• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Transition-edge sensors using Mo/Au/Au tri-layer films

    2023-03-13 09:20:16HubingWang王滬兵YueLv呂越DongxueLi李冬雪YueZhao趙越BoGao高波andZhenWang王鎮(zhèn)
    Chinese Physics B 2023年2期
    關(guān)鍵詞:高波冬雪

    Hubing Wang(王滬兵) Yue Lv(呂越) Dongxue Li(李冬雪)Yue Zhao(趙越) Bo Gao(高波) and Zhen Wang(王鎮(zhèn))

    1State Key Laboratory of Functional Materials for Informatics,Shanghai Institute of Microsystem and Information Technology,Chinese Academy of Sciences,Shanghai 200050,China

    2CAS Center for Excellence in Superconducting Electronics(CENSE),Shanghai 200050,China

    3University of Chinese Academy of Sciences,Beijing 100049,China

    Keywords: transition-edge sensors,proximity effect,electroplating

    1.Introduction

    Transition edge sensors(TESs)are highly sensitive photon detectors that rely on the sharp resistance variation at the superconducting-transition edge to detect incident photons.[1]TES x-ray microcalorimeters with high energy resolving power have been implemented widely in x-ray astronomy and synchrotron radiation light sources.[2-5]The energy resolution of a TES depends strongly on the transition temperature (Tc)of the superconducting film.A TES-based microcalorimeter is usually made from a superconducting film withTc&lt;100 mK.The proximity effect between a superconducting and a normal metal film is an effective method to grow a low-Tcsuperconducting film.[6]Mo/Au and Mo/Cu are typical material combinations for TESs because both bilayer systems are robust with regard to diffusion and the formation of an intermetallic phase.[7-9]A TES microcalorimeter usually requires a low normal-state resistance to reduce internal thermal fluctuation noise.It is straightforward to grow a Cu film with low resistivity via sputtering.However,to reduce its resistivity,an Au film must be prepared using evaporation methods instead of sputtering, which usually requires a separate deposition system and increases costs.Cu films suffer from oxidation,while Au films do not,which ensures a long-time stability of an Mo/Au TES.[10]To prepare Mo/Au bilayer films,one can deposit the Mo film first using evaporation or sputtering, and then transfer the sample to another chamber to evaporate gold without breaking vacuum.The interface between the Mo and the Au layer can therefore be kept clean.[11]An alternative way is to deposit the Au layer in a separate evaporator, which requires careful ion cleaning before the deposition to obtain a transparent and uniform Mo-Au interface.[12]A third method involves using Mo/Au/Au tri-layer films,in which a thin protective Au layer is sputtered on top of the Mo film before breaking vacuum, and the second Au layer is then deposited via evaporation.The protective Au layer improves the transparency of the Mo-Au interface,makes the ion-cleaning process less critical,and increases the uniformity of the tri-layer.[13]In this work,we use Mo/Au/Au tri-layer films and improve the fabrication process by integrating the patterning of the TES sensors while forming the tri-layer films.This reduces the complexity of detector fabrication.We report the electrical characterization of the detectors and demonstrate their energy-resolving capability using a55Fe radioactive x-ray light source.

    2.Device fabrication

    2.1.Mo film preparation and the first layer of gold

    In experiment,the Mo film and the first layer of Au were deposited successively via direct-current magnetron sputtering(CMS 18, Kurt J.Lesker, US)on a four-inch Si wafer with a 300-nm-thick SiO2layer and a 500-nm-thick SiNxlayer.The Si substrate was cleaned with Ar+ion bombardment before the deposition to improve film adherence.Because the thickness of the Mo was comparable to the electron mean free path,the resistivity andTcwould be affected by a reduced thickness.Hence,the Mo film thickness was approximately 45 nm to ensure stability.[14]After the Mo deposition, the 30-nm protective Au layer was immediately sputter-deposited in the same chamber.The Mo and Au deposition parameters are listed in Table 1.

    Table 1.Deposition parameters for Mo and Au layers.

    2.2.Patterning the Mo/Au layer and depositing the second Au layer

    The Mo/Au bilayer was patterned into a square form with connecting leads using photoresist (LC100A) as an etching mask.The thickness of the photoresist was 1.8μm,and the bilayer was chemically wet-etched using gold etchant GE-8148 at 20°C and etching rates of 5 nm/s for Au and 10 nm/s for Mo.The wafer was then rinsed with deionized water and dried under N2.

    The second Au layer was thermally evaporated at 1.5 °A/s(PVD75,Kurt J.Lesker)at a base pressure of 1.5×10-7Torr.The wafer was cooled during evaporation and the Au film was deposited after Ar+ion cleaning.The process flow chart is shown in Fig.1.To prevent the formation of a superconducting short cut at the edge of the Mo-Au film,the top gold layer is slightly wider than the bottom Mo-Au layer.

    Fig.1.Schematic of Mo/Au/Au tri-layer fabrication: (a) ion-cleaning SiNx/SiO2/Si substrate,(b)sputtering Mo/Au(protective)film,(c)wetetching Mo/Au film,(d)depositing the second Au layer.

    2.3.Fabrication of overhanging photon absorber and SiNx window

    For a TES designed to detect soft x-rays with an efficiency being not less than 70%at 5.9 keV,we used pure gold as the absorber material,several-micrometers-thick gold was needed to have sufficient stopping power.Theoretical calculations shown in Fig.2 indicate that a 2.5-μm-thick Au film had a more than 89%quantum efficiency for 5.9-keV photons.[15]To make such thick gold films,we used an electro-plating system(JDY-3,CETC)that accommodated a four-inch wafer.To accelerate the thermalization of the absorber,it was necessary to increase the thermal conductivity, which increased with electrical conductivity.A 346 nm/min deposition rate helped to reduce the resistivity of the gold film to 1.3×10-9Ω·m, and the residual resistance ratio was 13.4.

    Fig.2.Quantum efficiency of 2.5-μm Au absorber.The green dashed line is the 5.9-keV line of Mn Kα.

    To increase the photon-sensitive area of the detector and to reduce the electrical coupling between the absorber and the Mo-Au-Au film,we fabricated an overhanging gold absorber supported by Au stems contacting the superconducting film and the SiNxmembrane.The overhanging structure was fabricated using a two-layer photoresist lift-off and electro-plating process.[16]In the first step, a photoresist evaporation mask was patterned to define the 2-μm-high supporting stems and to form the electroplating seed layer,as shown in Fig.3(a).After the metallization,the second photoresist layer was spin-coated and patterned without removing the first resist layer.The main body of the absorber and the supporting stems were electroplated to a thickness of approximately 2.5 μm.Both resist layers were then removed with acetone and a plasma process.A mushroom-like overhanging absorber was thus formed.Figure 3(b) shows a close-packed overhanging absorber array,

    where the inset shows a magnified scanning electron microscope image of the edge of the absorbers.

    The final step of the detector fabrication was to define the SiNxmembrane substrate to reduce the thermal conductance between the detector and the thermal bath.A deep siliconetching process (DSiE) was used (Estrelas 100, Oxford instruments, GB).[17]Before the process, the entire front side of the wafer was protected with 6 μm-thick photoresist.The DSiE process uses 8μm-thick photoresist as the etching mask.The exposed Si was etched with an SF6plasma and passivated with a C4F8plasma in sequence.The etching depth and sidewall steepness were controlled by fine-tuning the durations of the etching and passivation.Three hundreds of etchingpassivation cycles were used to obtain a 400 μm depth over 30 min.After the DSiE process,the photoresist was removed with acetone.

    Fig.3.(a) Schematic depiction of a transition-edge sensor with absorber,the corresponding material is listed below.(b)Scanning electron microscope image of electro-plating mushroom Au absorber array.The inset shows the magnified view of the gap between two absorbers.

    3.Characterizations of the sensors

    The fabricated sensor arrays contained 4×4 Mo/Au TES pixels with the integrated Au absorber.Detailed geometric parameters are listed in Table 2.We characterized these devices by acquiring small-current resistance-temperature (RT) curves and current-voltage (I-V) curves in an adiabatic demagnetization refrigerator.The latter were acquired with a two-stage SQUID readout system from STAR cryo-electronics LLC.Figure 4(a)shows theR-Tcurve obtained by measuring the resistance using a small excitation current while sweeping the bath temperature in 1-mK steps.The normal-state resistance and the superconducting transition temperature were approximately 16 mΩ and 90 mK, respectively.Figure 4(b)shows a variety ofI-Vcurves measured at various bath temperatures.For clarity,onlyI-Vcurves from a single pixel are shown.By calculating the Joule heating power at 80%Rn,

    where the current dependence of the detector resistance was negligible, and the resistance was assumed to be only dependent on the temperature,[18]we plotted the power vs.bath temperature curves (P-Tbath) shown in Fig.4(c), and determined the thermal conductanceGto the heat bath using the following first equation.[19]T0is the detector temperature at the working point(80%Rn),G(T0)is the thermal conductance at that temperature, andnis the exponent of the power flow to the heat bath.The three parameters can be fitted from the curves plotted in Fig.4(c).We have

    Using the thermal conductance, we calculated the nonequilibriumR-Tcurves by translating the Joule-heating power into the temperature variation.Figure 4(d) plots theR-Tcurves deduced from theI-Vcurves measured at the 65-mK bath temperature.TheseR-Tcurves indicated how the detector resistance evolved with current heating.The inset of Fig.4(d)shows a 4×4-pixels Mo/Au/Au TES array.

    Table 2.TES electro-thermal parameters.

    We summarized the geometric and electro-thermal detector parameters in Table 2.The heat capacityCwas roughly estimated from the absorber size and the bulk value of the materials

    whereρ/Ais the ratio of density to atomic weight,γis molar specific heat,Vis the volume of Au absorber,andTis the temperature at the working point.

    The natural time constant could be calculated from the heat capacityCand the thermal conductanceG,τ=C/G.The theoretical energy resolution in the small-signal limit and effective time constant is given by

    where the loop gainLI=PJ0α/GT0, andPJ0is the power of working point.

    Fig.4.(a) The R-T curves with small excitation current of an Mo/Au/Au transition-edge sensor (TES).(b) Typical I-V curves of a TES pixel 3.The red dashed line is 80% Rn.(c) The measured and fitted P-Tbath curves of three sensors on the same chip with identical design.(d)Non-equilibrium R-T curves of three Mo/Au/Au TESs on the same chip.

    Fig.5.(a)Typical pulse of an Mo/Au/Au transition-edge sensor(TES).The black line was the measured pulse,the red line was the double-exponent fit to V =A(e-(t-t0)/τel-e-(t-t0)/τeff)+Voffset.(b)Energy spectrum of 5.9-keV Mn Kα x-ray.The red dots are the original spectrum.The black line is the fitting curve using the convolution of the detector Gaussian response function with the natural line profile of the incident x-ray photons.The blue dash-dotted line and the green dashed line are the convolution of the fitted Gaussian detector response function with the natural line profile of the Mn Kα1 and Kα2 emission lines,respectively.The inset shows the pulse amplitude-photon energy calibration curve.

    The detector performance was characterized by using a55Fe radioactive source.The activity of the source is approximately 27μCi.The source was placed inside the cryostat,and the average measured count rate for a single TES pixel was approximately 1 count/s which is limited by the x-ray source.The detector bias current was supplied by a signal generator in series with a 1-kΩ resistor.

    The bath temperature was set to 50 mK and the TES was biased at 15%Rn.A typical signal pulse is shown in Fig.5(a).The whole pulse duration time is approximately 2 ms and the effective decay timeτeffwas only 268 μs because of strong electro-thermal feedback, from which we could deduceα.From the pulse duration,we estimate that the maximum count rate of a single-pixel detector can reach up to 500 Hz assuming no pulse pile-up.The pipeline to deduce the energy resolution of the TES, named as the instrumental energy resolution, involves three steps.First, an optimal filter is built to digitally filter the raw signal pulses and extract the pulse height of each individual pulse.[20]Then the pulse height data(in units of V)is translated into the photon energy using the calibration curve shown in the inset of Fig.5(b).The voltage-photon energy calibration curve is built using the characteristic emission lines(KαandKβ)of Mn.The energy spectrum histogram is plotted as red dots in Fig.5(b).To deduce the instrumental energy resolution,we need to exclude the contribution of the natural line profile of the incident x-ray photons.[21]The black solid line in Fig.5(b)is the fitting curve by convolving the detector response function(assumed to be a Gaussian function)with the natural line profiles.The deduced instrumental energy resolution is 6.66 eV.The blue dotted and the green dashed lines in Fig.5(b)show the convolution of the fitted Gaussian detector response function with the natural line profile of theKα1andKα2emission lines.

    4.Discussion

    The instrumental energy resolution calculated above is 6.66 eV,which was worse than the theoretical value of 1.6 eV shown in Table 2 calculated from the electro-thermal parameters of the sensor.The discrepancy between the measured and calculated energy resolutions could be attributed to several factors.First,the deduction of the electro-thermal parameters was not very accurate,especially for the calculated heat capacity.Complex impedance measurements could better characterize the electro-thermal parameters of the sensors.[22]Secondly,we did not include the contribution of excess noise in the theoretical calculation of the energy resolution.Characterization of the excess sensor noise will be reported elsewhere.By adjusting the sensor size and adding certain metal structures we could reduce degradation of the energy resolution caused by the excess noise.[23]Lastly, the instrumental energy resolution discussed above still contains the noise contribution of the SQUID amplifier and its readout electronics.For the moment the SQUID noise is not negligible compared to the TES detector noise.A SQUID readout system with lower current noise would also help to improve the measured energy resolution.These studies are still on-going.

    Acknowledgements

    Project was supported by the National Key Research and Development Program of China (Grant No.2017YFA0304000), the Shanghai Municipal Science and Technology Major Project(Grant No.2017SHZDZX02),China National Space Administration (CNSA) (Grant No.D050104), and the grant for low energy gamma-ray detection research based on SQUID technique.The nanofabrication work was supported by the Superconducting Electronics Facility(SELF)of Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences.We thank Liwen Bianji(Edanz)(www.liwenbianji.cn)for editing the language of a draft of this manuscript.

    猜你喜歡
    高波冬雪
    Increasing linear flux range of SQUID amplifier using self-feedback effect
    辭寒去冬雪 暖帶入春風
    貓和狗的和諧時光
    高波作品
    香自冬雪來(中國畫)
    海燕(2021年2期)2021-01-29 08:18:44
    薛冬雪教授簡介
    冬雪
    凌?!ご鋷r冬雪
    僑園(2015年7期)2015-12-28 08:33:48
    211369 Expression of Nanog in brain tumor stem cells
    走在法網(wǎng)邊緣的作家
    亚洲成人精品中文字幕电影| 国产精品1区2区在线观看.| 18禁在线无遮挡免费观看视频 | 香蕉av资源在线| 婷婷精品国产亚洲av| 99热这里只有是精品50| a级毛色黄片| 一本久久中文字幕| 丝袜美腿在线中文| 久久99热这里只有精品18| 日本五十路高清| 亚洲欧美精品自产自拍| 日本黄色视频三级网站网址| 欧美+日韩+精品| 小说图片视频综合网站| 国内精品美女久久久久久| 国产午夜精品久久久久久一区二区三区 | 俺也久久电影网| 精品免费久久久久久久清纯| 国产欧美日韩精品亚洲av| 搡女人真爽免费视频火全软件 | 九色成人免费人妻av| 国产男靠女视频免费网站| 亚洲专区国产一区二区| 亚洲精华国产精华液的使用体验 | 国产精品一区www在线观看| 成人午夜高清在线视频| 亚洲内射少妇av| 十八禁网站免费在线| 久久精品久久久久久噜噜老黄 | 嫩草影院入口| 哪里可以看免费的av片| 亚洲国产精品sss在线观看| 国产一级毛片七仙女欲春2| 免费观看在线日韩| 在线观看66精品国产| 欧美绝顶高潮抽搐喷水| 国产午夜精品论理片| 免费一级毛片在线播放高清视频| 亚洲久久久久久中文字幕| 欧美色欧美亚洲另类二区| 麻豆精品久久久久久蜜桃| 国产淫片久久久久久久久| 国产精华一区二区三区| 免费观看人在逋| 国产一区二区亚洲精品在线观看| 少妇人妻一区二区三区视频| 国产高清视频在线播放一区| 18+在线观看网站| 久久精品国产亚洲av天美| 少妇人妻精品综合一区二区 | 国产精品1区2区在线观看.| 国产精品不卡视频一区二区| 一本精品99久久精品77| 国产精品美女特级片免费视频播放器| 岛国在线免费视频观看| 两个人视频免费观看高清| 国产精品久久久久久精品电影| 亚洲色图av天堂| 成人精品一区二区免费| 高清毛片免费看| 久久精品国产亚洲网站| 成人av在线播放网站| 亚洲精品影视一区二区三区av| 久久综合国产亚洲精品| 久久精品综合一区二区三区| 精品久久国产蜜桃| 男女边吃奶边做爰视频| а√天堂www在线а√下载| 我要搜黄色片| 国产一区二区三区在线臀色熟女| 九九久久精品国产亚洲av麻豆| 22中文网久久字幕| 精品一区二区三区视频在线观看免费| 尤物成人国产欧美一区二区三区| 久久久国产成人免费| 男女视频在线观看网站免费| 国产精品三级大全| 99热网站在线观看| 婷婷色综合大香蕉| 日产精品乱码卡一卡2卡三| 国产极品精品免费视频能看的| 搞女人的毛片| 中文字幕av在线有码专区| 人妻丰满熟妇av一区二区三区| 欧美成人精品欧美一级黄| 麻豆乱淫一区二区| 国产精品嫩草影院av在线观看| 亚洲aⅴ乱码一区二区在线播放| 亚洲国产欧美人成| 日韩欧美三级三区| av国产免费在线观看| 日韩av不卡免费在线播放| 国产午夜福利久久久久久| 亚洲国产精品久久男人天堂| 男插女下体视频免费在线播放| 国产蜜桃级精品一区二区三区| 日本与韩国留学比较| 亚洲av中文av极速乱| 寂寞人妻少妇视频99o| 国语自产精品视频在线第100页| 午夜免费男女啪啪视频观看 | ponron亚洲| 两个人的视频大全免费| 最好的美女福利视频网| 国产精品一区二区性色av| 免费在线观看影片大全网站| 国产白丝娇喘喷水9色精品| 国内精品一区二区在线观看| 欧美激情国产日韩精品一区| 熟妇人妻久久中文字幕3abv| 国产成人一区二区在线| 亚洲无线观看免费| 在线国产一区二区在线| 尤物成人国产欧美一区二区三区| 国产在视频线在精品| 国内精品久久久久精免费| 观看免费一级毛片| 中文字幕人妻熟人妻熟丝袜美| 又爽又黄无遮挡网站| 久久99热6这里只有精品| 麻豆成人午夜福利视频| 在线看三级毛片| 日本撒尿小便嘘嘘汇集6| 欧美色视频一区免费| 毛片女人毛片| 桃色一区二区三区在线观看| 51国产日韩欧美| 国产高清三级在线| 欧美一级a爱片免费观看看| 国产精品电影一区二区三区| 久久久久精品国产欧美久久久| 九九爱精品视频在线观看| 国产av一区在线观看免费| 蜜桃久久精品国产亚洲av| 欧美国产日韩亚洲一区| 亚洲精品456在线播放app| 亚洲美女搞黄在线观看 | 国产精品乱码一区二三区的特点| 国产精品不卡视频一区二区| 国产精品乱码一区二三区的特点| 成年版毛片免费区| 国产亚洲精品av在线| 蜜桃亚洲精品一区二区三区| 亚洲四区av| 一个人观看的视频www高清免费观看| 国产精品女同一区二区软件| 久久综合国产亚洲精品| 男女之事视频高清在线观看| 久久久久久大精品| 哪里可以看免费的av片| 国产黄a三级三级三级人| 99热只有精品国产| 国产蜜桃级精品一区二区三区| 国产成人福利小说| 99九九线精品视频在线观看视频| 亚洲内射少妇av| av在线天堂中文字幕| 最近中文字幕高清免费大全6| 我要看日韩黄色一级片| 舔av片在线| a级毛片a级免费在线| 狂野欧美激情性xxxx在线观看| 俄罗斯特黄特色一大片| 免费不卡的大黄色大毛片视频在线观看 | 欧美高清性xxxxhd video| 国产一区二区亚洲精品在线观看| 人人妻人人澡欧美一区二区| 午夜福利18| 久久精品国产自在天天线| 久久久成人免费电影| 亚洲一级一片aⅴ在线观看| 日本精品一区二区三区蜜桃| 美女黄网站色视频| 99在线人妻在线中文字幕| АⅤ资源中文在线天堂| 97超视频在线观看视频| 免费高清视频大片| 十八禁网站免费在线| 色吧在线观看| 久久人人爽人人爽人人片va| 国国产精品蜜臀av免费| 久久综合国产亚洲精品| 一夜夜www| 亚洲av第一区精品v没综合| 一个人免费在线观看电影| 观看美女的网站| 男女之事视频高清在线观看| 超碰av人人做人人爽久久| 18禁在线无遮挡免费观看视频 | 99精品在免费线老司机午夜| 人妻丰满熟妇av一区二区三区| 亚洲三级黄色毛片| 波野结衣二区三区在线| 国产av在哪里看| 日本五十路高清| 在线观看一区二区三区| 3wmmmm亚洲av在线观看| 美女黄网站色视频| 久久久久久国产a免费观看| 最近视频中文字幕2019在线8| 久久久精品欧美日韩精品| 在线观看美女被高潮喷水网站| 狠狠狠狠99中文字幕| 免费搜索国产男女视频| 天天躁日日操中文字幕| 好男人在线观看高清免费视频| 成人av在线播放网站| 99热这里只有精品一区| 精品久久久久久久人妻蜜臀av| 看黄色毛片网站| 欧美绝顶高潮抽搐喷水| 亚洲欧美精品自产自拍| 亚洲真实伦在线观看| 搡女人真爽免费视频火全软件 | 黄色视频,在线免费观看| 国产高清有码在线观看视频| 国产精华一区二区三区| 美女高潮的动态| 国产aⅴ精品一区二区三区波| 亚洲欧美日韩高清在线视频| 美女被艹到高潮喷水动态| 亚洲欧美日韩东京热| 日本-黄色视频高清免费观看| 午夜a级毛片| 久久久久久大精品| 一区二区三区免费毛片| 美女 人体艺术 gogo| 午夜精品国产一区二区电影 | 国产高清不卡午夜福利| 在线观看av片永久免费下载| 久久久久久久久大av| 淫秽高清视频在线观看| 嫩草影院入口| 成人鲁丝片一二三区免费| 99热精品在线国产| 黄色配什么色好看| 两个人的视频大全免费| 黄片wwwwww| 乱人视频在线观看| 一本一本综合久久| 国产69精品久久久久777片| 精品久久久久久久人妻蜜臀av| 亚洲av五月六月丁香网| 2021天堂中文幕一二区在线观| 精品久久久久久久久亚洲| 亚洲精品色激情综合| 免费大片18禁| 久久精品国产99精品国产亚洲性色| 国产 一区 欧美 日韩| 99久久九九国产精品国产免费| 老熟妇仑乱视频hdxx| 久久久成人免费电影| av在线播放精品| 午夜精品国产一区二区电影 | 国产白丝娇喘喷水9色精品| 成人av一区二区三区在线看| 人人妻人人澡欧美一区二区| 丰满的人妻完整版| 麻豆国产97在线/欧美| 毛片一级片免费看久久久久| 熟女人妻精品中文字幕| 蜜桃久久精品国产亚洲av| 赤兔流量卡办理| 欧美区成人在线视频| 亚洲自拍偷在线| 亚洲综合色惰| 免费看美女性在线毛片视频| 听说在线观看完整版免费高清| 免费观看人在逋| 午夜福利视频1000在线观看| 国产日本99.免费观看| 久久久a久久爽久久v久久| 欧美+日韩+精品| 少妇高潮的动态图| 嫩草影视91久久| 国产精品久久久久久精品电影| 国产高清视频在线观看网站| 岛国在线免费视频观看| 热99re8久久精品国产| 亚洲第一电影网av| 97超碰精品成人国产| 中文亚洲av片在线观看爽| 国产av在哪里看| 日韩欧美三级三区| 两个人视频免费观看高清| 99热这里只有是精品在线观看| 国产精品一区二区免费欧美| 日韩国内少妇激情av| 国产乱人视频| 十八禁网站免费在线| 69av精品久久久久久| 最近2019中文字幕mv第一页| 亚洲av成人精品一区久久| 国产精品1区2区在线观看.| 国产三级中文精品| 亚洲一级一片aⅴ在线观看| 卡戴珊不雅视频在线播放| 夜夜夜夜夜久久久久| 国产精品一区二区免费欧美| 搞女人的毛片| 国内少妇人妻偷人精品xxx网站| 草草在线视频免费看| 99九九线精品视频在线观看视频| 99在线视频只有这里精品首页| 美女被艹到高潮喷水动态| 大型黄色视频在线免费观看| 美女免费视频网站| 国国产精品蜜臀av免费| 男人和女人高潮做爰伦理| 色尼玛亚洲综合影院| 搡老熟女国产l中国老女人| 免费观看在线日韩| 国产精品免费一区二区三区在线| 最近中文字幕高清免费大全6| 国产麻豆成人av免费视频| 男女那种视频在线观看| 三级男女做爰猛烈吃奶摸视频| 久久国产乱子免费精品| 欧美性感艳星| 99热这里只有是精品在线观看| 看黄色毛片网站| 我的老师免费观看完整版| 国产av不卡久久| 麻豆成人午夜福利视频| 精品一区二区三区av网在线观看| 国产白丝娇喘喷水9色精品| 五月伊人婷婷丁香| 成人午夜高清在线视频| 亚洲不卡免费看| 亚洲av二区三区四区| 国产成人91sexporn| 精品久久久久久久末码| 亚洲第一电影网av| 看十八女毛片水多多多| 午夜a级毛片| 精品免费久久久久久久清纯| 97超级碰碰碰精品色视频在线观看| 亚洲欧美日韩东京热| 日韩精品有码人妻一区| 欧美色视频一区免费| 国产在线男女| 婷婷色综合大香蕉| 天天躁日日操中文字幕| 亚洲不卡免费看| 伦理电影大哥的女人| 精品国产三级普通话版| 女人十人毛片免费观看3o分钟| 最近的中文字幕免费完整| 看片在线看免费视频| 12—13女人毛片做爰片一| 国产欧美日韩精品亚洲av| 日本欧美国产在线视频| 淫妇啪啪啪对白视频| 人人妻人人澡人人爽人人夜夜 | 亚洲人成网站高清观看| 亚洲国产高清在线一区二区三| 九九久久精品国产亚洲av麻豆| av视频在线观看入口| 晚上一个人看的免费电影| 网址你懂的国产日韩在线| 色噜噜av男人的天堂激情| 欧美激情在线99| 亚洲精品456在线播放app| 亚洲经典国产精华液单| 免费不卡的大黄色大毛片视频在线观看 | 三级国产精品欧美在线观看| 长腿黑丝高跟| 久久久国产成人免费| 精品国内亚洲2022精品成人| 午夜福利在线观看免费完整高清在 | 天堂av国产一区二区熟女人妻| 国产亚洲精品久久久久久毛片| 久久99热这里只有精品18| 亚洲最大成人手机在线| 国产色婷婷99| 日韩精品青青久久久久久| 五月玫瑰六月丁香| 给我免费播放毛片高清在线观看| 十八禁国产超污无遮挡网站| 中文亚洲av片在线观看爽| 亚洲av.av天堂| 毛片女人毛片| 国产激情偷乱视频一区二区| 亚洲精品成人久久久久久| 91久久精品国产一区二区成人| 国产高清三级在线| 国产三级中文精品| 大型黄色视频在线免费观看| 最新中文字幕久久久久| 欧美性感艳星| 欧洲精品卡2卡3卡4卡5卡区| 亚洲专区国产一区二区| av免费在线看不卡| 好男人在线观看高清免费视频| 精品一区二区三区av网在线观看| 亚洲成人av在线免费| 亚洲熟妇中文字幕五十中出| 美女高潮的动态| 在线a可以看的网站| 国产欧美日韩精品亚洲av| 日韩一本色道免费dvd| 哪里可以看免费的av片| 99热6这里只有精品| 国产午夜精品论理片| 一级a爱片免费观看的视频| 亚洲内射少妇av| 欧美3d第一页| 在线观看66精品国产| 免费电影在线观看免费观看| 亚洲国产精品成人久久小说 | 欧美国产日韩亚洲一区| 22中文网久久字幕| 九色成人免费人妻av| 成人亚洲精品av一区二区| 亚洲国产高清在线一区二区三| 国产精品人妻久久久影院| 欧美性感艳星| 美女cb高潮喷水在线观看| 免费观看精品视频网站| 免费在线观看影片大全网站| 国产一区二区激情短视频| 热99re8久久精品国产| 亚洲国产日韩欧美精品在线观看| 自拍偷自拍亚洲精品老妇| 一个人观看的视频www高清免费观看| 精品99又大又爽又粗少妇毛片| 三级经典国产精品| 国产av不卡久久| 国产精品一二三区在线看| 又黄又爽又免费观看的视频| 日本色播在线视频| 午夜老司机福利剧场| 日日摸夜夜添夜夜添小说| 男人舔奶头视频| 最近中文字幕高清免费大全6| 午夜精品国产一区二区电影 | 国产爱豆传媒在线观看| 日本免费a在线| 久久草成人影院| 插逼视频在线观看| 久久久久久久午夜电影| 99热全是精品| 亚洲经典国产精华液单| 亚洲熟妇熟女久久| 最近的中文字幕免费完整| 日韩国内少妇激情av| 亚洲综合色惰| 亚洲人成网站在线播| 亚洲精品亚洲一区二区| 美女cb高潮喷水在线观看| 午夜视频国产福利| 婷婷色综合大香蕉| 久久午夜亚洲精品久久| 日韩欧美在线乱码| 搡女人真爽免费视频火全软件 | 蜜桃亚洲精品一区二区三区| 精品熟女少妇av免费看| 亚洲最大成人av| 观看免费一级毛片| 亚洲精品日韩在线中文字幕 | 久久久久久久久大av| 给我免费播放毛片高清在线观看| 99热精品在线国产| 国产男靠女视频免费网站| 一区二区三区免费毛片| 中文字幕av在线有码专区| 99久久精品热视频| 99热6这里只有精品| 人人妻人人澡人人爽人人夜夜 | 久久久久精品国产欧美久久久| 尾随美女入室| АⅤ资源中文在线天堂| 97超级碰碰碰精品色视频在线观看| 色综合色国产| 激情 狠狠 欧美| 老师上课跳d突然被开到最大视频| 亚洲激情五月婷婷啪啪| 欧美成人一区二区免费高清观看| 国产av一区在线观看免费| av.在线天堂| 久久6这里有精品| 午夜日韩欧美国产| 国产精品免费一区二区三区在线| 1024手机看黄色片| 国产毛片a区久久久久| 97在线视频观看| 午夜久久久久精精品| 日产精品乱码卡一卡2卡三| 18禁裸乳无遮挡免费网站照片| 亚洲av中文字字幕乱码综合| 婷婷六月久久综合丁香| 亚洲va在线va天堂va国产| 国产亚洲精品综合一区在线观看| 亚洲精品日韩在线中文字幕 | 亚洲av.av天堂| 亚洲欧美中文字幕日韩二区| 一个人看的www免费观看视频| 国产黄a三级三级三级人| 如何舔出高潮| 天天躁夜夜躁狠狠久久av| 一区二区三区免费毛片| 国产在线男女| 国产精品一及| 国产精品久久久久久久久免| 三级国产精品欧美在线观看| 毛片一级片免费看久久久久| ponron亚洲| 亚洲性夜色夜夜综合| 久久久久久久久久久丰满| 免费看a级黄色片| 男人的好看免费观看在线视频| 亚洲欧美成人精品一区二区| 国产精品免费一区二区三区在线| 成年免费大片在线观看| 精品一区二区三区视频在线观看免费| 俄罗斯特黄特色一大片| av黄色大香蕉| 国产一区二区在线观看日韩| 最近2019中文字幕mv第一页| 国产精品久久久久久久电影| 两个人视频免费观看高清| 中文字幕av在线有码专区| 丰满人妻一区二区三区视频av| aaaaa片日本免费| 三级男女做爰猛烈吃奶摸视频| 激情 狠狠 欧美| 一级毛片aaaaaa免费看小| 国产成人91sexporn| 亚洲精品456在线播放app| 日韩人妻高清精品专区| 高清毛片免费观看视频网站| 大香蕉久久网| 欧美日韩乱码在线| 欧美最黄视频在线播放免费| 日日撸夜夜添| 校园春色视频在线观看| 一区二区三区高清视频在线| 日韩高清综合在线| 精品少妇黑人巨大在线播放 | 成年女人毛片免费观看观看9| 人妻夜夜爽99麻豆av| 国模一区二区三区四区视频| 日韩,欧美,国产一区二区三区 | 尤物成人国产欧美一区二区三区| 18禁黄网站禁片免费观看直播| 99热全是精品| 婷婷精品国产亚洲av在线| 亚洲av免费高清在线观看| 国产女主播在线喷水免费视频网站 | 91麻豆精品激情在线观看国产| 午夜精品国产一区二区电影 | 99久国产av精品国产电影| 精品熟女少妇av免费看| 男人的好看免费观看在线视频| 国产免费男女视频| 91久久精品国产一区二区三区| 男女那种视频在线观看| 精品一区二区免费观看| 欧美成人免费av一区二区三区| 日本免费一区二区三区高清不卡| 毛片一级片免费看久久久久| 伦理电影大哥的女人| 国产精品三级大全| 啦啦啦观看免费观看视频高清| 免费av毛片视频| 中出人妻视频一区二区| 亚洲精品日韩在线中文字幕 | 99国产精品一区二区蜜桃av| 国产在线男女| 亚洲自偷自拍三级| 国产在视频线在精品| 美女黄网站色视频| 国产在线精品亚洲第一网站| 亚洲美女视频黄频| 别揉我奶头 嗯啊视频| 成人国产麻豆网| 国产精品久久电影中文字幕| 五月伊人婷婷丁香| 午夜精品国产一区二区电影 | 超碰av人人做人人爽久久| 午夜日韩欧美国产| a级毛片a级免费在线| 亚洲丝袜综合中文字幕| 天堂√8在线中文| 联通29元200g的流量卡| 色综合站精品国产| 国产又黄又爽又无遮挡在线| 久久精品夜夜夜夜夜久久蜜豆| 色av中文字幕| 男女下面进入的视频免费午夜| 欧美3d第一页| 色在线成人网| 91精品国产九色| 精华霜和精华液先用哪个| 成人亚洲精品av一区二区| 搡女人真爽免费视频火全软件 | 美女被艹到高潮喷水动态| 国产精品日韩av在线免费观看| 国产色婷婷99| 有码 亚洲区| 成人一区二区视频在线观看| a级毛片免费高清观看在线播放| 小蜜桃在线观看免费完整版高清| 精品久久久久久久久av| 真人做人爱边吃奶动态| 综合色av麻豆| 欧美人与善性xxx| 夜夜爽天天搞| 欧美激情久久久久久爽电影| 性插视频无遮挡在线免费观看| 一个人看的www免费观看视频| 一个人观看的视频www高清免费观看| 欧美绝顶高潮抽搐喷水| 色播亚洲综合网|