梁利, 鄧琳, 羅瑞, 馮乃波, 李小麗, 范夢恬, 郭風勁
炎癥微環(huán)境中ERN1調節(jié)軟骨細胞炎癥因子的實驗研究*
梁利, 鄧琳, 羅瑞, 馮乃波, 李小麗, 范夢恬, 郭風勁△
(重慶醫(yī)科大學基礎醫(yī)學院細胞生物學與遺傳學教研室,重慶 400016)
探討內質網到細胞核信號1(endoplasmic reticulum-to-nucleus signaling 1,)基因對炎癥微環(huán)境中軟骨細胞炎癥因子和軟骨分解代謝的影響。通過CRISPR-Cas9系統(tǒng)構建人基因敲除的C28/I2軟骨細胞株(KO);從C57BL/6J背景的軟骨特異性敲除(cKO)小鼠軟骨組織分離原代軟骨細胞,分別為對照組(flox/flox)、cKO組(flox/flox-Col2Cre+);在C28/I2人正常軟骨細胞中過表達腺病毒(Ad),以AdGFP為對照組;實驗采用10 μg/L白介素1β(interleukin-1β, IL-1β)誘導過表達軟骨細胞或缺陷軟骨細胞,形成炎癥微環(huán)境,用qPCR和Western blot檢測IL-1β處理缺失或過表達細胞后,腫瘤壞死因子α(tumor necrosis factor α, TNFα)、IL-4、IL-6、IL-10等炎癥因子和軟骨分解代謝標志物基質金屬蛋白酶13(matrix metalloproteinase 13, MMP13)、含血小板結合蛋白基序的解整聯(lián)蛋白及金屬蛋白酶5(a disintegrin and metalloproteinase with thrombospondin motifs 5, ADAMTS5)的表達。前交叉韌帶切除(anterior cruciate ligament resection, ACLT)術制作cKO小鼠骨關節(jié)炎(osteoarthriti, OA)模型,免疫組化法檢測軟骨組織TNFα和IL-1β的表達。成功將單向導RNA(sgRNA)構建至LentiCRISPRv2載體,并在C28/I2細胞中成功篩選出敲除穩(wěn)定細胞株。qPCR結果顯示,在體外炎癥微環(huán)境中,敲除可上調軟骨細胞促炎細胞因子IL-6和TNFα mRNA水平(<0.05),下調抗炎細胞因子IL-4和IL-10 mRNA水平(<0.05)。Western blot結果顯示,當軟骨細胞處于炎癥微環(huán)境中,敲除可顯著上調TNFα表達(<0.05),增強ADAMTS5和MMP13的表達(<0.05),而過表達則顯著抑制TNFα表達(<0.05)。免疫組化法結果顯示,ACLT術后cKO可促進TNFα、IL-1β表達?;蛲ㄟ^調節(jié)促炎及抗炎因子平衡參與炎癥反應。
基因;炎癥因子;軟骨細胞;軟骨分解代謝
軟骨細胞作為軟骨中存在的唯一細胞,是軟骨基質分解代謝的主要來源,其維持基質成分的平衡[1]。在正常生理條件下,軟骨成分的降解和合成保持動態(tài)平衡。同時,由年齡、肥胖、代謝紊亂、創(chuàng)傷、勞損、遺傳等因素引起的炎癥都是誘發(fā)骨關節(jié)炎的重要因素[2]。據報道,炎癥細胞因子如IL-1β和TNFα等通過調控炎癥介質的產生和一系列基質金屬蛋白酶(matrix metalloproteinases, MMPs)家族成員的表達,在骨關節(jié)炎(osteoarthritis, OA)的發(fā)病機制中發(fā)揮著重要作用[3]。IL-1β啟動炎癥相關信號通路的激活并刺激MMPs的表達,從而導致軟骨基質的破壞[4]。因此,抑制IL-1β和IL-1β誘導的炎癥介質表達會減緩OA的進展[5-6]。
大量研究表明未折疊蛋白反應(unfolded protein response, UPR)參與機體的免疫應答和炎癥反應[7-8]。人肌醇需求酶1α(inositol-requiring enzyme 1α, IRE1α)是位于內質網膜的跨膜蛋白,由內質網到細胞核信號1(endoplasmic reticulum-to-nucleus signaling 1,)基因編碼,是UPR的重要分子傳感器,參與調節(jié)蛋白質折疊和維持肉質網(endoplasmic reticulum, ER)穩(wěn)態(tài)[9]。IRE1α與軟骨或骨骼生長和發(fā)育密切相關[10]。內質網應激(endoplasmic reticulum stress, ERS)的定向誘導可導致軟骨產生Schmid型干骺端軟骨發(fā)育不全病理變化[11]。IRE1α的缺乏會增加軟骨細胞的凋亡,而IRE1α的激活會增強軟骨細胞的活力并減少骨關節(jié)炎中相關細胞的凋亡[10]。
雖然一些文獻報道了IRE1α在骨骼發(fā)育及相關疾病中的作用,但是IRE1α對OA軟骨細胞炎癥反應的影響仍不清楚。本研究通過構建缺陷軟骨細胞、軟骨特異性敲除小鼠原代軟骨細胞及過表達重組腺病毒,觀察在炎癥微環(huán)境中對軟骨細胞炎癥和分解代謝的影響,探討/IRE1α對炎癥微環(huán)境中軟骨細胞炎癥因子和軟骨分解代謝的影響。
C57BL/6J背景的flox/+小鼠購自上海南方模式生物科技發(fā)展有限公司,相同背景的Col2-Cre工具鼠由中國人民解放軍陸軍軍醫(yī)大學陳林教授饋贈。通過Cre-LoxP繁殖獲得flox/flox對照(control)小鼠和flox/flox-Col2Cre軟骨特異性敲除(cKO)小鼠。所有動物研究均按照機構指南進行,并得到重慶醫(yī)科大學倫理委員會的批準。
293T細胞株由本實驗室保存。人正常軟骨細胞C28/I2、CRISPR-Cas9載體LentiCRISPRv2及慢病毒包裝質粒psPAX2、VSVG由美國紐約大學劉傳聚教授饋贈。慢病毒包裝用陽性對照質粒Lenti-GFP由本實驗室保存。過表達腺病毒(Ad)及對照(AdGFP)由本實驗室保存。
BsmBI酶、CIP酶、T4連接酶(NEB);T4 PNK酶(TaKaRa);λ-EcoT14 I/Bgl Ⅱ digest DNA Marker(TaKaRa);STBL3感受態(tài)(擎科生物);Polybrene、PEI(Sigma);嘌呤霉素(Abcam);Ⅱ型膠原酶(Worthington);血清(BIOAGRIO);DMEM、DMEM/F12培養(yǎng)基(BI);RIPA強裂解液、青鏈霉素(碧云天);Trizol試劑(Invitrogen);逆轉錄試劑盒、2×SYBR Green(Novoprotein); 抗GAPDH和含血小板結合蛋白基序的解整聯(lián)蛋白及金屬蛋白酶5(a disintegrin and metalloproteinase with thrombospondin motif 5, ADAMTS5)抗體(Affinity);抗MMP13抗體(Proteintech); 抗IRE1α(CST); 抗TNFα和IL-1β抗體(Novus);小鼠基因組提取試劑盒(Bimake)。本實驗中所有引物由北京擎科生物科技有限公司重慶分公司合成,見表1~3。
表1 小鼠ERN1基因型鑒定引物
F: forward; R: reverse.
表2 CRISPR-Cas9 oligo引物
F: forward; R: reverse.
表3 qPCR引物
M: mouse; F: forward; R: reverse; H: human.
4.1構建C28/I2細胞敲除穩(wěn)定細胞株(1)LentiCRISPR-sg質粒構建:將合成的oligo引物正反義鏈退火形成雙鏈DNA,T4 PNK酶加磷;BsmBI內切酶酶切l(wèi)entiCRISPRv2質粒,質粒長度為14 873 bp,酶切后CIP酶去磷酸化,凝膠電泳棄掉約2 kb的小片段,膠回收純化大片段;T4 DNA連接酶連接4 ℃過夜;STBL3感受態(tài)轉化涂板;挑取單克隆菌搖菌,測序;(2)慢病毒包裝:將測序正確的質粒進行293T細胞慢病毒包裝,包裝質粒比例為LentiCRISPR-sgRNA∶psPAX2∶VSVG=3∶2∶1,以Lenti-GFP為包裝效率陽性對照,PEI輔助轉染;收集72~96 h病毒上清;(3)篩選敲除穩(wěn)定細胞株:感染C28/I2細胞,以Lenti-GFP感染為陽性對照,polybrene輔助感染;0.5 mg/L puromycin篩選,當C28/I2空細胞殺死完后,收取部分感染慢病毒的細胞進行Western blot鑒定,將有明顯敲低效果的細胞進行單克隆細胞株篩選,Western blot鑒定敲除效果。
4.2小鼠基因型鑒定剪取2~3周待鑒定小鼠腳趾,提取基因組;以基因組為模板,分別用flox引物和Col2-Cre引物進行PCR擴增;2%瓊脂糖凝膠電泳;基因型結果判讀:野生型只有361 bp一條帶,flox/+雜合子有361、486 bp兩條帶,flox/flox純合子只有486 bp一條帶;Col2-Cre陽性有300 bp條帶,陰性則無條帶。
4.3分離小鼠原代軟骨細胞收集新生6 d的flox/flox對照(control)小鼠和flox/flox-Col2Cre特異性敲除(cKO)小鼠;取下膝關節(jié)軟骨;PBS清洗;1 g/L Ⅱ型膠原酶37 ℃消化12~16 h;加含10%血清、1%青鏈霉素的DMEM/F12培養(yǎng)基培養(yǎng),48 h換液傳代。
4.4qPCR(1)過表達:接種C28/I2細胞,待細胞貼壁后,分別加入最適滴度的AdGFP(對照組)和Ad(過表達組),polybrene輔助感染,感染5 h后更換新鮮的完全培養(yǎng)基培養(yǎng);此外,根據實驗在細胞感染AdGFP和Ad腺病毒5 h換液時,分別加IL-1β使終濃度為10 μg/L模擬細胞炎癥微環(huán)境;(2)敲除:接種敲除的C28/I2細胞(KO1和KO2)及對照(parental);接種小鼠原代軟骨細胞(對照組)和cKO小鼠原代軟骨細胞(NER/cKO組);待細胞貼壁,分別加IL-1β使終濃度為10 μg/L模擬細胞炎癥微環(huán)境。收集IL-1β作用36 h后的細胞,Trizol法提取RNA,參照試劑盒說明書逆轉錄為cDNA,進行qPCR測定。
4.5Western blot細胞處理方法同qPCR;收集IL-1β作用 48 h的細胞,RIPA裂解液提取細胞蛋白;SDS-PAGE膠分離,220 mA恒流,1 KD/min轉移目的蛋白至PVDF膜,5% BSA室溫封閉1 h, GAPDH(1∶8 000)及其余Ⅰ抗(1∶1 000)4 ℃孵育過夜,TBST洗膜,孵育Ⅱ抗羊抗兔(1∶10 000)室溫2 h,洗膜,ECL顯影。
4.6前交叉韌帶切除(anterior cruciate ligament transection, ACLT)術隨機選取8~10周齡的雄性小鼠flox/flox(control)和flox/flox-Col2Cre(cKO)各6只,麻醉,膝關節(jié)處脫毛,剪開膝關節(jié)處皮膚暴露關節(jié)腔,手術組切斷前交叉韌帶,髕韌帶復位,縫合,消毒傷口。假手術(sham)組,不切斷前交叉韌帶,其余方法同手術組。
4.7免疫組化cKO和control小鼠ACLT術后8周的膝關節(jié)石蠟切片進行脫蠟水化;抗原修復,復合消化液37 ℃,30 min;加辣根過氧化物酶阻斷劑室溫孵育10 min;正常山羊血清封閉;加入Ⅰ抗(1∶200),4 ℃孵育過夜;孵育生物素標記羊抗兔/鼠Ⅱ抗(37 ℃、1 h);HRP標記鏈霉卵白素工作液室溫孵育15 min;DAB顯色;脫水,封片,鏡檢。
應用Graphpad Prism 6軟件進行統(tǒng)計學分析,計量資料以均數±標準差(mean±SD)表示。兩組間的比較采用檢驗,多組間的比較采用單因素方差分析,以<0.05認為差異有統(tǒng)計學意義。
LentiCRISPRv2載體經B I酶切線性化,切下約2.0 kb片段,見圖1A;棄掉小片段DNA,膠回收獲得大片段DNA,見圖1B;與退火的寡聚核苷酸雙鏈連接,轉化,挑菌,測序,成功將3條sgRNA逐一連接至載體,測序結果,見圖1C;以Lenti-GFP質粒為對照,293T細胞包裝慢病毒,包裝96 h時細胞熒光,見圖1D;收集慢病毒上清,感染C28/I2人軟骨細胞,感染48 h時細胞熒光,見圖1E;經嘌呤霉素篩選得到基因敲低細胞株,Western blot結果顯示sg1#、sg2#有顯著敲低效果,見圖1F;進一步經過多輪單克隆細胞株篩選,成功獲得KO1、KO2敲除細胞株,Western blot鑒定結果,見圖1G。
Figure 1. Construction and screening of stable cell lines with specific ERN1 knockout in C28/I2 cells using CRISPR-Cas9 technology. A: the result of restriction enzyme digestion of LentiCRISPRv2 (M: λ-EcoT14 I/Bgl II digest DNA marker; 1: LentiCRISPRv2 digested by BsmB I); B: the result of gel purification (M: DNA marker; 1': LentiCRISPRv2 plasmid without digestion; 2': result of gel purification of larger band); C: DNA sequence of LentiCRISPRv2-sgRNA plasmids; D: packaging of lentivirus positive control lenti-GFP in 293T cells; E: infection of Lenti-GFP supernatant in C28/I2 cells; F: ERN1 knockdown effect with puromycin screening was identified using Western blot in C28/I2 cells; G: Western blot confirmation of ERN1 knockout in C28/I2 cells.
采用不同濃度梯度IL-1β處理C28/I2細胞不同時間,Western blot結果顯示,隨著IL-1β濃度增加,IRE1α表達也隨之增加;在10 μg/L IL-1β誘導C28/I2細胞36 h、48 h時,IRE1α蛋白表達顯著增加(<0.01),見圖2。同時IL-1β處理敲除基因的C28/I2軟骨細胞穩(wěn)定細胞株,其qPCR結果顯示,與Parental細胞比較,IL-1β誘導時,敲除明顯抑制抗炎因子IL-4、IL-10的mRNA水平(<0.01),促進致炎因子IL-6的mRNA水平(<0.01),見圖3A。Western blot結果顯示,敲除C28/I2軟骨細胞與對照Parental比較,無IL-1β誘導時,TNFα蛋白表達無明顯差異;但在IL-1β誘導時,敲除細胞株KO1+IL-1β、ERN1 KO2+IL-1β組TNFα表達顯著升高(<0.05),見圖3B、C。
Figure 2. Expression changes of IRE1α in C28/I2 cells treated with different concentrations of IL-1β for 24 h (A) or with 10 μg/L IL-1β for different time (B) were detected by Western blot. Mean±SD. n=3.**P<0.01 vs 0 h group.
Figure 3. The mRNA and protein levels of ERN1 and inflammatory factors in ERN1-deficient C28/I2 chondrocytes were detected. A: the mRNA levels of ERN1, IL-4, IL-10 and IL-6 detected by qPCR; B: the protein level of TNFα in cells without IL-1β stimulation detected by Western blot; C: the protein level of TNFα in IL-1β-induced ERN1 knockout C28/I2 cells detected by Western blot. Mean±SD. n=3. *P<0.05, **P<0.01 vs parental+IL-1β group.
分離缺陷小鼠原代軟骨細胞,IL-1β處理,qPCR結果顯示,與對照組相比,缺陷顯著增強TNFα、IL-6 mRNA水平(<0.01),抑制IL-10的mRNA水平(<0.05),見圖4A。Western blot結果顯示,未加IL-1β處理,正常生理條件下control組與cKO組TNFα表達無明顯差異,而在IL-1β誘導時,cKO顯著上調TNFα蛋白表達(<0.05),見圖4B、C。
Figure 4. The mRNA and protein levels of ERN1 and inflammatory factors in ERN1 cKO mouse primary chondrocytes were detected. A: the mRNA levels of ERN1, TNFα, IL-10 and IL-6 in IL-1β-induced ERN1 cKO mouse primary chondrocytes were detected by qPCR; B: the protein levels of TNFα were detected by Western blot in primary chondrocytes without IL-1β stimulation; C: the protein levels of TNFα in IL-1β-induced ERN1 cKO mouse primary chondrocytes were detected by Western blot. Mean±SD. n=3. *P<0.05, **P<0.01 vs control+IL-1β group.
在C28/I2細胞中轉染腺病毒(Ad),AdGFP為對照。軟骨細胞經IL-1β處理,qPCR結果顯示,與AdGFP組比較,過表達顯著上調IL-4和IL-10 mRNA水平(<0.05),下調IL-6 mRNA水平(<0.01),見圖5。Western blot結果顯示,過表達在IL-1β處理前后都會抑制TNFα蛋白表達,且在IL-1β誘導后,Ad抑制TNFα表達更顯著(<0.01),見圖6。
Figure 5. The mRNA levels of ERN1 and inflammatory factors IL-4, IL-10 and IL-6 were detected by qPCR after over-expression of ERN1 in IL-1β-induced C28/I2 cells. Mean±SD. n=3. *P<0.05, **P<0.01 vs AdGFP+IL-1β group.
Figure.6. The protein levels of IRE1α and TNFα were detected after over-expression of ERN1. A: the protein levels of IRE1α and TNFα were detected by Western blot after over-expression of ERN1 without IL-1β stimulation; B: the protein levels of IRE1α and TNFα were detected by Western blot after overexpression of ERN1 in IL-1β-induced C28/I2 cells. Mean±SD. n=3. *P<0.05, **P<0.01 vs AdGFP+IL-1β group.
收集缺陷C28/I2軟骨細胞KO1、KO2和對照parental細胞蛋白進行Western blot檢測,結果顯示,無IL-1β處理時,parental和KO1、KO2細胞的分解代謝標志物MMP13、ADAMTS5表達無明顯差異,且蛋白表達量低,見圖7A;而細胞在IL-1β處理后,與parental組比較,缺陷顯著上調MMP13和ADAMTS5的蛋白表達水平(<0.05),見圖7B。
Figure 7. The protein levels of ADAMTS5 and MMP13 in ERN1-deficient C28/I2 chondrocytes were detected. A: the protein levels of MMP13 and ADAMTS5 in ERN1 knockout C28/I2 cells were detected by Western blot without IL-1β stimulation; B: the protein levels of MMP13 and ADAMTS5 in IL-1β-induced ERN1 knockout C28/I2 cells were detected by Western blot. Mean±SD. n=3.**P<0.01 vs parental+IL-1β group.
收集缺陷小鼠原代軟骨細胞cKO和對照小鼠原代軟骨細胞蛋白,Western blot結果顯示,無IL-1β處理時,與control組相比,cKO組的ADAMTS5差異不顯著,MMP13表達顯著降低,見圖8A;在IL-1β處理后,cKO細胞MMP13和ADAMTS5的蛋白表達水平顯著上調(<0.05),見圖8B。
Figure 8. The protein levels of ADAMTS5 and MMP13 in ERN1 cKO mouse primary chondrocytes were detected. A: the protein levels of MMP13 and ADAMTS5 in ERN1 cKO mouse primary chondrocytes without IL-1β stimulation were detected by Western blot; B: the protein levels of MMP13 and ADAMTS5 in IL-1β-induced ERN1 cKO mouse primary chondrocytes were detected by Western blot. Mean±SD. n=3. *P<0.05 vs control+IL-1β group.
收集ACLT術后8周的cKO和control小鼠膝關節(jié),進行石蠟切片。免疫組化染色結果顯示,與control小鼠相比,cKO組IL-1β和TNFα表達水平顯著升高(<0.01),見圖9。
Figure 9. The expression and distribution of IL-1β (A) and TNFα (B) in the articular cartilage of control and ERN1 cKO mice for 8 weeks after ACLT modeling were detected by immunohistochemistry and the proportion of positive cells was quantified. Mean±SD. n=3. **P<0.01 vs control group.
關節(jié)軟骨細胞由于年齡、肥胖、炎癥、代謝障礙、創(chuàng)傷、勞損、遺傳等因素所引發(fā)的炎癥是誘發(fā)骨關節(jié)炎的首要因素,炎癥因子與軟骨細胞、胞外基質蛋白和細胞粘附分子之間的一系列復雜精細的調控與骨關節(jié)炎等相關疾病的發(fā)生密切相關。研究表明炎癥與UPR在許多方面存在聯(lián)系。UPR與細胞內炎癥反應信號通路的偶聯(lián)是引發(fā)炎癥反應的主要原因之一,也是許多炎癥疾病的發(fā)病機制和病理基礎[12]。ERS已被證實與多種疾病的發(fā)生、發(fā)展有關,包括OA[13]、類風濕性關節(jié)炎[14]和其他炎癥性疾?。?5-16]。IRE1α作為UPR的經典傳感器,在不同的生物體、組織和疾病中具有多樣化功能。在腫瘤細胞中,抑制IRE1α活性可降低腫瘤細胞增殖并增加乳腺癌、結腸直腸癌和肝癌等各種癌癥類型的化學敏感性[17-19]。骨髓特異性缺失f/f,Lyz2-Cre小鼠在很大程度上逆轉高脂肪飲食誘導的白色脂肪組織中的M1-M2極化失衡,并阻斷高脂飲食誘導的肥胖、胰島素抵抗、高脂血癥和肝脂肪變性[20]。IRE1α激活的ERS和機體免疫細胞中的UPR信號通路IRE1α可以增加炎癥細胞因子的釋放,進一步促進炎癥的產生[21-22]。但IRE1α在軟骨細胞中的功能與作用卻很少報道,本研究探討了/IRE1α在炎癥微環(huán)境中與軟骨細胞炎癥因子和軟骨分解代謝的關系,為后續(xù)深入解讀IRE1α在軟骨細胞的功能奠定基礎。
IL-1β是一種重要的致炎細胞因子,在軟骨降解與軟骨相關疾病中起著重要作用。IL-1β誘導促進諸如IL-6、TNFα等促炎細胞因子的表達和蛋白分泌,這可能導致對軟骨細胞的繼發(fā)性損傷[23]。OA病理生物學的主要特征是軟骨損傷伴隨促炎細胞因子水平升高[24]。另一方面,IL-4和IL-10是多效性細胞因子,可通過負性調節(jié)自分泌和旁分泌反饋環(huán)抑制促炎環(huán)境,并參與軟骨細胞的保護[25-26]。
在這項研究中,我們探討了對炎癥微環(huán)境中軟骨細胞炎癥因子和軟骨分解代謝的影響。首先通過Western blot實驗發(fā)現(xiàn),在生理條件下,軟骨細胞缺陷,沒有引起TNFα的蛋白變化;但在IL-1β誘導下,軟骨細胞缺陷顯著促進TNFα的表達;同時在mRNA水平也驗證這一作用,缺陷的C28/I2軟骨細胞和軟骨特異性缺失的小鼠原代軟骨細胞在炎癥微環(huán)境中,發(fā)現(xiàn)軟骨缺失能促進TNFα和IL-6的表達,抑制IL-4和IL-10表達;反之,在軟骨細胞中過表達,抑制促炎細胞因子表達,促進抗炎細胞因子表達;并在ACLT誘導的小鼠OA模型中發(fā)現(xiàn)ERN1軟骨缺陷會導致TNFα和IL-1β顯著升高。以上結果表明,對于炎癥微環(huán)境中的軟骨細胞具有保護作用。
研究報道,抑制MMPs產生可以抑制軟骨降解的進展[27-28]。在關節(jié)軟骨中,IL-1β能夠增加MMPs的釋放及膠原蛋白和蛋白聚糖的降解[29]。此外,ADAMTS也是OA中重要的蛋白質水解產物,尤其是ADAMTS4和ADAMTS5,它們負責裂解聚集蛋白聚糖[30]。因此,靶向MMPs、ADAMTS的個體化治療代表了一種有希望的OA潛在治療策略。在本研究中,我們通過敲除基因,檢測MMP13和ADAMTS5的表達,發(fā)現(xiàn)缺陷可以促進人正常軟骨細胞和小鼠原代軟骨細胞IL-1β誘導的軟骨分解代謝標志物MMP13、ADMATS5的表達。結果表明,缺陷可以促進炎癥微環(huán)境中軟骨細胞分解代謝。
綜合上述結果,過表達對炎癥微環(huán)境中的軟骨細胞具有抗炎保護作用,缺陷對軟骨細胞炎癥微環(huán)境具有促炎和促進軟骨分解代謝的多重作用。通過調節(jié)炎癥因子的敏感性,參與炎癥反應。本研究初步闡明軟骨細胞中/IRE1α參與炎癥微環(huán)境的可能機制,為進一步探究/IRE1α與OA及炎癥相關疾病的關系奠定基礎。
[1] Lee HP, Gu L, Mooney DJ, et al. Mechanical confinement regulates cartilage matrix formation by chondrocytes[J]. Nat Mater, 2017, 16(12):1243-1251.
[2] Mobasheri A, Rayman MP, Gualillo O, et al. The role of metabolism in the pathogenesis of osteoarthritis[J]. Nat Rev Rheumatol, 2017, 13(5):302-311.
[3] Riewruja K, Phakham S, Sompolpong P, et al. Cytokine profiling and intra-articular injection of autologous platelet-rich plasma in knee osteoarthritis[J]. Int J Mol Sci, 2022, 23(2):890.
[4] Scott KM, Cohen DJ, Hays M, et al. Regulation of inflammatory and catabolic responses to IL-1β in rat articular chondrocytes by microRNAs miR-122 and miR-451[J]. Osteoarthritis Cartilage, 2021, 29(1):113-123.
[5] Bollmann M, Pinno K, Ehnold LI, et al. MMP-9 mediated Syndecan-4 shedding correlates with osteoarthritis severity[J]. Osteoarthritis Cartilage, 2021, 29(2):280-289.
[6]卓澤銘, 范忠誠, 郭祥. 桑寄生提取物聯(lián)合miR-375對骨關節(jié)炎軟骨細胞活力和凋亡的影響[J]. 中國病理生理雜志, 2020, 36(6):1082-1088.
Zhuo ZM, Fan ZC, Guo X. Effect of Herba Taxilli extracts combined with miR-375 on viability and apoptosis of osteoarthritic chondrocytes[J]. Chin J Pathophysiol, 2020, 36(6):1082-1088.
[7] You K, Wang L, Chou CH, et al. QRICH1 dictates the outcome of ER stress through transcriptional control of proteostasis[J]. Science, 2021, 371(6524):eabb6896.
[8] Mogilenko DA, Haas JT, L'Homme L, et al. Metabolic and innate immune cues merge into a specific inflammatory response via the UPR[J]. Cell, 2019, 177(5):1201-1216.e19.
[9] Hetz C, Zhang K, Kaufman RJ. Mechanisms, regulation and functions of the unfolded protein response[J]. Nat Rev Mol Cell Biol, 2020, 21(8):421-438.
[10] Huang R, Hui Z, Wei S, et al. IRE1 signaling regulates chondrocyte apoptosis and death fate in the osteoarthritis[J]. J Cell Physiol, 2022, 237(1):118-127.
[11] Mullan LA, Mularczyk EJ, Kung LH, et al. Increased intracellular proteolysis reduces disease severity in an ER stress-associated dwarfism[J]. J Clin Invest, 2017, 127(10):3861-3865.
[12] 郜婕, 唐成林, 劉仁建, 等. 不同強度電針對肥胖大鼠附睪脂肪細胞內質網應激的影響[J]. 中國病理生理雜志, 2013, 29(2):354-357.
Cao J, Tang CL, Liu RJ, et al. Effect of electroacupuncture in different intensities on endoplasmic reti-culum stress in adipose tissues from high-fat diet-induced obese rats [J]. Chin J Pathophysiol, 2013, 29(2):354-357.
[13] Lee SY, Wong PF, Jamal J, et al. Naturally-derived endoplasmic reticulum stress inhibitors for osteoarthritis?[J]. Eur J Pharmacol, 2022, 922:174903.
[14] Barrera MJ, Aguilera S, Castro I, et al. Dysfunctional mitochondria as critical players in the inflammation of autoimmune diseases: potential role in Sj?gren's syndrome[J]. Autoimmun Rev, 2021, 20(8):102867.
[15] Liu N, Bai L, Lu Z, et al. TRPV4 contributes to ER stress and inflammation: implications for Parkinson's disease[J]. J Neuroinflammation, 2022, 19(1):26.
[16] 敖文, 徐在革, 白楊, 等. 基于內質網應激-自噬通路研究茯苓多糖對2型糖尿病小鼠腸道屏障功能損傷和炎癥反應的影響[J]. 中國病理生理雜志, 2022, 38(5):829-838.
Ao W, Xu ZG, Bai Y, et al. Poria cocos polysaccharide improves intestinal barrier function and attenuates inflammatory response in type 2 diabetic mice through endoplasmic reticulum stress-autophagy pathway[J]. Chin J Pathophysiol, 2022, 38(5):829-838.
[17] Logue SE, McGrath EP, Cleary P, et al. Inhibition of IRE1 RNase activity modulates the tumor cell secretome and enhances response to chemotherapy[J]. Nat Commun, 2018, 9(1):3267.
[18] Fang P, Xiang L, Huang S, et al. IRE1α-XBP1 signaling pathway regulates IL-6 expression and promotes progression of hepatocellular carcinoma[J]. Oncol Lett, 2018, 16(4):4729-4736.
[19] Jin C, Jin Z, Chen NZ, et al. Activation of IRE1α-XBP1 pathway induces cell proliferation and invasion in colorectal carcinoma[J]. Biochem Biophys Res Commun, 2016, 470(1):75-81.
[20] Shan B, Wang X, Wu Y, et al. The metabolic ER stress sensor IRE1α suppresses alternative activation of macrophages and impairs energy expenditure in obesity[J]. Nat Immunol, 2017, 18(5):519-529.
[21] Keestra-Gounder AM, Byndloss MX, Seyffert N, et al. NOD1 and NOD2 signalling links ER stress with inflammation[J]. Nature, 2016, 532(7599):394-397.
[22] Kim S, Joe Y, Kim HJ, et al. Endoplasmic reticulum stress-induced IRE1α activation mediates cross-talk of GSK-3β and XBP-1 to regulate inflammatory cytokine production[J]. J Immunol, 2015, 194(9):4498-4506.
[23] Eugene SP, Reddy VS, Trinath J. Endoplasmic reticulum stress and intestinal inflammation: a perilous union[J]. Front Immunol, 2020, 11:543022.
[24] Katz JN, Arant KR, Loeser RF. Diagnosis and treatment of hip and knee osteoarthritis: a review[J]. JAMA, 2021, 325(6):568-578.
[25] Moss KL, Jiang Z, Dodson ME, et al. Sustained interleukin-10 transgene expression following intra-articular AAV5-IL-10 administration to horses[J]. Hum Gene Ther, 2020, 31(1/2):110-118.
[26] Song SY, Hong J, Go S, et al. Interleukin-4 gene transfection and spheroid formation potentiate therapeutic efficacy of mesenchymal stem cells for osteoarthritis[J]. Adv Healthc Mater, 2020, 9(5):e1901612.
[27] Schultz C. Targeting the extracellular matrix for delivery of bioactive molecules to sites of arthritis[J]. Br J Pharmacol, 2019, 176(1):26-37.
[28] 賀自克, 王上增, 沈錦濤. 基于Hedgehog通路探討補腎活血方對實驗性膝骨性關節(jié)炎兔退變軟骨的保護作用[J]. 中國病理生理雜志, 2020, 36(4):700-706.
He ZK, Wang SZ, Shen JT. Protective effect of Bushen-Huoxue prescription on degenarative carti-lage in rabbits with experimental knee osteoarthritis based on Hedgehog pathway[J]. Chin J Pathophysiol, 2020, 36(4):700-706.
[29] Liu J, Cao L, Gao X, et al. Ghrelin prevents articular cartilage matrix destruction in human chondrocytes[J]. Biomed Pharmacother, 2018, 98:651-655.
[30] Rogerson FM, Last K, Golub SB, et al. ADAMTS-9 in mouse cartilage has aggrecanase activity that is distinct from ADAMTS-4 and ADAMTS-5[J]. Int J Mol Sci, 2019, 20(3):573.
Regulatory effect of ERN1 on biological properties of chondrocytes in an inflammatory microenvironment
LIANG Li, DENG Lin, LUO Rui, FENG Naibo, LI Xiaoli, FAN Mengtian, GUO Fengjin△
(,,400016,)
To explore the effect of endoplasmic reticulum-to-nucleus signaling 1 () gene on the biological properties of chondrocytes in an inflammatory microenvironment.Theknockout C28/I2 human normal chondrocyte cell lineKO was constructed by CRISPR-Cas9 system. Primary chondrocytes fromcartilage-specific knockout mice with C57BL/6J background were isolated, and the experiments were divided into control group (flox/flox),cKO group (flox/flox-Col2Cre+).adenovirus (Ad) was over-expressed in C28/I2 human normal chondrocytes, with AdGFP as the control group. Interleukin-1β (IL-1β) at 10 μg/L was used in chondrocytes to form an inflammatory microenvironment. The expression of inflammatory factors tumor necrosis factor α (TNFα), IL-4, IL-6 and IL-10, and cartilage catabolism markers matrix metalloproteinase 13 (MMP13) and a disintegrin and metalloproteinase with thrombospondin motifs 5 (ADAMTS5) in chondrocytes afterdeletion or overexpression in the inflammatory microenvironment induced by IL-1β was detected by qPCR and Western blot.ThesgRNA was successfully constructed into LentiCRISPRv2 vector, andknockout stable cell line were successfully screened in C28/I2 cells. qPCR results showed that in the inflammatory microenvironment,deficiency up-regulated the mRNA levels of pro-inflammatory cytokines IL-6 and TNFα in chondrocytes (<0.05), and down-regulated the mRNA levels of anti-inflammatory cytokines IL-4 and IL-10 (<0.05). Western blot results showed that when chondrocytes were in the inflammatory microenvironment,deficiency significantly up-regulated the expression of pro-inflammatory cytokine TNFα (<0.05), and enhanced the expression of cartilage catabolism markers ADAMTS5 and MMP13 (<0.05). The expression of TNFα was significantly inhibited after over-expression of(<0.05).regulates the inflammatory sensitivity of chondrocytes by regulating the levels of pro-inflammatory and anti-inflammatory factors, and then participates in the inflammatory response.
gene; inflammatory factors; chondrocytes; cartilage catabolism
R329.2; R363.2+1
A
10.3969/j.issn.1000-4718.2023.02.014
1000-4718(2023)02-0314-11
2022-08-22
2022-11-01
[基金項目]國家自然科學基金資助項目(No. 81871769);重慶市科委面上項目(No. cstc2020jcyj-msxmX0175);重慶市科委博士后科學基金項目(No. cstc2021jcyj-bshX0214);重慶醫(yī)科大學研究生拔尖人才培育項目(No. BJRC202019)
Tel: 15310288670; E-mail: guo.fengjin@cqmu.edu.cn
(責任編輯:余小慧,李淑媛)