• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      高脂誘導下雄激素缺乏小型豬腎臟脂質(zhì)沉積的關(guān)鍵基因表達分析*

      2023-03-10 06:26:24范瑩盈任裕杰凌云呂東穎蔡兆偉
      中國病理生理雜志 2023年2期
      關(guān)鍵詞:去勢高脂雄激素

      范瑩盈, 任裕杰, 凌云, 呂東穎, 蔡兆偉,△

      高脂誘導下雄激素缺乏小型豬腎臟脂質(zhì)沉積的關(guān)鍵基因表達分析*

      范瑩盈1, 任裕杰1, 凌云2, 呂東穎2, 蔡兆偉1,2△

      (1浙江中醫(yī)藥大學藥學院,浙江 杭州 310053;2浙江中醫(yī)藥大學中醫(yī)藥科學院動物實驗研究中心,浙江 杭州 310053)

      探討高脂誘導條件下雄激素缺乏小型豬腎臟脂質(zhì)沉積及關(guān)鍵基因表達的變化。將雄性五指山小型豬隨機分為3組,即不去勢(IM)組、去勢(CM)組和去勢+睪酮(CMT)組,每組6只動物,均飼喂高脂飲食。12周后檢測血清腎功能指標,測定腎臟甘油三酯(TG)和總膽固醇(TC)含量;進行腎臟蘇木精-伊紅(H&E)和油紅O染色,觀察其脂質(zhì)沉積和組織病理學變化。利用轉(zhuǎn)錄組測序分析腎臟組織表達譜差異,并用RT-qPCR和Western blot方法驗證參與TG合成、膽汁酸代謝和雌激素合成相關(guān)差異表達基因。CM小型豬腎臟重量明顯低于IM和CMT小型豬(0.05);與IM組和CMT組小型豬相比,CM小型豬血尿素氮含量顯著升高(0.05),但血清肌酐和總蛋白水平?jīng)]有顯著變化;CM組小型豬腎臟內(nèi)出現(xiàn)大量脂滴,且TG含量顯著高于IM和CMT小型豬(0.05);與IM組和CMT組小型豬相比,CM組小型豬腎臟TG合成基因包括固醇調(diào)節(jié)元件結(jié)合轉(zhuǎn)錄因子1()、糖類應(yīng)答元件結(jié)合蛋白(/)和硬脂酰輔酶A去飽和酶()等表達升高,而膽汁酸代謝和雌激素合成基因包括法尼酯X受體(/)和雌激素受體1()表達下調(diào);睪酮處理能夠逆轉(zhuǎn)去勢小型豬腎臟內(nèi)脂質(zhì)沉積及相關(guān)基因表達變化。和可能通過影響SREBF1脂質(zhì)合成途徑參與高脂誘導的雄激素缺乏小型豬腎臟脂質(zhì)沉積過程。這為老年男性慢性腎臟疾病防治提供了新思路。

      腎臟;脂質(zhì)沉積;雄激素缺乏;小型豬;高脂飲食

      近年來,隨著我國人口老齡化及人們生活方式的改變,慢性腎臟病的發(fā)病率逐年增加,已成為威脅人類特別是中老年身體健康的重要疾病。隨著年齡的增長,中老年男性體內(nèi)的雄激素水平會逐漸降低,易患肥胖、高膽固醇血癥、糖尿病和動脈粥樣硬化等疾病,這些均是導致腎臟脂質(zhì)沉積并造成腎臟損害的獨立風險因素[1]。盡管最近國內(nèi)外有許多研究證實,雄激素水平降低可能是導致慢性腎病的主要內(nèi)分泌紊亂[2-3],但雄激素缺乏及其誘導的脂代謝紊亂對腎臟脂質(zhì)沉積和功能的影響迄今仍未完全清楚。

      目前研究認為,脂質(zhì)合成增加在腎臟脂質(zhì)沉積過程中起重要作用[4]。固醇調(diào)節(jié)元件結(jié)合蛋白1c(sterol regulatory element binding protein-1c, SREBP-1c)是調(diào)節(jié)脂質(zhì)代謝的關(guān)鍵核轉(zhuǎn)錄因子,參與調(diào)節(jié)甘油三酯和脂肪酸合成基因的表達,繼而影響脂質(zhì)代謝。有研究發(fā)現(xiàn),高脂飲食能夠上調(diào)C57BL/6J小鼠腎臟SREBP-1c及其下游脂肪酸合成酶(fatty acid synthase, FASN)、硬脂酰輔酶A去飽和酶(stearoyl-coenzyme A desaturase, SCD)和乙酰輔酶A羧化酶(acetyl-coenzyme A carboxylase, ACC)的表達,導致腎臟脂質(zhì)沉積和腎小球硬化。進一步研究發(fā)現(xiàn),敲除小鼠能夠抵抗高脂誘導的腎臟脂質(zhì)沉積[5]。衰老過程中,腎臟脂質(zhì)沉積也和SREBP-1c表達升高有關(guān)[6]。國內(nèi)學者研究發(fā)現(xiàn),SREBP-1c激活介導了糖尿病和高脂誘導的腎臟脂質(zhì)沉積[7-9]。最近發(fā)現(xiàn),脂肪酸氧化缺陷可能是造成老年小鼠腎臟脂質(zhì)過度積聚的原因[10]。然而,雄激素缺乏誘導的腎臟脂質(zhì)沉積相關(guān)基因表達變化卻不清楚。

      本研究擬利用前期建立的雄激素缺乏調(diào)控高脂飲食誘導的小型豬模型,在此基礎(chǔ)上檢測血清腎功能指標、腎臟脂質(zhì)含量以及組織病理學改變,同時進一步采用轉(zhuǎn)錄組測序(RNA-Seq)技術(shù)分析篩選雄激素缺乏誘導腎臟脂質(zhì)沉積的關(guān)鍵基因和途徑,旨在從整體水平明確雄激素缺乏對高脂誘導的腎臟脂質(zhì)沉積和功能的影響,為今后防治中老年男性慢性腎臟疾病提供新的靶點和治療思路。

      材料和方法

      1 實驗動物與分組

      雄性五指山小型豬18只,體重(10.00±1.63) kg,由廣東大華農(nóng)動物保健品股份有限公司提供[SCXK(粵)2013-0022],待適應(yīng)性飼養(yǎng)3~4周后,將動物隨機分為3組:不去勢(intact male pigs, IM)組、去勢(castrated male pigs, CM)組和去勢+睪酮(castrated male pigs with testosterone replacement, CMT)組,每組6只。手術(shù)去勢是在無菌和麻醉環(huán)境下將小型豬陰囊處切口后去除睪丸,不去勢組小型豬進行偽手術(shù)處理,睪酮處理是在去勢小型豬后腿外側(cè)肌肉注射丙酸睪酮注射液(10 mg/kg,每周1次),具體方案見前期發(fā)表文獻[11-12]。三組動物均飼喂高脂高膽固醇飼料,整個實驗持續(xù)12周,結(jié)束后處死動物,迅速采集腎臟組織樣本,置入液氮中速凍,隨后保存在-80 ℃?zhèn)溆谩?/p>

      2 方法

      2.1血清生化指標檢測分別在造模前0周和造模后4、8和12周時,取小型豬前腔靜脈血5 mL,以3 000 r/min離心15 min,分離血清。采用全自動生化分析儀檢測血清肌酐(creatinine, CREA)、血尿素氮(blood urea nitrogen, BUN)、白蛋白(albumin, ALB)和總蛋白(total protein, TP)等指標變化,具體方法按照試劑盒的操作說明使用(南京建成生物工程研究所)。

      2.2腎臟指標檢測稱取500 mg腎臟組織,加入生理鹽水制成10%的組織勻漿,室溫下振蕩,以3 000 r/min離心15 min,取上清測定組織中甘油三酯(triglyceride, TG)和總膽固醇(total cholesterol, TC)含量。

      2.3腎臟稱重及組織病理學染色動物處死后,取腎臟稱重,計算腎臟指數(shù):腎臟重量(g)/體重(kg)。腎臟組織用10%中性甲醛固定,常規(guī)脫水、石蠟包埋后,切片進行H&E染色。另取部分腎臟經(jīng)液氮速凍后保存于冷凍冰箱備用,冰凍切片后用油紅O染色,觀察組織脂質(zhì)沉積情況。

      2.4轉(zhuǎn)錄組測序分析提取各組動物腎臟組織總RNA后,采用安捷倫2100生物分析儀(Agilent)和NanoDrop 2000(Thermo Scientific)檢測所提RNA的質(zhì)量,待樣品檢測合格后,構(gòu)建cDNA測序文庫,采用Illumina Hiseq 2500測序平臺進行測序。獲得RNA-Seq的原始數(shù)據(jù)后,用Tophat軟件和Bowtie軟件將所有測序讀段mapping定位到豬基因組上(http://www.ensembl.org/info/data/ftp/index.html; Sscrofa 10.2)。差異基因篩選和分析參見前期已發(fā)表文獻[11],具體采用DEGSeq算法篩選差異表達基因(differentially expressed genes, DEGs),使用Cluster 3.0進行聚類分析。通過時間序列的短時間序列表達挖掘器(short time-series expression miner, STEM; http://www.cs.cmu.edu/~jernst/st/)方法的聚類分析確定篩選出來的DEGs的表達譜特征,應(yīng)用基于基因本體(gene ontology, GO)分類數(shù)據(jù)庫分析具有顯著趨勢的DEGs參與的生物學功能。

      2.5RT-qPCR驗證差異基因表達為了驗證轉(zhuǎn)錄組測序的可靠性,我們將提取的腎臟RNA樣品使用反轉(zhuǎn)錄試劑盒反轉(zhuǎn)錄成cDNA,用SYBR Green熒光染料檢測驗證目的基因的表達,所有熒光定量PCR反應(yīng)均在伯樂IQ5實時熒光定量PCR儀上進行。每個樣品PCR反應(yīng)重復(fù)3次,根據(jù)溶解曲線判斷產(chǎn)物特異性。目的基因檢測引物序列信息見表1。

      表1 RT-qPCR引物序列

      2.6Western blot驗證差異基因蛋白表達按照蛋白提取試劑盒說明書提取腎臟組織總蛋白,BCA法測定蛋白濃度。取蛋白樣品進行SDS-PAGE,轉(zhuǎn)膜,并用麗春紅染液檢測轉(zhuǎn)膜效果。將轉(zhuǎn)好的膜置于室溫下,用5%的脫脂牛奶封閉1 h,然后加入Ⅰ抗,4 ?C孵育過夜。PBST洗膜3次,后加入Ⅱ抗進行孵育,室溫下30 min。洗膜后,用Odyssey紅外熒光掃描成像系統(tǒng)拍照分析。Ⅰ抗[固醇調(diào)節(jié)元件結(jié)合轉(zhuǎn)錄因子1(sterol regulatory element binding transcription factor 1, SREBF1)抗體(ab235177)、SCD抗體(ab39969)和β-actin抗體(ab8226)]均購自Abcam。

      3 統(tǒng)計學處理

      所有數(shù)據(jù)以平均值±標準差(mean±SD)來表示,統(tǒng)計結(jié)果用GraphPad prism 7.0軟件進行分析,兩組數(shù)據(jù)比較采用檢驗,<0.05代表有統(tǒng)計學差異。

      結(jié)果

      1 去勢和睪酮處理對高脂誘導小型豬腎臟功能指標的影響

      解剖發(fā)現(xiàn),CM組小型豬腎臟體積較IM組和CMT組小型豬明顯縮小,重量指數(shù)顯著低于其他兩組動物,見圖1A~C。在高脂誘導8周前,去勢和睪酮處理對小型豬BUN含量沒有影響,但12周時CM組小型豬BUN含量顯著高于IM組和CMT組(<0.05),見圖1D。8周時,CM組小型豬血清ALB含量顯著高于IM組小型豬,但與CMT小型豬相比沒有顯著差異,見圖1G。整個飼喂期間,去勢和睪酮處理對小型豬血清CREA和TP水平?jīng)]有顯著影響,見圖1E、F。

      Figure 1. Effects of castration and testosterone replacement on kidney weight and renal function indexes of miniature pigs fed with high-fat diet. A: kidney weight; B: kidney weight/body weight ratio; C: kidney morphological changes; D~G: blood urea nitrogen (BUN), serum creatinine (CREA), serum total protein (TP) and serum albumin (ALB) levels. Mean±SD. n=6. *P<0.05, **P<0.01 vs IM group;△P<0.05 vs CM group.

      2 去勢和睪酮處理對高脂誘導小型豬腎臟組織病理學的影響

      高脂飼喂后,3組小型豬腎臟組織腎小球細胞系膜細胞呈現(xiàn)不同程度的增生,但CM組小型豬腎小球體積輕微增大,基底膜不規(guī)則增厚,部分腎小管上皮細胞出現(xiàn)空泡變性(圖2C)。油紅O染色結(jié)果顯示,CM組小型豬腎小管上皮細胞內(nèi)出現(xiàn)大量脂滴,部分腎小球內(nèi)也可見脂質(zhì)積聚,睪酮處理能夠改善去勢小型豬腎臟內(nèi)沉積的脂質(zhì)(圖2D)。生化檢測結(jié)果表明,CM小型豬腎臟甘油三酯含量顯著高于IM和CMT小型豬(<0.05),但膽固醇含量沒有明顯差異,進一步證實了油紅O染色的結(jié)果(圖2A、B)。

      Figure 2. Effects of castration and testosterone replacement on kidney lipid deposition and histopathology in miniature pigs fed with high-fat diet. A: kidney TC content; B: kidney TG content; C: kidney sections stained with H&E (×200); D: oil red O staining of lipid in kidney (×200). Mean±SD. n=6. *P<0.05 vs IM group;△P<0.05 vs CM group.

      3 腎臟差異基因分析

      為了探討雄激素缺乏誘導小型豬腎臟脂質(zhì)沉積的機制,我們對3組小型豬腎臟組織進行了RNA-Seq分析。以差異倍數(shù)絕對值(| fold change |)≥1.5和<0.05作為標準篩選各組樣本之間的DEGs。結(jié)果發(fā)現(xiàn),CMIM差異基因1 081個,其中上調(diào)基因491個,下調(diào)基因590;CMTCM差異基因940個,其中上調(diào)基因550個,下調(diào)基因390;CMTIM差異基因574個,其中上調(diào)基因349個,下調(diào)基因225(圖3)。

      Figure 3. Analysis of differentially expressed genes (DEGs) in kidney of IM, CM, and CMT pigs. A: the numbers of DEGs between groups; B: the numbers of up-regulated and down-regulated DEGs between groups; C: heatmap for hierarchical cluster analysis of DEGs between samples.

      4 腎臟差異基因的STEM分析

      為更清楚顯示篩選獲得的差異基因在3組小型豬腎臟中的表達模式,我們采用STEM算法對上述DEGs進行了分析,將它們分成了7個可能的表達模塊(Profile)。結(jié)果表明,7個模塊中只有Profile 2和Profile 5具有統(tǒng)計顯著性意義。其中,Profile 2包括396個DEGs,它們在3組樣本間(IM→CM→CMT)表達趨勢為先下調(diào)后上調(diào),而Profile 5包括420個基因,表達趨勢則為先上調(diào)后下調(diào)(圖4A)。

      Figure 4. Gene expression tendencies and gene ontology (GO) analysis. A: series-cluster analysis for gene expression profiles of DEGs; B: enriched GO terms in Profile 5; C: enriched GO terms in Profile 2.

      接下來,我們對Profile 2和Profile 5進行了GO富集分析。結(jié)果顯示,Profile 5所包含基因主要和磷脂輸出[載脂蛋白C3(apolipoprotein C3, APOC3)和載脂蛋白A5(apolipoprotein A5, APOA5)等]、膽固醇代謝[ATP結(jié)合盒轉(zhuǎn)運體G1(ATP binding cassette transporter G1, ABCG1)和載脂蛋白E(apolipoprotein E, APOE)等]、甘油三酯平衡[SREBF1、甘油磷酸肌醇錨定高密度脂蛋白結(jié)合蛋白(glycosylphosphatidylinositol anchored high density lipoprotein binding protein, GPIHBP1)和MLXIPL等]、腎小球基底膜發(fā)育[IV型膠原A3(collagen type IV alpha 3, COL4A3)和IV型膠原A4(collagen type IV alpha 4, COL4A4)等]和腎小球過濾[硫酸酯酶2(sulfatase 2, SULF2)和免疫球蛋白J(immunoglobulin J, IgJ)等]等生物學過程有關(guān);而Profile 2所包含基因則主要與小分子代謝[細胞色素P450家族成員2C49(cytochrome P450 2C9, CYP2C49)、長壽保證同源物4(longevity assurance homologue 4, LASS4)和煙酰胺單核苷酸腺苷轉(zhuǎn)移酶1(nicotinamide mononucleotide adenylyl transferase 1, NMNAT1)等]、氧化還原反應(yīng)[脫氫酶/氧化還原酶家族成員7(dehydrogenase/reductase family member 7, DHRS7)、乙醇脫氫酶7(alcohol dehydrogenase 7, ADH7)和細胞色素B5(cytochrome5type B,CYB5B)等]、膽汁酸代謝[法尼酯X受體(farnesoid X receptor, FXR/NR1H4)、固醇攜帶蛋白2(sterol carrier protein 2, SCP2)和溶質(zhì)轉(zhuǎn)運27家族成員2(solute carrier family 27 member 2, SLC27A2)等]、脂肪酸氧化[ATP結(jié)合盒轉(zhuǎn)運蛋白D3(ATP-binding cassette transporter D3, ABCD3)和長鏈?;o酶A脫氫酶(acyl-CoA dehydrogenase long chain, ACADL)等]和雌激素代謝[17β-雌二醇脫氫酶IV(17β-hydroxysteroid dehydrogenase IV, HSD17B4)和雌激素受體1(estrogen receptor 1, ESR1)等]有關(guān)(圖4B、表2)。

      表2 基因術(shù)語及相關(guān)基因

      5 腎臟基因和蛋白表達驗證

      從前面分析可知,CM小型豬腎臟膽汁酸和雌激素代謝相關(guān)基因表達下調(diào),而甘油三酯沉積相關(guān)基因表達上調(diào),提示雄激素缺乏誘導腎臟脂質(zhì)沉積可能和上述途徑有關(guān)。我們選擇上述部分DEGs,包括ESR1、NR1H4、SREBF1、MLXIPL和SCD,采用RT-qPCR和Western blot方法進行了驗證。RT-qPCR驗證結(jié)果表明,相比IM組和CMT組小型豬,CM小型豬腎臟、和基因表達顯著上調(diào),而和基因表達顯著降低。我們選擇了3個表達差異未達到顯著的基因進行RT-qPCR驗證,結(jié)果證實,微小異源二聚體(small heterodimer partner, SHP/NR0B2)、FASN和ACC在組間表達無顯著差異(圖5A、B),這與測序結(jié)果基本一致。Western blot檢測發(fā)現(xiàn),CM小型豬腎臟SREBF1和SCD蛋白表達明顯高于IM和CMT小型豬(圖5C~E),這從蛋白水平上證實了測序結(jié)果一致性。

      Figure 5. Expression of DEGs involved in fatty acid and TG synthesis, estrogen synthesis and bile acid metabolism. A: expression of fatty acid and TG synthesis-related genes detected by RT-qPCR; B: expression of estrogen synthesis and bile acid metabolism-related genes detected by RT-qPCR; C~E: Western blot analysis of SREBF1 and SCD. Mean±SD. n=3. *P<0.05, **P<0.01 vs IM group;△P<0.05, △△P<0.01 vs CM group.

      討論

      本研究分析了去勢和睪酮處理對高脂誘導下小型豬腎臟脂質(zhì)沉積和功能指標的影響,結(jié)果表明,CM小型豬血清BUN含量和腎臟TG沉積顯著高于其他兩組小型豬,但血清CREA、TP以及腎臟TC含量卻沒有顯著差異。目前有關(guān)雄激素水平影響腎臟脂質(zhì)沉積和功能的報道較少,不過曾有研究發(fā)現(xiàn),高脂誘導導致大鼠腎臟損傷存在性別差異[13]。還有研究報道,卵巢摘除引起的雌激素缺乏可以促進高膽固醇血癥小鼠腎臟脂質(zhì)沉積和腎功能紊亂[14]。可見,性激素對高脂飲食或高膽固醇血癥對腎臟脂質(zhì)沉積和功能具有重要調(diào)控作用。Liu等[15]采用高脂飲食飼喂5個月能夠誘導巴馬小型豬腎臟脂質(zhì)沉積,但對血和尿肌酐水平并無顯著影響。Li等[16]采用高脂飲食飼喂長達23個月來誘導巴馬小型豬代謝綜合癥模型,發(fā)現(xiàn)模型組小型豬不僅腎臟出現(xiàn)脂質(zhì)沉積,血清肌酐和尿素氮也顯著升高。由此可見,雄激素缺乏促進短期高脂誘導的小型豬腎臟脂質(zhì)沉積,但腎功能出現(xiàn)嚴重損傷可能需更長時間飲食誘導。

      轉(zhuǎn)錄組測序分析表明,CM小型豬腎臟中許多與甘油三酯平衡、膽固醇代謝以及脂蛋白代謝有關(guān)的基因表達上調(diào),例如、、、patatin樣磷脂酶域蛋白3(patatin-like phospholipase domain-containing 3,)、、和脂滴包被蛋白4(perilipin 4,)等。SREBF1作為脂質(zhì)代謝調(diào)節(jié)關(guān)鍵核轉(zhuǎn)錄因子,近年來被發(fā)現(xiàn)在許多因素引起的腎臟脂質(zhì)沉積有重要調(diào)節(jié)作用。值得一提的是,Jiang等[6]研究曾發(fā)現(xiàn),衰老誘導的小鼠腎臟脂質(zhì)沉積增加過程中伴隨著基因表達升高,這和我們的研究結(jié)果相似。該研究還發(fā)現(xiàn),衰老小鼠腎臟膽固醇合成途徑限速酶羥甲基戊二酰輔酶A還原酶(3-hydroxy-3-methylglutaryl coenzyme A reductase,)基因表達升高,這和我們的結(jié)果卻不太一致,原因可能在于CM小型豬腎臟膽固醇沉積較IM組差異不明顯。Braun等[17]分析了與Jiang等[5]研究相近年齡的同品系小鼠腎臟卻發(fā)現(xiàn),衰老小鼠腎臟基因表達并未上調(diào)反而下調(diào),可見衰老導致的腎臟脂質(zhì)(特別是膽固醇)沉積相關(guān)研究仍未定論。

      本研究還發(fā)現(xiàn),CM小型豬腎臟中膽汁酸代謝和雌激素合成等相關(guān)基因表達下調(diào),包括、、和等。FXR屬于代謝性核受體超家族成員,它激活后能夠誘導SHP的表達進而抑制SREBP-1c及下游脂質(zhì)合成基因的表達來減少脂質(zhì)沉積[18]。有研究證實,采用FXR激動劑處理/小鼠能夠誘導其腎臟的表達,并抑制及其下游等基因的表達,從而減少腎臟脂質(zhì)沉積[19];反之將敲除,糖尿病小鼠腎臟及其靶基因(、和等)表達會顯著上調(diào),并且腎臟脂質(zhì)沉積增加[20]。這些研究結(jié)果和本研究發(fā)現(xiàn)的CM小型豬腎臟和表達下調(diào),而和表達上調(diào)的結(jié)果部分相符,提示FXR介導的SREBP-1c脂質(zhì)合成途徑可能參與雄激素缺乏誘導的高脂飲食小型豬腎臟脂質(zhì)沉積過程。另有研究發(fā)現(xiàn),雌激素能通過其受體ESR1激活肝細胞SHP的表達并抑制SREBP-1c及其靶基因,進而減少肝臟脂質(zhì)沉積[21]。本研究發(fā)現(xiàn),CM小型豬腎臟基因表達顯著下調(diào),表明睪酮可能通過芳香化為雌激素參與調(diào)節(jié)腎臟脂質(zhì)沉積過程。雌激素還通過ESR1抑制肝臟和基因表達[22-23]。因此,有關(guān)性激素調(diào)控腎臟脂質(zhì)沉積的作用可能涉及FXR以及雌激素受體依賴和非依賴作用,今后需要在細胞水平上進一步開展深入研究。

      綜上所述,雄激素缺乏能夠促進短期高脂飲食誘導的小型豬腎臟脂質(zhì)沉積,并且在雄激素缺乏小型豬腎臟組織中,甘油三酯合成和脂蛋白代謝相關(guān)基因表達上調(diào),而膽汁酸代謝、脂肪酸氧化和雌激素合成相關(guān)基因表達下調(diào)。ESR1和NR1H4可能通過影響SREBF1脂質(zhì)合成途徑參與高脂誘導的雄激素缺乏小型豬腎臟脂質(zhì)沉積過程,這為老年男性慢性腎臟疾病防治提供了實驗依據(jù)。

      [1] Ix JH, Sharma K. Mechanisms linking obesity, chronic kidney disease, and fatty liver disease: the role of fetuin-A, adiponectin, and AMPK[J]. J Am Soc Nephrol, 2010, 21(3):406-412.

      [2] Romejko K, Rymarz A, Sadownik H, et al. Testosterone deficiency as one of the major endocrine disorders in chronic kidney disease[J]. Nutrients, 2022, 14(16):3438.

      [3] Zhao JV, Schooling CM. The role of testosterone in chronic kidney disease and kidney function in men and women: a bi-directional Mendelian randomization study in the UK Biobank[J]. BMC Med, 2020, 18(1):122.

      [4] Noels H, Lehrke M, Vanholder R, et al. Lipoproteins and fatty acids in chronic kidney disease: molecular and metabolic alterations[J]. Nat Rev Nephrol, 2021, 17(8):528-542.

      [5] Jiang T, Wang Z, Proctor G, et al. Diet-induced obesity in C57BL/6J mice causes increased renal lipid accumulation and glomerulosclerosis via sterol regulatory element-binding protein-1c-dependent pathway[J]. J Biol Chem, 2005, 280(37):32317-32325.

      [6] Jiang T, Liebman SE, Lucia MS, et al. Role of altered renal fatty lipid metabolism, and the sterol regulatory element-binding proteins in the pathogenesis of age-related renal disease[J]. Kidney Int, 2005, 68(6):2608-2620.

      [7] Wang H, Zhu L, Hao J, et al. Co-regulation of SREBP-1 and mTOR ameliorates lipid accumulation in kidney of diabetic mice[J]. Exp Cell Res, 2015, 336(1):76-84.

      [8]郝軍, 曹延萍, 朱琳, 等. 羅格列酮對高脂喂養(yǎng)大鼠腎小管上皮細胞SREBP-1、TGF-β表達和細胞外基質(zhì)沉積的影響[J]. 中國病理生理雜志, 2009, 25(12):2430-2435.

      Hao J, Cao YP, Zhu L, et al. Effect of rosiglitazone on SREBP-1 and TGF-β expression and accumulation of ECM in renal tubular cells of Wistar rats treated with high fat diet[J]. Chin J Pathophysiol, 2009, 25(12):2430-2435.

      [9]郝軍, 王晨, 吳海江, 等. SREBP-1和SREBP-2在Ⅰ型糖尿病大鼠腎臟中的表達[J]. 中國病理生理雜志, 2009, 25(3):566-571.

      Hao J, Wang C, Wu HJ, et al. Expression of SREBP-1 and SREBP-2 in kidney of type 1 diabetic rats[J]. Chin J Pathophysiol, 2009, 25(3):566-571.

      [10] Chung KW, Lee EK, Lee MK, et al. Impairment of PPARα and the fatty acid oxidation pathway aggravates renal fibrosis during aging[J]. J Am Soc Nephrol, 2018, 29(4):1223-1237.

      [11] Cai Z, Jiang X, Pan Y, et al. Transcriptomic analysis of hepatic responses to testosterone deficiency in miniature pigs fed a high-cholesterol diet[J]. BMC genomics, 2015, 16(1):59.

      [12] 蔡兆偉, 凌云, 蔡月琴, 等. 高脂環(huán)境下雄激素缺乏對小型豬內(nèi)臟脂肪蓄積和炎癥基因表達的影響[J]. 中國實驗動物學報, 2017, 25(1):74-78.

      Cai ZW, Ling Y, Cai YQ, et al. Effect of androgen deficiency on visceral fat accumulation and inflammatory gene expression in miniature pigs fed a high-fat diet[J]. Acta Lab Anim Sci Sin, 2017, 25(1):74-78.

      [13] Al-Rejaie SS, Abuohashish HM, Alkhamees OA, et al. Gender difference following high cholesterol diet induced renal injury and the protective role of rutin and ascorbic acid combination in Wistar albino rats[J]. Lipids Health Dis, 2012, 11:41.

      [14] Carneiro SS, Carminati RZ, Freitas FP, et al. Endogenous female sex hormones delay the development of renal dysfunction in apolipoprotein E-deficient mice[J]. Lipids Health Dis, 2014, 13:176

      [15] Liu Y, Wang ZB, Yin WD, et al. Preventive effect of Ibrolipim on suppressing lipid accumulation and increasing lipoprotein lipase in the kidneys of diet-induced diabetic minipigs[J]. Lipids Health Dis, 2011, 10:117.

      [16] Li L, Zhao Z, Xia J, et al. A long-term high-fat/high-sucrose diet promotes kidney lipid deposition and causes apoptosis and glomerular hypertrophy in Bama minipigs[J]. PLoS One, 2015, 10(11):e0142884

      [17] Braun F, Rinschen MM, Bartels V, et al. Altered lipid metabolism in the aging kidney identified by three layered omic analysis[J]. Aging, 2016, 8(3):441-57.

      [18] Calkin AC, Tontonoz P. Transcriptional integration of metabolism by the nucler sterol-activated receptors LXR and FXR[J]. Nat Rev Mol Cell Biol, 2012, 13(4):213-224.

      [19] Jiang T, Wang XX, Scherzer P, et al. Farnesoid X receptor modulates renal lipid metabolism, fibrosis, and diabetic nephropathy[J]. Diabetes, 2007, 56(10):2485-2493.

      [20] Wang XX, Jiang T, Shen Y, et al. Diabetic nephropathy is accelerated by farnesoid X receptor deficiency and inhibited by farnesoid X receptor reactivation in a type 1 diabetes model[J]. Diabetes, 2010, 59(11):2916-2927.

      [21] Wang X, Lu Y, Wang E, et al. Hepatic estrogen receptor α improves hepatosteatosis through upregulation of small heterodimer parter[J]. J Heptol, 2015, 63(1):183-190.

      [22] Bryzgalova G, Lundholm L, Portwood N, et al. Mechanisms of antidiabetogenic and body weight-lowering effects of estrogen in high-fat diet-fed mice[J]. Am J Physiol Endocrinol Metab, 2008, 295(4):E904-E912.

      [23] Kim S, Jin Y, Park Y. Estrogen and n-3 polyunsaturated fatty acid supplementation have a synergistic hypotriglyceridemic effect in ovariectomized rats[J]. Genes Nutr, 2015, 10(4):475.

      Analysis of key genes regulating renal lipid accumulation in testosterone-deficient miniature pigs fed with high-fat diet

      FAN Yingying1, REN Yujie1, LING Yun2, Lü Dongying2, CAI Zhaowei1,2△

      (1,,310053,;2,,,310053,)

      To investigate the effect of testosterone deficiency on renal lipid deposition and related gene expression in miniature pigs fed with high-fat diet.Male Wuzhishan miniature pigs were randomly divided into 3 groups: intact male pigs (IM), castrated male pigs (CM) and castrated male pigs with testosterone replacement (CMT). Six pigs in each group were fed with high-fat diet for 12 weeks. Serum renal function parameters and renal triglyceride (TG) and total cholesterol (TC) levels were detected. Oil red O and HE staining was performed to observe lipid deposition and histopathological changes in the kidney. RNA-Seq technology was used to investigate the differential expression of transcriptome in the kidney. RT-qPCR and Western blot were used to verify the differentially expressed genes involved in TG synthesis, bile acid metabolism and estrogen synthesis.The kidney weight was significantly lower in CM group than IM group and CMT group (<0.05). The content of blood urea nitrogen in CM group was increased compared with IM group and CMT group (<0.05). However, serum creatinine and total protein levels showed no significant difference. A large number of lipid droplets and significantly increased TG content in the kidney were observed in CM group compared with IM and CMT groups (<0.05). Compared with IM group and CMT group, the expression of TG synthesis genes including sterol regulatory element binding transcription factor 1 (), carbohydrate-responsive element-binding protein (/) and stearoyl-coenzyme A desaturase () was significantly increased in the kidneys of CM, while the expression of genes related to bile acid metabolism and estrogen synthesis including farnesoid X receptor (/) and estrogen receptor 1 () was significantly decreased. Testosterone replacement reversed the changes of lipid deposition and related gene expression in the kidneys of CM.Theandgenes may be involved in the process of lipid deposition in the kidneys of CM fed with high-fat diet through influencing the SREBF1 lipid synthesis pathway.

      kidney; lipid deposition; androgen deficiency; miniature pigs; high-fat diet

      R692; R363.2

      A

      10.3969/j.issn.1000-4718.2023.02.013

      1000-4718(2023)02-0305-09

      2022-10-11

      2022-12-24

      [基金項目]浙江省基礎(chǔ)公益研究計劃項目(No. LGD22C040008);浙江中醫(yī)藥大學自然科學青年探索項目(No. 2021JKZKTS008A)

      Tel: 0571-86613782; E-mail: zwcai@zcmu.edu.cn

      (責任編輯:宋延君,李淑媛)

      猜你喜歡
      去勢高脂雄激素
      富血小板血漿盒聯(lián)合頭皮微針引入生發(fā)液治療雄激素性脫發(fā)
      高瞻治療前列腺癌雄激素剝奪治療后代謝并發(fā)癥的臨床經(jīng)驗
      高脂血標本對臨床檢驗項目的干擾及消除對策
      運動降低MG53表達及其在緩解高脂膳食大鼠IR中的作用
      雄激素源性禿發(fā)家系調(diào)查
      高脂飲食誘導大鼠生精功能障礙
      兩個雄激素不敏感綜合征家系中AR基因突變檢測
      去勢與不去勢對公犢牛生產(chǎn)性能的影響
      味精與高脂日糧對生長豬胴體性狀與組成的影響
      大畜去勢經(jīng)驗談
      宣汉县| 繁昌县| 鲁山县| 昌乐县| 安乡县| 峡江县| 诸暨市| 化德县| 华容县| 高平市| 尖扎县| 江源县| 永兴县| 扶沟县| 连江县| 潍坊市| 荔波县| 闽清县| 灵石县| 黑龙江省| 淅川县| 南城县| 调兵山市| 托克逊县| 伽师县| 蒙自县| 舟曲县| 临桂县| 德兴市| 广南县| 五常市| 开封县| 大洼县| 泾川县| 遵义县| 常德市| 新疆| 龙南县| 墨玉县| 招远市| 拜城县|