)于傳統(tǒng)模型[9-10,20-22],如Chlingaryan等[20]對(duì)比分析了傳統(tǒng)統(tǒng)計(jì)分析方法和機(jī)器學(xué)習(xí)方法在作物氮含量和產(chǎn)量預(yù)測(cè)中的效果,發(fā)現(xiàn)隨機(jī)森林(RF)、決策樹(DT)等機(jī)器學(xué)習(xí)方法更具有優(yōu)勢(shì)和潛力。不同機(jī)器學(xué)習(xí)方法由于原理不同,構(gòu)建的模型學(xué)習(xí)效率、預(yù)測(cè)和反演能力等方面存在差異[23-24],如楊寶華等[6]采用后向傳輸神經(jīng)網(wǎng)絡(luò)(BP)、支持向量機(jī)(SVR)和徑向基神經(jīng)網(wǎng)絡(luò)(RBF)方法對(duì)冬小麥冠層氮素進(jìn)行預(yù)測(cè),模型2為0.82(SVR)—0.98(RBF);Qiu等[24]采用Adaboost、人工神經(jīng)網(wǎng)絡(luò)(ANN)、K鄰近(KNN)、偏最小二乘(PLS)、RF和SVR機(jī)器學(xué)習(xí)回歸方法對(duì)水稻氮營(yíng)養(yǎng)指數(shù)進(jìn)行預(yù)測(cè)時(shí),發(fā)現(xiàn)RF和Adaboost方法構(gòu)建的模型精度最高,灌漿期與植株氮營(yíng)養(yǎng)指數(shù)RF模型2高達(dá)0.98,說明機(jī)器學(xué)習(xí)方法優(yōu)于傳統(tǒng)統(tǒng)計(jì)分析方法、集成學(xué)習(xí)方法優(yōu)于一般機(jī)器學(xué)習(xí)方法的特點(diǎn),但是這些研究均未對(duì)模型在不同處理?xiàng)l件下的遷移能力進(jìn)行分析。【本研究切入點(diǎn)】探索一般機(jī)器學(xué)習(xí)方法(BP和SVR)和集成學(xué)習(xí)方法(RF和Adaboost)構(gòu)建植株氮含量模型的預(yù)測(cè)效果和遷移預(yù)測(cè)能力,彌補(bǔ)目前國(guó)內(nèi)外關(guān)于模型遷移能力尤其是在農(nóng)業(yè)領(lǐng)域應(yīng)用還相對(duì)缺乏的現(xiàn)狀?!緮M解決的關(guān)鍵問題】本研究以冬小麥為研究對(duì)象,設(shè)計(jì)水氮耦合小區(qū)試驗(yàn),獲取關(guān)鍵生育期無人機(jī)多光譜影像,提取無人機(jī)影像光譜特征與紋理特征,基于相關(guān)性分析得到植株氮含量敏感特征,利用機(jī)器學(xué)習(xí)回歸方法構(gòu)建植株氮含量模型,同時(shí)對(duì)模型預(yù)測(cè)能力和遷移能力進(jìn)行評(píng)價(jià)與分析,為冬小麥氮素營(yíng)養(yǎng)快速診斷、精準(zhǔn)施肥以及模型推廣應(yīng)用提供數(shù)據(jù)和技術(shù)支持。
研究區(qū)位于河南省周口市商水縣國(guó)營(yíng)農(nóng)場(chǎng),地勢(shì)平坦,屬溫帶大陸性季風(fēng)氣候,冬季寒冷干燥,夏季高溫多雨,主要種植冬小麥、玉米、棉花等作物,其中冬小麥的生長(zhǎng)周期為8個(gè)月,一般10月播種,次年5月底6月初收獲。研究區(qū)土壤類型為砂姜黑土,試驗(yàn)地塊常年進(jìn)行氮素定位試驗(yàn),具有很好的氮素水平表現(xiàn)性狀。試驗(yàn)采用隨機(jī)區(qū)組設(shè)計(jì),5個(gè)氮水平,2個(gè)水處理,供試品種為鑫華麥818、鄭麥103、豐德存5號(hào)。5個(gè)氮水平分別為N0(0)、N6(60 kg·hm-2)、N12(120 kg·hm-2)、N18(180 kg·hm-2)和N24(240 kg·hm-2),其中50%作為底肥施入,剩余50%在拔節(jié)期追施。所有處理磷肥和鉀肥用量均為150 kg·hm-2和90 kg·hm-2,全部作為底肥施入。2個(gè)水處理分別為自然狀態(tài)(W0)和按需灌溉(W1)。試驗(yàn)小區(qū)空間分布見圖1。
圖1 研究區(qū)位置和試驗(yàn)設(shè)計(jì)
1.2.1 無人機(jī)多光譜影像獲取與處理 2020—2022年,采用M600六旋翼無人機(jī)遙感平臺(tái)搭載K6多光譜成像儀獲取冬小麥拔節(jié)期、孕穗期、開花期和灌漿期的冠層多光譜影像。此多光譜成像儀包含藍(lán)光(中心波長(zhǎng)450 nm,Blue)、綠光波段(中心波長(zhǎng)550 nm,Green)、紅光波段(中心波長(zhǎng)685 nm,Red)、紅邊波段(中心波長(zhǎng)725 nm,Rededge)、近紅外波段(中心波段780 nm,Nir)5個(gè)波段。飛機(jī)飛行高度為50 m,獲取影像空間分辨率為0.02 m,飛行時(shí)鏡頭垂直朝下,視場(chǎng)角為30°,航向重疊度70%,旁向重疊度75%。無人機(jī)影像預(yù)處理主要包括影像格式轉(zhuǎn)換、影像篩選、影像拼接、正射校正、輻射定標(biāo),具體過程參考李美炫等[25]、MESSINA等[26]的研究。
1.2.2 地面數(shù)據(jù)獲取與處理 地面數(shù)據(jù)采集與無人機(jī)多光譜影像采集同步進(jìn)行。具體為冬小麥拔節(jié)期、孕穗期、開花期和灌漿期,每個(gè)小區(qū)選取長(zhǎng)勢(shì)均勻的區(qū)域,固定2行(0.2 m)×1 m,取其中20個(gè)單莖樣本裝入密封袋。4個(gè)生育期每年獲取120個(gè)樣本,3年共獲得360個(gè)樣本。樣本在實(shí)驗(yàn)室內(nèi)分離為葉片、莖和穗后分別置于紙袋中,105℃下殺青,80℃條件下烘干至恒重。器官粉碎后,采用凱氏定氮法進(jìn)行氮含量測(cè)定,并通過植株氮含量公式(1)計(jì)算氮含量,共獲得360個(gè)冬小麥植株氮含量實(shí)測(cè)值。樣本按照1﹕1分為訓(xùn)練集和測(cè)試集。
1.3.1 特征提取 無人機(jī)遙感影像經(jīng)過輻射校正等預(yù)處理后,進(jìn)行光譜特征和紋理特征提取。光譜特征數(shù)據(jù)包括藍(lán)(B)、綠(G)、紅(R)、紅邊(Rededge)和近紅外(Nir)5個(gè)波段的反射率數(shù)據(jù)以及由不同的波段組合計(jì)算得到的綠波段歸一化植被指數(shù)(NGBDI)、綠波段優(yōu)化土壤調(diào)節(jié)植被指數(shù)(GOSAVI)等20種植被指數(shù);紋理特征包括5個(gè)波段各自對(duì)應(yīng)的8種特征,分別為對(duì)比度(contrast,con)、二階距(second moment,sm)、方差(variance,var)、均值(mean)、相關(guān)性(correlation,cor),差異性(dissimilarity,dis)、同質(zhì)性(homogenetity,hom)、熵(entropy,ent)。
(1)植被指數(shù)
自20世紀(jì)70年代地球資源衛(wèi)星發(fā)射升空,學(xué)者就開始研究光譜響應(yīng)與植被之間的關(guān)系,由于植被指數(shù)結(jié)構(gòu)簡(jiǎn)單,具有一定的機(jī)理性,能夠減少土壤等因素對(duì)植被光譜的影響,目前已經(jīng)廣泛應(yīng)用于植被覆蓋以及其生長(zhǎng)態(tài)勢(shì)的定性和定量評(píng)價(jià)[27-30]。作物缺氮時(shí)會(huì)表現(xiàn)出覆蓋度降低、葉面積減小、葉片變黃等明顯的表觀特征[31-32],這些特征為利用植被指數(shù)進(jìn)行植株氮含量的預(yù)測(cè)提供了依據(jù)。通過查閱相關(guān)文獻(xiàn),本研究選取20種常用的植被指數(shù),具體計(jì)算公式見表1。
(2)紋理特征
紋理特征是圖像固有的屬性,包含物體表面結(jié)構(gòu)組織排列的重要信息以及它們與周圍環(huán)境的關(guān)系,具有旋轉(zhuǎn)不變性,對(duì)噪聲抵抗能力強(qiáng)的優(yōu)勢(shì)[16,29,33-34]。目前紋理特征提取的方法主要包括統(tǒng)計(jì)方法(灰度共生矩陣、紋理譜、幾何)、模型法(隨機(jī)場(chǎng)模型、分型模型)、信號(hào)處理法和結(jié)構(gòu)分析法等[35-37]。其中灰度共生矩陣方法是當(dāng)前學(xué)界公認(rèn)的具有較強(qiáng)魯棒特性和適應(yīng)特性的圖像識(shí)別技術(shù),能夠高效實(shí)現(xiàn)對(duì)圖像的分類和檢索,最大程度實(shí)現(xiàn)分類處理精度的提升[29,38],在遙感影像紋理特征提取中應(yīng)用最為廣泛。由于每個(gè)波段的紋理特征反映的信息不同,本研究通過灰度共生矩陣方法對(duì)多光譜影像5個(gè)波段的紋理特征進(jìn)行分別提取,共計(jì)得到40種數(shù)據(jù),具體計(jì)算方法參考文獻(xiàn)[29]。
1.3.2 相關(guān)分析 相關(guān)分析是統(tǒng)計(jì)分析的一種重要方法,可以提高我們對(duì)于現(xiàn)象(變量)之間相互依存關(guān)系的認(rèn)識(shí),通過相關(guān)系數(shù)篩選特征參數(shù),為建立更優(yōu)的模型提供基礎(chǔ)[14,39-40]。如宋宇斐[41]、劉秀英等[42]基于相關(guān)分析篩選小麥葉綠素和氮素、牡丹種子含水率的特征參數(shù)進(jìn)行模型構(gòu)建。本研究為篩選出冬小麥植株氮含量的敏感特征,將25種光譜特征與40種紋理特征與實(shí)測(cè)植株氮含量分別進(jìn)行Pearson相關(guān)分析,采用通過0.01水平顯著檢驗(yàn)的特征進(jìn)行植株氮含量模型構(gòu)建。計(jì)算公式如下:
表1 植被指數(shù)及計(jì)算公式
1.3.3 機(jī)器學(xué)習(xí)回歸方法
(1)BP神經(jīng)網(wǎng)絡(luò)
BP神經(jīng)網(wǎng)絡(luò)(back propagation neural net,BP)是一種采用誤差逆向傳播進(jìn)行算法訓(xùn)練的多層前饋網(wǎng)絡(luò),是目前最廣泛應(yīng)用的神經(jīng)網(wǎng)絡(luò)模型之一[58-59]。BP神經(jīng)網(wǎng)絡(luò)學(xué)習(xí)規(guī)則是最速下降法,通過誤差反向傳播不斷調(diào)整網(wǎng)絡(luò)的權(quán)值和閾值,使網(wǎng)絡(luò)的誤差平方和最小。目前,BP神經(jīng)網(wǎng)絡(luò)常用的激活函數(shù)包括identity、sigmoid、ReLU等20多種,當(dāng)函數(shù)identity處于活動(dòng)狀態(tài)時(shí),節(jié)點(diǎn)的輸入等于輸出,最適合于潛在行為是線性(類似線性回歸)的任務(wù)[60],為此本研究采用identity作為植株氮含量訓(xùn)練模型的激活函數(shù)。同時(shí)為了防止過擬合,常引入學(xué)習(xí)率、正則化等參數(shù)對(duì)模型進(jìn)行優(yōu)化[61]。本研究中設(shè)計(jì)3層網(wǎng)絡(luò)結(jié)構(gòu),采用準(zhǔn)牛頓方法族優(yōu)化器(lbfgs)提高運(yùn)行速度,具體參數(shù)設(shè)置見表2。
(2)隨機(jī)森林
隨機(jī)森林(random forest,RF)是集成學(xué)習(xí)bagging思想的典型代表,以決策樹為基礎(chǔ)學(xué)習(xí)器,通過集成方式構(gòu)建而成的一種監(jiān)督機(jī)器學(xué)習(xí)方法,而且在決策樹的訓(xùn)練過程引入了隨機(jī)性,使其具備優(yōu)良的抗過擬合以及抗噪能力,而且RF在模型訓(xùn)練時(shí)可以并行訓(xùn)練提高訓(xùn)練的效率,同時(shí)可以得到特征重要性[62-63]。RF在植株氮含量模型訓(xùn)練過程中,每次抽樣的結(jié)果形成一棵符合自身屬性規(guī)則和判斷值的樹,最終集成所有的樹實(shí)現(xiàn)回歸。樹深度越深,枝葉越多,模型就越復(fù)雜,RF的參數(shù)都是向著減少模型的復(fù)雜度,防止過擬合的方向調(diào)整[61-62]。結(jié)合Liepe等[64]的研究,本文RF節(jié)點(diǎn)分裂評(píng)價(jià)準(zhǔn)則、樹的最大深度等參數(shù)經(jīng)過多次運(yùn)行后,其設(shè)置見表2。
(3)Adaboost
Adaboost是英文“Adaptive Boosting”(自適應(yīng)增強(qiáng))的縮寫,由Yoav Freund和Robert Schapire于1995年提出。AdaBoost方法是集成學(xué)習(xí)boosting思想的典型代表,解釋性強(qiáng),結(jié)構(gòu)簡(jiǎn)單,運(yùn)算過程中通過不斷的迭代,在每一輪中加入一個(gè)新的弱學(xué)習(xí)器,直到達(dá)到某個(gè)預(yù)定的足夠小的錯(cuò)誤率。每一個(gè)訓(xùn)練樣本都被賦予一個(gè)權(quán)重,表明它被某個(gè)學(xué)習(xí)器選入訓(xùn)練集的概率,通過對(duì)權(quán)重的不斷調(diào)整,使AdaBoost方法能“聚焦于”植株氮含量信息豐富的樣本上[65-67]。Adaboost算法可以通過增加學(xué)習(xí)器個(gè)數(shù)提高泛化能力,但是當(dāng)數(shù)據(jù)噪聲較大或者基學(xué)習(xí)器復(fù)雜度較高時(shí),增加基學(xué)習(xí)器個(gè)數(shù)很難提高泛化能力[60-61],本研究中考慮到樣本量,將基學(xué)習(xí)器的個(gè)數(shù)設(shè)置為100。另一方面,為防止過擬合,Adaboost算法中可以設(shè)置學(xué)習(xí)率,取值范圍為(0,1],值越大,需要的弱學(xué)習(xí)器迭代次數(shù)越少。結(jié)合Barrow等[65]、Wu等[68]關(guān)于Adaboost算法參數(shù)對(duì)模型影響的研究,本文采用線性損失函數(shù)和決策樹基分類器,具體參數(shù)設(shè)置見表2。
表2 BP、RF、Adaboost和SVR方法的參數(shù)值
(4)支持向量機(jī)
支持向量機(jī)(support vector machine,SVR)的理論基礎(chǔ)是凸二次規(guī)劃,決定了它最終的結(jié)果是全局最優(yōu)。SVR用非線性映射將數(shù)據(jù)映射到高維數(shù)據(jù)特征空間中,使得在高維數(shù)據(jù)特征空間中自變量與因變量具有很好的線性回歸特征,在該特征空間進(jìn)行擬合后再返回到原始空間,同時(shí)通過引入核函數(shù),可以很好地解決高維空間中的內(nèi)積運(yùn)算[69-71]。常用的核函數(shù)主要有線性、多項(xiàng)式、徑向基、Sigmoid、傅里葉等[61,72]。其中線性核函數(shù)具有效率高、應(yīng)用范圍廣的優(yōu)勢(shì),本研究光譜特征和紋理特征具有線性可分性,結(jié)合Yi等[73]研究,本研究選擇線性核函數(shù)即可滿足需求也能提高效率,其他參數(shù)設(shè)置見表2。
本研究機(jī)器學(xué)習(xí)算法采用計(jì)算機(jī)設(shè)備系統(tǒng)為Window10 64位操作系統(tǒng),處理器為IntelI CoreI i7-9700K @ 3.60GHz,內(nèi)存(RAM)為64.0 GB。同時(shí)為了盡可能使4種機(jī)器學(xué)習(xí)回歸方法具有對(duì)比性,數(shù)據(jù)切分、洗牌方式、交叉驗(yàn)證、迭代次數(shù)等設(shè)置相同。
1.3.4 模型評(píng)價(jià) 本研究采用均方根誤差()、平均絕對(duì)誤差(MAE)和決定系數(shù)(2)來衡量冬小麥植株氮含量的預(yù)測(cè)效果和遷移能力。為預(yù)測(cè)值與實(shí)際值之差平方的期望值的平方根,MAE是絕對(duì)誤差的平均值,能反映預(yù)測(cè)值誤差的實(shí)際情況,二者均是值越小,模型準(zhǔn)確度越高。2將預(yù)測(cè)值與實(shí)測(cè)值對(duì)比,結(jié)果越靠近1,模型準(zhǔn)確度越高。、MAE和2的計(jì)算方法參考文獻(xiàn)[74]。
為篩選出植株氮含量的敏感特征,將25種光譜特征與40種紋理特征與實(shí)測(cè)植株氮含量分別進(jìn)行Pearson相關(guān)分析,結(jié)果見表3—4。光譜特征與植株氮含量的相關(guān)系數(shù)最大的是RERDVI,為0.80;紋理特征與植株氮含量的相關(guān)系數(shù)最大的是mean_Nir,為0.79;總體來看,光譜特征與植株氮含量的相關(guān)性高于紋理特征。光譜特征,除了G波段反射率、GNDVI、GOSAVI 3個(gè)特征外,其余22個(gè)光譜特征均通過了0.01極顯著水平檢驗(yàn);紋理特征,除con_Rededge、con_Nir、cor_R、dis_Rededge、dis_Nir、ent_Rededge、hom_Rededge、mean_B、mean_Rededge、sm_Rededge、var_Rededge外,其余29個(gè)紋理特征均通過了0.01極顯著水平檢驗(yàn)。為盡可能保留植株氮含量的敏感性特征,本研究將通過0.01極顯著水平檢驗(yàn)的51種光譜特征和紋理特征均作為下一步進(jìn)行植株氮含量預(yù)測(cè)模型的構(gòu)建。
表3 光譜特征與植株氮含量之間的相關(guān)分析
*和**分別表示在<0.05,<0.01水平差異顯著。下同 * and ** indicate significant difference at<0.05 and<0.01. The same as below
表4 光譜特征與植株氮含量之間的相關(guān)性
融合篩選出的51個(gè)光譜特征和紋理特征,采用BP、RF、Adaboost和SVR回歸方法構(gòu)建模型進(jìn)行冬小麥植株氮含量預(yù)測(cè),測(cè)試數(shù)據(jù)實(shí)測(cè)值和預(yù)測(cè)值關(guān)系見圖2,模型評(píng)估指標(biāo)2、和MAE見圖3。不同方法構(gòu)建的模型,對(duì)冬小麥植株氮含量的預(yù)測(cè)效果存在差異。從95%的置信區(qū)間可知,RF和Adaboost方法置信區(qū)間的數(shù)據(jù)集中程度較BP和SVR方法大,且實(shí)測(cè)值與預(yù)測(cè)值多集中分布于1﹕1直線附近。不同機(jī)器學(xué)習(xí)方法構(gòu)建的預(yù)測(cè)模型2、和MAE不同,RF方法構(gòu)建的預(yù)測(cè)模型2最大,最小,MAE中等,2、和MAE分別為0.81、0.42%和0.29%;Adaboost方法構(gòu)建的預(yù)測(cè)模型2與RF方法相似,中等,MAE最小,分別為0.79、0.44%和0.32%;BP方法構(gòu)建的預(yù)測(cè)模型2、和MAE不分別為0.71、0.48%和0.37%;SVR方法構(gòu)建的預(yù)測(cè)模型2最小,和MAE較大,分別為0.66、0.54%和0.40%。綜合2、和MAE可知,RF和Adaboost方法構(gòu)建的冬小麥植株氮含量預(yù)測(cè)模型效果較好。
圖2 不同機(jī)器學(xué)習(xí)方法冬小麥植株氮含量預(yù)測(cè)值與實(shí)測(cè)值關(guān)系
圖3 不同機(jī)器學(xué)習(xí)方法冬小麥植株氮含量預(yù)測(cè)模型評(píng)價(jià)指標(biāo)對(duì)比
基于BP、RF、Adaboost和SVR方法分別以W1和W0處理實(shí)測(cè)數(shù)據(jù)為訓(xùn)練集建立植株氮含量預(yù)測(cè)模型,對(duì)W0和W1處理植株氮含量進(jìn)行預(yù)測(cè),4種方法對(duì)W0和W1處理植株氮含量的預(yù)測(cè)效果與本研究2.2具有相似性,實(shí)測(cè)值和預(yù)測(cè)值的關(guān)系見圖4—5。以W1處理為訓(xùn)練集,BP、RF、Adaboost和SVR方法構(gòu)建的模型對(duì)W0處理冬小麥植株氮含量遷移預(yù)測(cè)2分別為0.75、0.72、0.72和0.66;反之,以W0處理為訓(xùn)練集,BP、RF、Adaboost和SVR方法構(gòu)建的模型對(duì)W1處理冬小麥植株氮含量遷移預(yù)測(cè)2分別為0.51、0.69、0.61和0.45。由圖5可知,遷移預(yù)測(cè)模型的和MAE值BP和SVR方法比RF和Adaboost方法高。不同訓(xùn)練集得到的植株氮含量預(yù)測(cè)模型,W1處理訓(xùn)練得到的模型對(duì)W0處理冬小麥植株氮含量預(yù)測(cè)的結(jié)果優(yōu)于W0處理訓(xùn)練得到的模型對(duì)W1處理的預(yù)測(cè)結(jié)果。綜合2、和MAE,4種方法構(gòu)建的植株氮含量預(yù)測(cè)模型遷移預(yù)測(cè)能力均是RF和Adaboost方法較好。
基于以上分析可知,不同的機(jī)器學(xué)習(xí)方法構(gòu)建的冬小麥植株氮含量模型預(yù)測(cè)效果存在差異。為厘清不同方法的預(yù)測(cè)效率,基于表2中不同方法設(shè)置的參數(shù)對(duì)訓(xùn)練用時(shí)進(jìn)行統(tǒng)計(jì),在數(shù)據(jù)切分、洗牌方法、交叉驗(yàn)證等相同的條件下,模型的訓(xùn)練用時(shí)存在較大的差異,其中用時(shí)最短的為SVR方法,用時(shí)為0.02s,RF和Adaboost用時(shí)相差較少,分別為0.78s和0.83s,用時(shí)最長(zhǎng)的為BP方法,是SVR的142倍。4種方法相比,SVR的效率最高,BP的最低,RF和Adaboost處于中間。這與Du等[58]、Jeung等[62]、Fernández- Habas等[63]、Lin和LIU[75]對(duì)水流沖刷效率、熱效率、牧草質(zhì)量、土壤全氮預(yù)測(cè)研究得到的結(jié)論相一致。
圖4 4種機(jī)器學(xué)習(xí)方法構(gòu)建的模型對(duì)W0和W1水處理的遷移預(yù)測(cè)能力
圖5 冬小麥植株氮含量預(yù)測(cè)模型對(duì)W0和W1水處理的遷移預(yù)測(cè)能力對(duì)比
本研究對(duì)植株氮含量進(jìn)行預(yù)測(cè)時(shí),基于表2設(shè)置的參數(shù),數(shù)據(jù)按照1﹕1劃分為訓(xùn)練集和測(cè)試集,4種方法構(gòu)建的訓(xùn)練集和測(cè)試集模型預(yù)測(cè)效果評(píng)價(jià)指標(biāo)見表5。訓(xùn)練模型4種方法2大小依次為Adaboost(1.00)、RF(0.96)、BP(0.84)、SVR(0.70);和MAE的值4種方法相比,值最小的為Adaboost方法,分別為0.02%和0.01%,其次為RF、BP和SVR方法;測(cè)試模型的2大小與訓(xùn)練模型存在差異,4種方法2大小依次為RF(0.81)、Adaboost(0.79)、BP(0.71)、SVR(0.66),和MAE的值4種方法相比,值最小的為RF方法,分別為0.42%和0.29%。這種差異與數(shù)據(jù)本身相關(guān)聯(lián),本研究中冬小麥品種有3個(gè),基因型的差異會(huì)造成獲取的表型信息(冠層影像)存在差別以及氮含量的差異,進(jìn)而造成訓(xùn)練集合和測(cè)試集合數(shù)據(jù)存在差異,導(dǎo)致預(yù)測(cè)效果和模型的遷移能力也不相同。進(jìn)一步地,針對(duì)測(cè)試數(shù)據(jù)的實(shí)測(cè)值和預(yù)測(cè)值進(jìn)行點(diǎn)對(duì)點(diǎn)對(duì)應(yīng)(圖6),4種方法均具局部擬合度較高的表現(xiàn),這可能是由于本研究中植株氮含量主要集中在1.2%—2.8%范圍內(nèi),模型對(duì)該范圍內(nèi)的數(shù)值有較好的預(yù)測(cè)能力,這種訓(xùn)練模型與測(cè)試模型的差異以及局部擬合較好的表現(xiàn)與冠層影像信息密切相關(guān)。
表5 BP、RF、Adaboost和SVR方法構(gòu)建的植株氮含量模型評(píng)價(jià)效果
圖6 測(cè)試數(shù)據(jù)的曲線擬合效果
目前機(jī)器學(xué)習(xí)已經(jīng)滲透到了理工農(nóng)醫(yī)等多個(gè)領(lǐng)域,尤其是監(jiān)督式機(jī)器學(xué)習(xí)極大地提升了預(yù)測(cè)的準(zhǔn)確率[76],但能否信任這些模型,遷移能力至關(guān)重要?本研究采用W0和W1實(shí)測(cè)混合數(shù)據(jù)進(jìn)行訓(xùn)練得到的模型對(duì)植株氮含量達(dá)到了較好的預(yù)測(cè)效果,同時(shí)分別采用W0和W1處理實(shí)測(cè)數(shù)據(jù)對(duì)模型進(jìn)行訓(xùn)練,然后對(duì)W1和W0處理的植株氮含量進(jìn)行預(yù)測(cè),模型表現(xiàn)出了較好的本地遷移能力,而且不同機(jī)器學(xué)習(xí)方法相比,RF和Adaboost方法構(gòu)建的冬小麥植株氮含量預(yù)測(cè)模型遷移能力表現(xiàn)較為突出。Jiang等[74]采用RF、SVR、Adaboost等12種方法對(duì)密云水庫(kù)全氮含量進(jìn)行估測(cè)時(shí),RF和Adaboost方法同樣表現(xiàn)突出,2分別為0.71和0.96。Shi等[10]采用BP、RF和線性回歸對(duì)氮含量、葉面積指數(shù)和干物質(zhì)預(yù)測(cè)時(shí),RF模型的精度最高,2分別為0.82、0.79和0.80。申哲等[77]、Lin和LIU[75]對(duì)土壤質(zhì)地和全氮預(yù)測(cè)的研究也得出類似結(jié)論。但是不同區(qū)域之間模型的遷移能力是否也存在這樣的結(jié)果,還需進(jìn)一步研究。
機(jī)器學(xué)習(xí)是面向機(jī)器的智能數(shù)據(jù)分析方法,通過充分挖掘模型構(gòu)建數(shù)據(jù)集中的信息進(jìn)行模型構(gòu)建從而達(dá)到精準(zhǔn)預(yù)測(cè)目的。在不同的領(lǐng)域,機(jī)器學(xué)習(xí)已成為進(jìn)行預(yù)測(cè)研究熱點(diǎn)[58,62-63,76-79],但不同機(jī)器學(xué)習(xí)存在差異,本研究著重探討了BP、RF、Adaboost、SVR這4種機(jī)器學(xué)習(xí)回歸方法對(duì)冬小麥植株氮含量預(yù)測(cè)的影響。4種方法學(xué)習(xí)效率和預(yù)測(cè)過程中的主要結(jié)果分析可知,主要是由于方法原理、對(duì)數(shù)據(jù)的要求和模型泛化能力等方面的差別,BP方法學(xué)習(xí)能力強(qiáng),由于對(duì)設(shè)置的參數(shù)要求多,模型訓(xùn)練的時(shí)間較長(zhǎng);RF和Adaboost方法訓(xùn)練可調(diào),所需參數(shù)相對(duì)較為簡(jiǎn)單,運(yùn)算速度較快;SVR方法可以解決高維問題,泛化能力也較強(qiáng),對(duì)整體數(shù)據(jù)的依賴性相對(duì)較低,但是合適的核函數(shù)確定存在難度,模型的精度容易受到影響,本研究中選擇的核函數(shù)為線性核函數(shù),提高了運(yùn)行速度,但可能損害了模型的精度[61]。
本研究中,RF和Adaboost方法表現(xiàn)較為突出,分析原因主要是這兩種方法屬于集成學(xué)習(xí),分別基于bagging和boosting的思想,將若干個(gè)學(xué)習(xí)器進(jìn)行組合而得到一個(gè)新的學(xué)習(xí)器,從而達(dá)到較好的學(xué)習(xí)效果,充分體現(xiàn)了機(jī)器學(xué)習(xí)的“群體智慧”。二者均是從原始數(shù)據(jù)集中采用Bootstrap策略有放回地抽取、重組形成與原始數(shù)據(jù)集等大的子集合。這就意味著同一個(gè)子集里面的樣本可以是重復(fù)出現(xiàn)的,不同子集中的樣本也可以是重復(fù)出現(xiàn)的。而且,不同于單個(gè)決策樹在分割過程中考慮所有特征后,選擇一個(gè)最優(yōu)特征來分割節(jié)點(diǎn),RF方法通過在基學(xué)習(xí)器中隨機(jī)考察一定的特征變量,之后在這些特征中選擇最優(yōu)特征變量,類似于“民主投票”,這使得RF方法構(gòu)建的模型泛化能力和學(xué)習(xí)能力優(yōu)于個(gè)體學(xué)習(xí)器。這種表現(xiàn)在Du等[58]、Jeung等[62]、Fernández-Habas等[63]、Lin和LIU[75]、王來剛等[78]的研究中也得到了驗(yàn)證。AdaBoost方法在抽樣的過程中則是充分考慮每個(gè)分類器的權(quán)重,類似于“精英挑選”,但是如果數(shù)據(jù)不平衡導(dǎo)致模型精度下降[61]。因此,綜合考慮,RF和Adaboost方法構(gòu)建的植株氮含量模型預(yù)測(cè)效果和遷移能力較好。本研究中綜合了光譜特征和紋理特征,未來大量的數(shù)據(jù)綜合運(yùn)用,豐富機(jī)器學(xué)習(xí)的訓(xùn)練集信息將是重要的研究方向,因此,充分運(yùn)用多源信息,建立高精度、普適性強(qiáng)的預(yù)測(cè)模型,對(duì)更好地服務(wù)智慧農(nóng)業(yè)落地開花具有重要的理論意義和現(xiàn)實(shí)意義。但是本研究建立的預(yù)測(cè)模型是否能夠在不同研究區(qū)之間遷移并且達(dá)到較好的效果,以及造成不同處理模型預(yù)測(cè)結(jié)果差異的原因與影像特征的定量關(guān)系,還需進(jìn)一步研究。
本研究基于5波段多光譜反射率,通過計(jì)算分析得到不同波段組合的20種植被指數(shù)和40種紋理特征,利用通過0.01極顯著水平檢驗(yàn)的51種光譜特征和紋理特征,采用BP、RF、Adaboost、SVR 4種機(jī)器學(xué)習(xí)回歸方法構(gòu)建冬小麥植株氮含量預(yù)測(cè)模型,2分別為0.71、0.81、0.79和0.66,預(yù)測(cè)值與實(shí)測(cè)值相比存在偏低的趨勢(shì)。以W1處理為訓(xùn)練集,BP、RF、Adaboost和SVR方法構(gòu)建的模型對(duì)W0處理冬小麥植株氮含量遷移預(yù)測(cè)2分別為0.75、0.72、0.72和0.66;反之,以W0處理為訓(xùn)練集,BP、RF、Adaboost和SVR方法構(gòu)建的模型對(duì)W1處理冬小麥植株氮含量遷移預(yù)測(cè)2分別為0.51、0.69、0.61和0.45。綜合考慮2、和MAE,RF和Adaboost方法構(gòu)建的植株氮含量模型具有較好的預(yù)測(cè)效果和遷移能力。
[1] United States Department of Agriculture (USDA), World Agricultural Production. Circular Series WAP. 2022: 27-42. https://apps.fas.usda. gov/psdonline/circulars/production.pdf.
[2] PERRY E M, FITZGERALD G J, NUTTALL J G, O’LEARY G, SCHULTHESS U, WHITLOCK A. Rapid estimation of canopy nitrogen of cereal crops at paddock scale using a canopy chlorophyll content index. Field Crops Research, 2012, 134: 158-164.
[3] LU N, WANG W, ZHANG Q, LI D, YAO X, TIAN Y C, ZHU Y, CAO W X, BARET F, LIU S Y, CHENG T. Estimation of nitrogen nutrition status in winter wheat from unmanned aerial vehicle based multi-angular multispectral imagery. Frontiers in Plant Science, 2019, 10: 1601.
[4] 郭燕, 井宇航, 賀佳, 王來剛, 馮偉, 劉海礁. 小麥冠層氮素含量光譜估算研究進(jìn)展. 麥類作物學(xué)報(bào), 2021, 41(11): 1425-1431.
GUO Y, JING Y H, HE J, WANG L G, FENG W, LIU H J. Research progress of nitrogen content estimation in winter wheat canopy based on optical spectrum. Journal of Triticeae Crops, 2021, 41(11): 1425-1431. (in Chinese)
[5] ROSIN N A, DALMOLIN R, HORST-HEINEN T Z, MOURA- BUENO J M, SILVA-SANGOI D V, SILVA L. Diffuse reflectance spectroscopy for estimating soil organic carbon and make nitrogen recommendations. Scientia Agricola, 2021, 78(5): e20190246.
[6] 楊寶華, 陳建林, 陳林海, 曹衛(wèi)星, 姚霞, 朱艷. 基于敏感波段的小麥冠層氮含量估測(cè)模型. 農(nóng)業(yè)工程學(xué)報(bào), 2015, 31(22): 176-182.
YANG B H, CHEN J L, CHEN L H, CAO W X, YAO X, ZHU Y. Estimation model of wheat canopy nitrogen content based on sensitive bands. Transactions of the Chinese Society of Agricultural Engineering,2015, 31(22): 176-182. (in Chinese)
[7] 王玉娜, 李粉玲, 王偉東, 陳曉凱, 常慶瑞. 基于無人機(jī)高光譜的冬小麥氮素營(yíng)養(yǎng)監(jiān)測(cè). 農(nóng)業(yè)工程學(xué)報(bào), 2020, 36(22): 31-39.
WANG Y N, LI F L, WANG W D, CHEN X K, CHANG Q R. Monitoring of winter wheat nitrogen nutrition based on UAV hyperspectral images.Transactions of the Chinese Society of Agricultural Engineering,2020, 36(22): 31-39. (in Chinese)
[8] JIANG J L, ZHU J, WANG X, CHENG T, TIAN Y C, ZHU Y, YAO X. Estimating the leaf nitrogen content with a new feature extracted from the ultra-high spectral and spatial resolution images in wheat. Remote Sensing, 2021, 13(4): 739.
[9] SABZI S, POURDARBANI R, ROHBAN M H, GARCíA-MATEOS G, ARRIBAS J I. Estimation of nitrogen content in cucumber plant (L.) leaves using hyperspectral imaging data with neural network and partial least squares regressions. Chemometrics and Intelligent Laboratory Systems, 2021, 217: 104404.
[10] SHI P H, WANG Y, XU J M, ZHAO Y L, YANG B L, YUAN Z M, SUN Q H. Rice nitrogen nutrition estimation with RGB images and machine learning methods.105860
[11] 井宇航, 郭燕, 張會(huì)芳, 戎亞思, 張少華, 馮偉, 王來剛, 賀佳, 劉海礁, 鄭國(guó)清. 無人機(jī)飛行高度對(duì)冬小麥植株氮積累量預(yù)測(cè)模型的影響. 河南農(nóng)業(yè)科學(xué), 2022, 51(2):147-158.
JING Y H, GUO Y, ZHANG H F, RONG Y S, ZHANG S H, FENG W, WANG L G, HE J, LIU H Q, ZHENG G Q. Effects of UAV flight height on prediction model of plant nitrogen accumulation in winter wheat. Journal of Henan Agricultural Sciences, 2022, 51(2):147-158. (in Chinese)
[12] 張瀟元, 張立福, 張霞, 王樹東, 田靜國(guó), 翟涌光. 不同光譜植被指數(shù)反演冬小麥葉氮含量的敏感性研究. 中國(guó)農(nóng)業(yè)科學(xué), 2017, 50(3): 474-485.
ZHANG X Y, ZHANG L F, ZHANG X, WANG S D, TIAN J G, ZHAI Y G.Sensitivity of different spectral vegetation index for estimating winter wheat leaf nitrogen. Scientia Agricultura Sinica,2017, 50(3): 474-485. (in Chinese)
[13] LI Z H, LI Z H, FAIRBAIRN D, LI N, XU B, FENG H K, YANG G J. Multi-LUTs method for canopy nitrogen density estimation in winter wheat by field and UAV hyperspectral. Computers and Electronics in Agriculture, 2019, 162: 174-182.
[14] 魏鵬飛, 徐新剛, 李中元, 楊貴軍, 李振海, 馮海寬, 陳幗, 范玲玲,王玉龍, 劉帥兵. 基于無人機(jī)多光譜影像的夏玉米葉片氮含量遙感估測(cè). 農(nóng)業(yè)工程學(xué)報(bào), 2019, 35(8):126-133.
WEI P F, XU X G, LI Z Y, YANG G J, LI Z H, FENG H K, CHEN G, FAN L L, WANG Y L, LIU S B. Remote sensing estimation of nitrogen content in summer maize leaves based on multispectral images of UAV. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(8): 126-133. (in Chinese)
[15] 賈丹, 陳鵬飛. 低空無人機(jī)影像分辨率對(duì)冬小麥氮濃度反演的影響. 農(nóng)業(yè)機(jī)械學(xué)報(bào), 2020, 51(7): 164-169.
JIA D, CHEN P F. Effect of low altitude UAV image resolution on inversion of winter wheat nitrogen concentration. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(7): 164-169. (in Chinese)
[16] GANDHIMATHI ALIAS USHA S, VASUKI S. Significance of texture features in the segmentation of remotely sensed images. International Journal for Light and Electron Optics2022, 249: 168241.
[17] WALSH O S, SHAFIAN S, MARSHALL J, JACKSON C, MCCLINTICK-CHESS J R, BLANSCET S M, SWOBODA K, THOMPSON C, BELMONT K M, WALSH W L. Assessment of UAV based vegetation indices for nitrogen concentration estimation in spring wheat. Advances in Remote Sensing, 2018, 7: 71-90.
[18] 楊福芹, 馮海寬, 肖天豪, 李天馳, 郭向前. 融合無人機(jī)影像光譜與紋理特征的冬小麥氮營(yíng)養(yǎng)指數(shù)估算. 農(nóng)業(yè)現(xiàn)代化研究, 2020, 41(4): 718-726.
YANG F Q, FENG H K, XIAO T H, LI T C, GUO X Q. Nitrogen nutrition index estimation in winter wheat by UAV spectral information and texture feature fusion. Research of Agricultural Modernization, 2020, 41(4): 718-726. (in Chinese)
[19] JAY S, MAUPAS F, BENDOULA R, GORRETTA N. Retrieving LAI, chlorophyll and nitrogen contents in sugar beet crops from multi-angular optical remote sensing: Comparison of vegetation indices and PROSAIL inversion for field phenotyping. Field Crops Research, 2017, 210: 33-46.
[20] CHLINGARYAN A, SUKKARIEH S, WHELAN B. Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: A review. Computers and Electronics in Agriculture, 2018, 151: 61-69.
[21] BERGER K, VERRELST J, FéRET J, HANK T B, WOCHER M, MAUSER W, CAMPS-VALLS G. Retrieval of aboveground crop nitrogen content with a hybrid machine learning method. International Journal of Applied Earth Observation and Geoinformation, 2020, 92: 102174.
[22] 黃芬, 高帥, 姚霞, 張小虎, 朱艷. 基于機(jī)器學(xué)習(xí)和多顏色空間的冬小麥葉片氮含量估算方法研究. 南京農(nóng)業(yè)大學(xué)學(xué)報(bào), 2020, 43(2): 364-371.
HUANG F, GAO S, YAO X, ZHANG X H, ZHU Y. Estimation of winter wheat leaf nitrogen concentration using machine learning algorithm and multi-color space. Journal of Nanjing Agricultural University, 2020, 43(2): 364-371. (in Chinese)
[23] 李金敏, 陳秀青, 楊琦, 史良勝. 基于高光譜的水稻葉片氮含量估計(jì)的深度森林模型研究. 作物學(xué)報(bào), 2021, 47(7): 1342-1350.
LI J M, CHEN X Q, YANG Q, SHI L S. Deep learning models for estimation of paddy rice leaf nitrogen concentration based on canopy hyperspectral data. Acta Agronomica Sinica, 2021, 47(7): 1342-1350. (in Chinese)
[24] QIU Z C, MA F, LI Z W, XU X B, GE H X, DU C. Estimation of nitrogen nutrition index in rice from UAV RGB images coupled with machine learning algorithms.106421
[25] 李美炫, 朱西存, 白雪源, 彭玉鳳, 田中宇, 姜遠(yuǎn)茂. 基于無人機(jī)影像陰影去除的蘋果樹冠層氮素含量遙感反演.中國(guó)農(nóng)業(yè)科學(xué), 2021, 54(10): 2084-2094.
LI M X, ZHU X C, BAI X Y, PENG Y F, TIAN Z Y, JIANG Y M. Remote sensing inversion of nitrogen content in apple canopy based on shadow removal in UAV multi-spectral remote sensing images. Scientia Agricultura Sinica, 2021, 54(10): 2084-2094. (in Chinese)
[26] MESSINA G, PRATICò S, BADAGLIACCA G, DI FAZIO S, MONTI M, MODICA G. Monitoring onion crop “Cipolla Rossa di Tropea Calabria IGP” growth and yield response to varying nitrogen fertilizer application rates using UAV imagery. Drones, 2021, 5: 61.
[27] GAMON J A, PENUElAS J, FIELD C B. A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote Sensing of Environment, 1992, 41(1): 35-44.
[28] XIAO X M, HE L, SALAS W, LI C S, MOORE B, ZHAO R, FROLKING S, BOLES S. Quantitative relationships between field-measured leaf area index and vegetation index derived from vegetation images for paddy rice fields. International Journal of Remote Sensing, 2002, 23(18): 3595-3604.
[29] ZHOU Y C, LAO C C, YANG Y L, ZHANG Z T, CHEN H Y, CHEN Y W, CHEN J Y, NING J, YANG N. Diagnosis of winter-wheat water stress based on UAV-borne multispectral image texture and vegetation indices. Agricultural Water Management, 2021, 256: 107076.
[30] 于豐華, 邢思敏, 郭忠輝, 白駒馳, 許童羽. 基于特征轉(zhuǎn)移植被指數(shù)的水稻葉片氮素含量定量估算. 農(nóng)業(yè)工程學(xué)報(bào), 2022, 38(2): 175-182.
YU F H, XING S M, GUO Z H, BAI J C, XU T Y. Remote sensing inversion of the nitrogen content in rice leaves using character transfer vegetation index. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(2): 175-182. (in Chinese)
[31] 牛亞曉, 張立元, 韓文霆, 邵國(guó)敏. 基于無人機(jī)遙感與植被指數(shù)的冬小麥覆蓋度提取方法. 農(nóng)業(yè)機(jī)械學(xué)報(bào), 2018, 49(4): 212-221.
NIU Y X, ZHANG L Y, HAN W T, SHAO G M. Fractional vegetation cover extraction method of winter wheat based on UAV remote sensing and vegetation index. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(4): 212-221. (in Chinese)
[32] 奚雪, 趙庚星. 基于無人機(jī)多光譜遙感的冬小麥葉綠素含量反演及監(jiān)測(cè). 中國(guó)農(nóng)學(xué)通報(bào), 2020, 36(20): 119-126.
XI X, ZHAO G X. Chlorophyll content in winter wheat: Inversion and monitoring based on UAV multi-spectral remote sensing. Chinese Agricultural Science Bulletin, 2020, 36(20): 119-126. (in Chinese)
[33] WAN L, LI Y J, CEN H Y, ZHU J P, YIN W X, WU W K, ZHU H Y, SUN D W, ZHOU W J, HE Y. Combining UAV-based vegetation indices and image classification to estimate flower number in oilseed rape. Remote Sensing, 2018, 10(9): 1484.
[34] 萬(wàn)亮, 岑海燕, 朱姜蓬, 張佳菲, 杜曉月, 何勇. 基于紋理特征與植被指數(shù)融合的水稻含水量無人機(jī)遙感監(jiān)測(cè). 智慧農(nóng)業(yè), 2020, 2(1): 58-67.
WAN L, CEN H Y, ZHU J P, ZHANG J F, DU X Y, HE Y. Using fusion of texture features and vegetation indices from water concentration in rice crop to UAV remote sensing monitor. Smart Agriculture, 2020, 2(1): 58-67. (in Chinese)
[35] 于利峰, 烏蘭吐雅, 烏云德吉, 許洪滔, 包珺瑋, 任婷婷. 基于紋理特征與MODIS-NDVI時(shí)間序列的耕地面積提取研究. 中國(guó)農(nóng)業(yè)資源與區(qū)劃, 2018, 39(11): 169-177.
YU L F, WULAN T Y, WUYUN D J, XU H T, BAO J W, REN T T. Study on extraction of arable land area based on texture features and MODIS-NDVI time series. Chinese Journal of Agricultural Resources and Regional Planning, 2018, 39(11): 169-177. (in Chinese)
[36] 王镕. 基于光譜和紋理特征綜合的農(nóng)作物種植結(jié)構(gòu)提取方法研究. 蘭州: 蘭州交通大學(xué), 2019.
WANG R. Study on extraction of crop planting structure based on spectral and texture features. Lanzhou: Lanzhou Jiaotong University, 2019. (in Chinese)
[37] YANG Y, CHEN J. Comprehensive analysis of water carrying capacity based on wireless sensor network and image texture of feature extraction. Alexandria Engineering Journal, 2022, 61: 2877-2886.
[38] AOUAT S, AIT-HAMMI I, HAMOUCHENE I. A new approach for texture segmentation based on the Gray Level Co-occurrence Matrix. Multimedia Tools and Applications, 2021, 80: 24027-24052.
[39] 高蘋, 徐敏, 孔維財(cái), 張志薇. 基于最優(yōu)化相關(guān)分析的油菜開花期預(yù)報(bào)模型研究. 海洋氣象學(xué)報(bào), 2021,41(3): 77-83.
GAO P, XU M, KONG W C, ZHANG Z W. Establishment of predicting models for oilseed rape florescence using an optimal correlation analysis method. Journal of Marine Meteorology, 2021, 41(3): 77-83. (in Chinese)
[40] 崔承齊, 劉艷陽(yáng), 江曉林, 孫知雨, 杜振偉, 武軻, 梅鴻獻(xiàn), 鄭永戰(zhàn). 芝麻產(chǎn)量相關(guān)性狀的多位點(diǎn)全基因組關(guān)聯(lián)分析及候選基因預(yù)測(cè). 中國(guó)農(nóng)業(yè)科學(xué), 2022, 55(1): 219-232.
CUI C Q, LIU Y Y, JIANG X L, SUN Z Y, DU Z W, WU K, MEI H X, ZHENG Y Z. Multi-locus genome-wide association analysis of yield-related traits and candidate gene prediction in sesame (L.). Scientia Agricultura Sinica, 2022, 55(1): 219-232. (in Chinese)
[41] 宋宇斐. 基于數(shù)字圖像的小麥葉綠素和氮素營(yíng)養(yǎng)檢測(cè)研究. 保定: 河北農(nóng)業(yè)大學(xué), 2020.
SONG Y F. Detection of chlorophyll and nitrogen nutrition of wheat based on digital images. Baoding: Hebei Agricultural University, 2020. (in Chinese)
[42] 劉秀英, 余俊茹, 王世華. 光譜特征變量和BP神經(jīng)網(wǎng)絡(luò)構(gòu)建油用牡丹種子含水率估算模型. 農(nóng)業(yè)工程學(xué)報(bào), 2020, 36(22): 308-315.
LIU X Y, YU J R, WANG S H. Estimation of moisture content in peony seed oil using spectral characteristic variables and BP neural network. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(22): 308-315. (in Chinese)
[43] GITELSON A A, KAUFMAN Y J, MERZLYAK M N. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sensing of Environment, 1996, 58(3): 289-298.
[44] GILABERT M A, GONZáLEZ-PIQUERAS J, GARCíA-HARO F J, MELIá J. A generalized soil-adjusted vegetation index. Remote Sensing of Environment, 2002, 82(2): 303-310.
[45] ROUSE J W. Monitoring the vernal advancement of retrogradation (green wave effect) of natural vegetation. NASA/GSFC Type III. Final Report. Greenbelt Md, 1974: 371.
[46] CHEN J M. Evaluation of vegetation indices and a modified simple ratio for boreal applications. Canadian Journal of Remote Sensing, 1996, 22(3): 229-242.
[47] CAO Q, MIAO Y, SHEN J N, YU W F, YUAN F, CHENG S S, HUANG S Y, WANG H Y, YANG W, LIU F. Improving in-season estimation of rice yield potential and responsiveness to topdressing nitrogen application with crop circle active crop canopy sensor. Precision Agriculture, 2015, 17: 136-154.
[48] RONDEAUX G, BARET F, STEVEN M. Optimization of soil-adjusted vegetation indices. Remote Sensing of Environment, 1996, 55(2): 95-107.
[49] GITELSON A A, VI?A A, CIGANDA V S, RUNDQUIST D, ARKEBAUER T J. Remote estimation of canopy content in crops. Geophysical Research Letters, 2005, 32(8): 1-4.
[50] HUETE A, JUSTICE C, LEEUWEN W V. MODIS vegetation index (MOD13) algorithm theoretical basis document. US: NASA Goddard Space Flight Center, 1999.
[51] DEERING D W, ROUSE J W, HASS R H, SCHELL J A. Measuring “Forage Production” of grazing units from Landsat MSS data. Proceedings of the 10thInternational Symposium on Remote Sensing of Environment, Ann Arbor, 1975: 169-1178.
[52] ERUNOVA M, PISMAN T I, SHEVYRNOGOV A P. The technology for detecting weeds in agricultural crops based on vegetation index VARI (PlanetScope). Journal of Siberian Federal University. Engineering & Technologies, 2021, 14(3): 347-353.
[53] LAMM R D, SLAUGHTER D C, GILES D K. Precision weed control system for cotton. Transactions of the American Society of Agricultural and Biological Engineers, 2002, 45(1): 231-238.
[54] HABOUDANE D, MILLER J R, PATTEY E, ZARCO-TEJADA P J, STRACHAN I B. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sensing of Environment, 2004, 90(3): 337-352.
[55] HUETE A R, HUA G, QI J, CHEHBOUNI A G, LEEUWEN W J. Normalization of multidirectional red and NIR reflectances with the SAVI. Remote Sensing of Environment, 1992, 41(2/3): 143-154.
[56] JORDAN C F. Derivation of leaf-area index from quality of light on the forest floor. Ecology, 1969, 50: 663-666.
[57] REYNIERS M, WALVOORT D J J, DE BAARDEMAAKER J. A linear model to predict with a multi-spectral radiometer the amount of nitrogen in winter wheat. International Journal of Remote Sensing, 2006, 27(19): 4159-4179.
[58] DU B, LUND P D, WANG J, KOLHE M, HU E. Comparative study of modelling the thermal efficiency of a novel straight through evacuated tube collector with MLR, SVR, BP and RBF methods. Sustainable Energy Technologies and Assessments, 2021, 44(1): 101029.
[59] 王鑫梅, 張勁松, 孟平, 楊洪國(guó), 孫圣. 基于無人機(jī)遙感影像的核桃冠層氮素含量估算. 農(nóng)業(yè)機(jī)械學(xué)報(bào), 2021, 52(2): 178-187.
WANG X M, ZHANG J S, MENG P, YANG H G, SUN S. Estimation of nitrogen content in walnut canopy based on UAV remote sensing image. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(2): 178-187. (in Chinese)
[60] 李航. 機(jī)器學(xué)習(xí)方法. 北京: 清華大學(xué)出版社, 2022.
LI H. Machine Learning Method. Beijing: Tsinghua University Press, 2022. (in Chinese)
[61] 周志華. 機(jī)器學(xué)習(xí). 北京: 清華大學(xué)出版社, 2016.
ZHOU Z H. Machine Learning. Beijing: Tsinghua University Press, 2016. (in Chinese)
[62] JEUNG M, BAEK S, BEOM J, CHO K H, HER Y, YOON K. Evaluation of random forest and regression tree methods for estimation of mass first flush ratio in urban catchments. Journal of Hydrology, 2019, 575: 1099-1110.
[63] FERNáNDEZ-HABAS J, CA?ADA M C, MORENO A M G, LEAL- MURILLO J R, GONZáLEZ-DUGO M P, OAR B A, GóMEZ- GIRáLDEZ P J, FERNáNDEZ-REBOLLO P. Estimating pasture quality of Mediterranean grasslands using hyperspectral narrow bands from field spectroscopy by random forest and PLS regressions. Computers and Electronics in Agriculture, 2022, 192: 106614.
[64] LIEPE M U, BELOMESTNYKH S. RF parameter and field stability requirements for the Cornell ERL prototype. Proceedings of the 2003 Particle Accelerator Conference, 2003, 2: 1329-1331.
[65] BARROW D K, CRONE S F. A comparison of AdaBoost algorithms for time series forecast combination. International Journal of Forecasting, 2016, 32(4): 1103-1119.
[66] WANG L L, GUO Y L, FAN M H, LI X. Wind speed prediction using measurements from neighboring locations and combining the extreme learning machine and the AdaBoost algorithm. Energy Reports, 2022, 8: 1508-1518.
[67] ZHOU Y, LU Z, CHENG K. Adaboost-based ensemble of polynomial chaos expansion with adaptive sampling. Computer Methods in Applied Mechanics and Engineering, 2022, 388: 114238.
[68] WU S, NAGAHASHI H. Parameterized AdaBoost: Introducing a parameter to speed up the training of real Adaboost. Institute of Electrical and Electronics Engineers Signal Processing Letters, 2014, 21: 687-691.
[69] PANAHI M, SADHASIVAM N, POURGHASEMI H R, REZAIE F, LEE S. Spatial prediction of groundwater potential mapping based on convolutional neural network (CNN) and support vector regression (SVR). Journal of Hydrology, 2020, 588: 125033.
[70] Scientific Platform Serving for Statistics Professional 2021. SPSSPRO. (Version 1.0.11) [Online Application Software]. https://www.spsspro.com.
[71] ALNUWAISER M A, JAVED M F, KHAN M I, AHMED M W, GALAL A M. Support vector regression and ANN approach for predicting the ground water quality.2022, 99: 10538.
[72] LI Y, SUN H, YAN W, ZHANG X. Multi-output parameter-insensitive kernel twin SVR model. Neural networks, 2020, 121: 276-293.
[73] YI Y, WANG L, CHEN Z. Adaptive global kernel interval SVR-based machine learning for accelerated dielectric constant prediction of polymer-based dielectric energy storage. Renewable Energy, 2021, 176: 81-88.
[74] JIANG Q, XU L, SUN S, WANG M, XIAO H. Retrieval model for total nitrogen concentration based on UAV hyper spectral remote sensing data and machine learning algorithms-a case study in the Miyun reservoir, China. Ecological Indicators, 2021, 124: 107356.
[75] LIN L, LIU X. Mixture-based weight learning improves the random forest method for hyperspectral estimation of soil total nitrogen. Computers and Electronics in Agriculture, 2022, 192: 106634.
[76] LINARDATOS P, PAPASTEFANOPOULOS V, KOTSIANTIS S B. Explainable AI: A review of machine learning interpretability methods. Entropy, 2021, 23: 18.
[77] 申哲, 張認(rèn)連, 龍懷玉, 徐愛國(guó). 基于機(jī)器學(xué)習(xí)方法的寧夏南部土壤質(zhì)地空間分布研究. 中國(guó)農(nóng)業(yè)科學(xué), 2022, 55(15): 2961-2972.
SHEN Z, ZHANG R L, LONG H Y, XU A G. Research on spatial distribution of soil texture in southern Ningxia based on machine learning. Scientia Agricultura Sinica, 2022, 55(15): 2961-2972. (in Chinese)
[78] 王來剛, 鄭國(guó)清, 郭燕, 賀佳, 程永政. 融合多源時(shí)空數(shù)據(jù)的冬小麥產(chǎn)量預(yù)測(cè)模型研究. 農(nóng)業(yè)機(jī)械學(xué)報(bào), 2022, 53(1): 198-204, 458.
WANG L G, ZHENG G Q, GUO Y, HE J, CHENG Y Z. Prediction of winter wheat yield based on fusing multi-source spatio-temporal data. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(1): 198-204, 458. (in Chinese)
[79] SARKER I H. Machine learning: Algorithms, real-world applications and research directions. SN Computer Science, 2021, 2(3): 160.
UAV multispectral Image-Based Nitrogen Content Prediction and the Transferability Analysis of the Models in Winter Wheat Plant
1Institute of Agricultural Economy and Information, Henan Academy of Agricultural Sciences, Zhengzhou 450002;2Key Laboratory of Huang-Huai-Hai Smart Agricultural Technology, Ministry of Agriculture and Rural Affairs, Zhengzhou 450002;3Henan Engineering Laboratory of Crop Planting Monitoring and Warning, Zhengzhou 450002;4College of Agronomy, Hennan Agricultural University/State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450046;5Department of Soil Science, University of Wisconsin-Madison, Madison, WI 53706, USA
【Objective】Accurate monitoring and rational application of nitrogen are particularly important for healthy growth, yield and quality improvement of wheat, and reduction of environmental pollution and resource waste. The purpose of this study was to develop UAV-based models for accurately and effectively assessment of the plant nitrogen content in the key growth stages of wheat growth, and to explore the transferability of the models constructed based on machine learning methods. 【Method】Winter wheat experiment were conducted from 2020 to 2022 in Shangshui county, Henan province, China. Based on the K6 multichannel imager mounted on DJM600 UAV, 5-band (Red, Green, Blue, Rededge, and Nir) multispectral images were obtained from a UAV system in the stages of jointing, booting, flowering and filling in winter wheat, to calculate 20 vegetation indices and 40 texture features from different band combinations. Correlation analysis was used to screen the sensitive characteristics of nitrogen content in winter wheat plants from the 65 image features. Combining the sensitive spectral features and texture features of the nitrogen content of winter wheat plants, BP neural network (BP), random forest (RF), Adaboost, and support vector machine (SVR) machine learning regression methods were used to build plant nitrogen content models, and compared for the model performance and transferability. 【Result】(1)The correlation coefficients between plant nitrogen content and image features passed the test of 0.01 extremely significant level, including 22 spectral features and 29 texture features. (2) 51 spectral and texture features were adopted to build four machine learning models. The estimates of plant nitrogen by the RF and Adaboost methods were relatively concentrated, mostly close to the 1﹕1 line; while the estimations from the BP and SVR methods were relatively scattered. The RF method was the best, with2,, and MAE of 0.81, 0.42%, and 0.29%, respectively; The SVR method was the worst, with2,, and MAE of 0.66, 0.54% and 0.40%, respectively. (3) The prediction effects of the four methods on the nitrogen content of W0 and W1 treatments trained using W1 and W0 treatments were the same as those trained using both W0 and W1 datasets, both of which were closer to the 1﹕1 line for the RF and Adaboost methods. The2of transfer prediction results for the models constructed by BP, RF, Adaboost, and SVR methods were 0.75, 0.72, 0.72, and 0.66 for the prediction of nitrogen content in W0 treatment and 0.51, 0.69, 0.61 (trained using data under W1 treatment) and 0.45 for the prediction under W1 treatment (trained using data under W0 treatment), respectively.【Conclusion】All models showed strong transferability, especially the RF and Adaboost methods, in predicting winter wheat nitrogen content under rainfed and irrigation water management.
UAV; spectral feature; textural feature; machine learning; nitrogen content in winter wheat; transferability
10.3864/j.issn.0578-1752.2023.05.004
2022-08-02;
2022-09-08
國(guó)家自然科學(xué)基金(41601213)、國(guó)家重點(diǎn)研發(fā)計(jì)劃(2022YFD2001105)、河南省農(nóng)業(yè)科學(xué)院杰出青年科技基金(2021JQ02)、河南省農(nóng)科院農(nóng)經(jīng)信息所科技創(chuàng)新領(lǐng)軍人才培育計(jì)劃項(xiàng)目(2022KJCX01)
郭燕,E-mail:10914063@zju.edu.cn。通信作者鄭國(guó)清,E-mail:zgqzx@hnagri.org.cn
(責(zé)任編輯 楊鑫浩)
中國(guó)農(nóng)業(yè)科學(xué)2023年5期