謝菁, 周艷麗, 陳思思, 王繼春, 江洪
視黃醇結(jié)合蛋白1通過激活TAK1促進(jìn)大鼠乳鼠原代心肌細(xì)胞肥大*
謝菁, 周艷麗, 陳思思, 王繼春, 江洪△
(武漢大學(xué)人民醫(yī)院心血管內(nèi)科,武漢大學(xué)心血管病研究所,心血管病湖北省重點(diǎn)實(shí)驗(yàn)室,湖北 武漢 430000)
探究視黃醇結(jié)合蛋白1(retinol binding protein 1, Rbp1)在大鼠乳鼠原代心肌細(xì)胞肥大中的功能和機(jī)制。本研究通過聯(lián)合分析基因表達(dá)數(shù)據(jù)庫(Gene Expression Omnibus, GEO)中的小鼠心肌肥厚基因芯片數(shù)據(jù),尋找在心肌肥厚發(fā)生過程中的關(guān)鍵調(diào)控因子,構(gòu)建該基因過表達(dá)及敲減腺病毒并感染大鼠乳鼠原代心肌細(xì)胞,利用血管緊張素II(angiotensin II, Ang II)誘導(dǎo)大鼠乳鼠原代心肌細(xì)胞肥大模型,研究目的基因?qū)Υ笫笕槭笤募〖?xì)胞肥大的影響,應(yīng)用Western blot及RT-qPCR探究目的基因調(diào)控大鼠乳鼠原代心肌細(xì)胞肥大的分子機(jī)制。在小鼠心肌肥厚心臟組織中的表達(dá)顯著上調(diào)(<0.01),體外細(xì)胞實(shí)驗(yàn)顯示與對照組相比,過表達(dá)組的大鼠乳鼠原代心肌細(xì)胞面積顯著增大,心肌肥厚標(biāo)志基因心鈉肽(atrial natriuretic peptide,)和肌球蛋白重鏈7(myosin heavy chain 7,)的表達(dá)顯著升高(<0.01),證實(shí)過表達(dá)能促進(jìn)Ang II誘導(dǎo)的大鼠乳鼠原代心肌細(xì)胞肥大;相反,敲減則能顯著抑制Ang II誘導(dǎo)的大鼠乳鼠原代心肌細(xì)胞面積增加和心肌肥厚標(biāo)志物表達(dá)。機(jī)制研究顯示,過表達(dá)顯著激活轉(zhuǎn)化生長因子β激活激酶1(transforming growth factor-β-activated kinase 1, TAK1)和P38(<0.01),應(yīng)用TAK1抑制劑可阻斷過表達(dá)對Ang II誘導(dǎo)大鼠乳鼠原代心肌細(xì)胞肥大的促進(jìn)作用。Rbp1可通過激活TAK1信號通路促進(jìn)Ang II誘導(dǎo)的大鼠乳鼠原代心肌細(xì)胞肥大。
視黃醇結(jié)合蛋白1;大鼠乳鼠原代心肌細(xì)胞;心肌肥大;TAK1/P38信號通路
心力衰竭是心室充盈和(或)射血功能受損,心臟排血量不能滿足機(jī)體組織代謝需要的臨床綜合征,是臨床上心肌肥厚等多種心血管疾病的最終結(jié)局[1]。心肌肥厚是心力衰竭發(fā)生發(fā)展的一個基本病理過程。眾多基礎(chǔ)研究提示,心肌肥厚是一個復(fù)雜的、眾多基因和信號通路參與的病理過程[2],且目前臨床上缺乏有效藥物。因此,闡明心肌肥厚發(fā)生發(fā)展的分子機(jī)制,尋找調(diào)節(jié)心肌肥厚的關(guān)鍵靶點(diǎn)具有重要意義。
視黃醇結(jié)合蛋白(retinol binding protein, Rbp)是人體內(nèi)視黃醇轉(zhuǎn)運(yùn)蛋白,主要幫助肝臟中視黃醇的轉(zhuǎn)移,并協(xié)助視黃醇進(jìn)行代謝、存儲、發(fā)揮作用,半衰期較短,能敏感的反映機(jī)體的疾病狀態(tài)[3]。既往研究提示Rbp1可驅(qū)動維生素A為活性代謝產(chǎn)物全反視黃酸(all--retinoic acid, ATRA),ATRA可調(diào)節(jié)細(xì)胞的增殖、凋亡、分化及遷移[4-5]。此外,Rbp1還參與生物體內(nèi)多個生理過程如肥胖及血脂代謝異常等[6],但Rbp1在心肌肥厚中的作用還未見報道。本項(xiàng)工作通過腺病毒感染大鼠乳鼠原代心肌細(xì)胞和PE誘導(dǎo)的大鼠乳鼠原代心肌細(xì)胞肥大模型,探討Rbp1對大鼠乳鼠原代心肌細(xì)胞肥大的影響。
BCA蛋白試劑盒(Thermo Scientific); PVDF膜(Millipore);抗Rbp1抗體(ABclonal);抗TAK1單克隆抗體(Abcam);p-P38單克隆抗體、P38多克隆抗體、p-TAK1單克隆抗體及GAPDH單克隆抗體(Cell Signaling Technology);化學(xué)發(fā)光底物試劑(Bio-Rad);Trizol總RNA提取試劑(Invitrogen); cDNA轉(zhuǎn)錄合成試劑盒和SYBR Green PCR Master Mix(Roche);DMEM/F12培養(yǎng)液(Gibco);胎牛血清(Gibco);抗輔肌動蛋白α(α-actinin)抗體(Merck Millipore);TAK1抑制劑NG52(MedChemExpress);其它生化試劑均為進(jìn)口分裝或國產(chǎn)分析純;所用引物均由生工生物工程(上海)股份有限公司合成。
2.1生物信息學(xué)分析借助R包GEOquery (Davis and Meltzer, 2007)從美國國家生物技術(shù)信息中心(National Center of Biotechnology Information, NCBI)的GEO數(shù)據(jù)庫下載對應(yīng)數(shù)據(jù)集的原始數(shù)據(jù)及芯片探針對應(yīng)的基因名稱注釋文件,隨后使用R包寡核苷酸(Carvalho and Irizarry, 2010)中的函數(shù)(read.celfiles)讀取芯片原始數(shù)據(jù),并使用RMA(Robust Multiarray Average)算法對原始數(shù)據(jù)進(jìn)行背景校正,使用分位數(shù)方法進(jìn)行樣本間的標(biāo)準(zhǔn)化,運(yùn)用統(tǒng)計學(xué)方法將前面得到的熒光強(qiáng)度值從探針?biāo)絽R總到探針組水平,再將匯總后的數(shù)據(jù)轉(zhuǎn)換為以2為底的對數(shù),經(jīng)過RMA函數(shù)運(yùn)算得到標(biāo)準(zhǔn)化后的探針表達(dá)量矩陣,根據(jù)得到的注釋文件,對探針組名稱進(jìn)行基因名稱注釋,最終得到基因的表達(dá)量矩陣。計算不同組別之間基因的表達(dá)差異,根據(jù)基因表達(dá)量差異,去除重復(fù)的基因,保留重復(fù)基因中差異最大的一個。使用檢驗(yàn)對不同組進(jìn)行統(tǒng)計學(xué)檢驗(yàn),依據(jù)倍數(shù)多少和值確定差異基因。
2.2大鼠乳鼠原代心肌細(xì)胞的分離和培養(yǎng)選1~2日齡SD大鼠乳鼠[湖北省實(shí)驗(yàn)動物研究中心,許可證號:SCXK(鄂)2020-0018],大鼠乳鼠原代心肌細(xì)胞分離培養(yǎng)方法參照如前所述[8],具體方法簡述如下:取SD大鼠乳鼠心臟剝離血管成分,剪成1 mm×1 mm×1 mm的組織塊,加入0.125%胰蛋白酶進(jìn)行消化,加入DMEM/F12培養(yǎng)液[含有10%胎牛血清、1%青霉素/鏈霉素和0.1 mmol/L 5-溴脫氧尿苷(抑制成纖維細(xì)胞生長)]培養(yǎng)24 h差時貼壁,分離大鼠乳鼠原代心肌細(xì)胞后,使用腺病毒感染大鼠乳鼠原代心肌細(xì)胞,6 h后更換為無血清培養(yǎng)液進(jìn)行饑餓處理12 h,然后加入1 μmol/L Ang II刺激48 h,對照加入等量的磷酸緩沖鹽溶液(phosphate-buffered saline, PBS),整個細(xì)胞培養(yǎng)在37.0 ℃、5% CO2條件下進(jìn)行。
2.3大鼠乳鼠原代心肌細(xì)胞α-actinin免疫熒光染色大鼠乳鼠原代心肌細(xì)胞免疫熒光染色方法參照如前所述[7],具體方法簡述如下:大鼠乳鼠原代心肌細(xì)胞經(jīng)Ang II刺激培養(yǎng)48 h后,加入4%甲醛固定30 min,再加入0.1% Triton X-100透化后加入10%牛血清白蛋白室溫下封閉,加入α-actinin抗體(1∶100稀釋)孵育,隨后加入Ⅱ抗[驢抗鼠IgG (H+L), Invitrogen, 1∶200稀釋)及DAPI(染核),使用Image-Pro Plus 6.0軟件測量大鼠乳鼠原代心肌細(xì)胞的表面積。
2.4RT-qPCR檢測RT-qPCR的方法參照文獻(xiàn)[7],具體簡述如下:取小鼠心臟左心室組織(來自武漢大學(xué)李紅良教授饋贈)或大鼠乳鼠原代心肌細(xì)胞樣本加入Trizol試劑提取總RNA,使用cDNA轉(zhuǎn)錄合成試劑盒將RNA反轉(zhuǎn)成cDNA,隨后在一定體系下加入SYBR Green PCR Master Mix在RT-qPCR儀中檢測待測基因的表達(dá)量,同時以甘油醛-3-磷酸脫氫酶(glyceraldehyde-3-phosphate dehydrogenase,)為內(nèi)參基因,所使用的引物序列見表1。
表1 RT-qPCR引物序列
2.5Western blot實(shí)驗(yàn)Western blot的方法參照如前所述[8],具體簡述如下:收集處理過的大鼠乳鼠原代心肌細(xì)胞樣本并加入RIPA裂解液進(jìn)行裂解,充分裂解后離心,取上清為總蛋白,使用BCA蛋白試劑盒進(jìn)行定量,上樣相同質(zhì)量總蛋白于10% SDS-PAGE分離蛋白并轉(zhuǎn)移至PVDF膜,隨后放入5%脫脂奶粉室溫下封閉1 h,TBST清洗PVDF膜3次,每次5 min,加入Ⅰ抗4 ℃孵育過夜。TBST清洗,加入對應(yīng)種屬的Ⅱ抗(Jackson ImmunoResearch)室溫孵育1 h。用化學(xué)發(fā)光底物顯色,伯樂凝膠成像系統(tǒng)(ChemiDoc XRS+)收集信號。使用Image Lab(Version5.1)軟件分析結(jié)果。
2.6載體構(gòu)建載體構(gòu)建的方法參照如前所述[7],具體簡述如下:將基因亞克隆到巨細(xì)胞病毒啟動子控制下的復(fù)制缺陷型腺病毒(adenovirus,Ad)載體中并用于過表達(dá),以表達(dá)綠色熒光蛋白(green fluorescent protein,GFP)為對照。攜帶靶向的短發(fā)夾RNA(short-hairpin RNA,shRNA)的復(fù)制缺陷型腺病毒載體用于敲減(sh)表達(dá),同時以對照shRNA腺病毒作為對照(shCT)。腺病毒以50個顆粒/細(xì)胞的感染復(fù)數(shù)(multiplicity of infection, MOI)感染大鼠乳鼠原代心肌細(xì)胞24 h,隨后進(jìn)行檢測鑒定。過表達(dá)及敲減引物為:
Ad-Rat-F:GGCTAGCGATATCGGATCCGCCA-CCATGCCTGTGGACTTCAACGG;Ad-Rat-R: CGT-CCTTGTAATCACTAGTGTGTACTTTCTTAAACACTTG-CTTGCAG;Adsh-Rat-F: CCGGGGTACTGGAAGATGCTGAGCACTCGAGTGCTCAGCATCTTCCAGTACCTTTTTG;Adsh-Rat-R:AATTCAAAAAGGTACTGGAAGATGCTGAGCACTCGAGTGCTCAGCA-TCTTCCAGTACC。
2.7TAK1的抑制劑(inhibitor of TAK1, iTAK1)處理大鼠乳鼠原代心肌細(xì)胞對應(yīng)的腺病毒分別感染大鼠乳鼠原代心肌細(xì)胞后,加入2.5×10-6mol/L二甲基亞砜(DMSO)溶解的iTAK1-NG52,對照組加入等量DMSO,與此同時再加入1×10-6mol/L Ang II刺激48 h后收集大鼠乳鼠原代心肌細(xì)胞樣本進(jìn)行檢測。
本課題所有數(shù)據(jù)統(tǒng)計均采用均數(shù)±標(biāo)準(zhǔn)差(mean±SD)的形式,兩組間數(shù)據(jù)比較使用雙尾檢驗(yàn),多組間數(shù)據(jù)比較使用單因素方差分析,并使用檢驗(yàn)(假定方差齊)或(假定方差不齊)校正。SPSS(Statistical Package for the Social Sciences)25.0 軟件分析數(shù)據(jù),<0.05為有統(tǒng)計學(xué)差異。
本研究通過生物信息學(xué)分析5個小鼠主動脈縮窄手術(shù)誘導(dǎo)的小鼠心肌肥厚模型基因芯片數(shù)據(jù)庫,樣本情況詳見表2,根據(jù)<0.05與Fold change>1.5篩選上調(diào)差異基因,<0.05與Fold change<0.667篩選下調(diào)差異基因,分別獲得102、218、293、410和98個差異表達(dá)基因,見圖1A;聯(lián)合分析后,獲得11個在4個及以上芯片數(shù)據(jù)庫結(jié)果中均顯著改變的差異基因,見圖1B;其中和在心肌肥厚中的功能未知,見圖1C;隨后,應(yīng)用RT-qPCR檢測對照假手術(shù)(sham)和主動脈結(jié)扎(aortic banding, AB)手術(shù)4周的小鼠心臟組織中上述差異基因的表達(dá),結(jié)果顯示與sham組比較,在AB組中的表達(dá)改變最為顯著(<0.01),見圖1D。
表2 小鼠心肌肥厚相關(guān)GEO數(shù)據(jù)庫
Figure 1. Combined analysis of mouse cardiac hypertrophy microarray data to search for the key regulatory genes in the process of cardiac hypertrophy. A: the number of differentially expressed genes in each cardiac hypertrophy microarray data from GEO database; B: Venn diagram of 5 cardiac hypertrophy microarray data from GEO database; C: heat map of genes significantly changed in more than 4 cardiac hypertrophy microarray data; D: relative mRNA expression of target genes in heart of cardiac hypertrophy mice after sham or aortic banding (AB) surgery for 4 weeks. Mean±SD. n=5. **P<0.01 vs sham group.
Western blot檢測結(jié)果顯示,與對照組相比,敲減組Rbp1蛋白水平顯著下調(diào),證實(shí)敲減成功,見圖2A;α-actinin免疫熒光染色及RT-qPCR檢測結(jié)果顯示,敲減能顯著抑制大鼠乳鼠原代心肌細(xì)胞表面積增大(<0.01),并顯著下調(diào)肥大標(biāo)志基因和的表達(dá)(<0.01),見圖2B、2C。
Figure 2. Knockdown of Rbp1 inhibited Ang II-induced primary neonatal rat cardiomyocyte hypertrophy. A: the protein level of Rbp1 in primary neonatal rat cardiomyocytes with knockdown of Rbp1(AdshRbp1) and control primary neonatal rat cardiomyocytes (AdshCT) groups; B: representative immunofluorescence images of anti-α-actinin staining and its statistical results in the indicated groups (scale bar=20 μm); C: relative mRNA levels of Anp and Myh7 in the indicated groups. Mean±SD. n=3. **P<0.01 vs AdshCT PBS group; ##P<0.01 vs AdshCT Ang II group.
Western blot檢測結(jié)果顯示,與對照組相比,過表達(dá)組Rbp1蛋白表達(dá)水平顯著上調(diào),證實(shí)Rbp1過表達(dá)成功,見圖3A;α-actinin免疫熒光染色及RT-qPCR檢測結(jié)果表明,過表達(dá)顯著促進(jìn)了大鼠乳鼠原代心肌細(xì)胞表面積大小及肥大標(biāo)志基因和的表達(dá)(<0.01),見圖3B、C。
Figure 3. Overexpression of Rbp1 promoted Ang II-induced primary neonatal rat cardiomyocyte hypertrophy. A: the protein level of Rbp1 in primary neonatal rat cardiomyocytes overexpressing Rbp1 (AdRbp1) and control primary neonatal rat cardiomyocytes (AdGFP) groups; B: representative immunofluorescence images of anti-α-actinin staining and its statistical results in the indicated groups (scale bar=20 μm); C: relative mRNA levels of Anp and Myh7 in the indicated groups. Mean±SD. n=3. **P<0.01 vs AdGFP PBS group; ##P<0.01 vs AdGFP Ang II group.
Western blot結(jié)果顯示,與對照組相比,敲減顯著抑制了AngII誘導(dǎo)引起的TAK1和P38的活性升高(<0.01),而過表達(dá)則顯著促進(jìn)了TAK1和P38活性(<0.01),見圖4。
Figure 4. Rbp1 activated TAK1/P38 signaling pathway in primary neonatal rat cardiomyocytes. The protein levels of p-TAK1, TAK1, p-P38 and P38 were detected after Rbp1 knockdown (A) or overexpression (B). Mean±SD. n=3. ##P<0.01 vs AdshCT Ang II group; **P<0.01 vs AdGFP Ang II group.
Western blot檢測、α-actinin免疫熒光染色和RT-qPCR檢測結(jié)果顯示,與對照組相比,NG52顯著抑制TAK1和下游P38活性,見圖5A;并且NG52顯著抑制了過表達(dá)誘導(dǎo)的大鼠乳鼠原代心肌細(xì)胞表面積增加(<0.01),同時還顯著下調(diào)肥大標(biāo)志基因和的表達(dá)(<0.01),見圖5B、C。
Figure 5. Inhibition of TAK1 activity blocked the promotional effect of Rbp1 overexpression on Ang II-induced primary neonatal rat cardiomyocytes hypertrophy. A: the protein levels of Rbp1, p-TAK1, TAK1, p-P38 and P38 in Ang II-stimulated AdRbp1 and AdGFP with TAK1 inhibitor (iTAK1) or DMSO as control (CT) in primary neonatal rat cardiomyocytes; B: representative immunofluorescence images of anti-α-actinin staining and its statistical results in the indicated groups (scale bar=20 μm); C: relative mRNA levels of Anp and Myh7 in the indicated groups. Mean±SD. n=3. **P<0.01 vs AdGFP CT Ang II group; ##P<0.01 vs AdRbp1 CT Ang II group.
據(jù)報道,細(xì)胞內(nèi)的多種信號通路如MAPK、磷脂酰肌醇3-激酶/蛋白激酶B(phosphatidylinositol 3-kinase/protein kinase B, PI3K/AKT)、鈣調(diào)磷酸酶(calcineurin)/活化T細(xì)胞核因子(nuclear factor of activated T-cells, NFAT)等參與心肌肥厚的調(diào)控[10-12]。這些信號通路在刺激信號的傳導(dǎo)下,調(diào)控細(xì)胞核中的基因轉(zhuǎn)錄、線粒體功能、內(nèi)質(zhì)網(wǎng)應(yīng)激和炎癥應(yīng)答等大量分子事件,進(jìn)而調(diào)控心肌細(xì)胞中大量蛋白質(zhì)合成和成纖維細(xì)胞表型轉(zhuǎn)換[13-14]。Rbp是人體內(nèi)視黃醇轉(zhuǎn)運(yùn)蛋白家族,包含6個家族成員,以往研究表明Rbp4通過激活Toll樣受體4(toll-like receptor 4, TLR4)/髓樣分化因子88(myeloid differentiation factor 88, MyD88)炎癥通路可以促進(jìn)胰島素抵抗和心肌細(xì)胞肥大,血清中Rbp4的增加與高血壓、動脈粥樣硬化等心血管疾病有密切聯(lián)系[15],提示Rbp家族可能參與心肌肥厚的發(fā)生發(fā)展。研究報道Rbp1影響細(xì)胞分化和腫瘤進(jìn)展[16],但是Rbp1在心肌肥厚中的功能并不清楚。本研究通過生物信息學(xué)方法聯(lián)合分析小鼠心肌肥厚數(shù)據(jù)庫,觀察在數(shù)據(jù)庫中的表達(dá)顯著升高,并在心肌肥厚小鼠心臟組織中得到驗(yàn)證。應(yīng)用Ang II刺激大鼠乳鼠原代心肌細(xì)胞構(gòu)建體外大鼠乳鼠原代心肌細(xì)胞肥大模型[17-18],并通過腺病毒在大鼠乳鼠原代心肌細(xì)胞中敲減或過表達(dá)后證實(shí)Rbp1能促進(jìn)Ang II誘導(dǎo)的大鼠乳鼠原代心肌細(xì)胞肥大。
MAPK信號通路參與病理性心肌肥厚的發(fā)生發(fā)展,MAPK信號由MAP3K-MAP2K-MAPK級聯(lián)組成,TAK1是MAP3K家族的成員,廣泛參與細(xì)胞生命活動[19-20]。在刺激后,TAK1磷酸化并激活MAPKKs(MKK3/6、MKK4/7)和下游底物,包括P38、c-Jun氨基末端激酶(c-Jun N-terminal kinase, JNK)[21],而P38激活可以刺激下游肥大基因的表達(dá),促進(jìn)心肌細(xì)胞肥大[22-23]。為了探討Rbp1是否通過影響MAPK通路進(jìn)而調(diào)控大鼠乳鼠原代心肌細(xì)胞肥大,本研究檢測TAK1和下游P38蛋白。結(jié)果顯示,過表達(dá)顯著激活TAK1以及下游P38。同時為了進(jìn)一步驗(yàn)證Rbp1對大鼠乳鼠原代心肌細(xì)胞肥大的影響是否依賴于TAK1的激活,本研究使用TAK1的抑制劑NG52處理大鼠乳鼠原代心肌細(xì)胞,結(jié)果表明NG52可以逆轉(zhuǎn)Ang II刺激下Rbp1對大鼠乳鼠原代心肌細(xì)胞肥大的影響,與此前TAK1及P38的相關(guān)報道一致[24-25]。本研究也存在不足,未在動物體內(nèi)研究Rbp1對心肌肥厚的調(diào)控作用,同時也未探究Rbp1調(diào)控TAK1活性的具體機(jī)制,這些科學(xué)問題有待在以后的研究中深入探討。
綜上所述,本項(xiàng)工作揭示了Rbp1在Ang II誘導(dǎo)的大鼠乳鼠原代心肌細(xì)胞肥大模型中,通過激活MAPK信號通路中的TAK1和下游P38分子促進(jìn)大鼠乳鼠原代心肌細(xì)胞肥大。
[1] McMurray JJ, Pfeffer MA. Heart failure[J]. Lancet, 2005, 365(9474):1877-1889.
[2] Nakamura M, Sadoshima J. Mechanisms of physiological and pathological cardiac hypertrophy[J]. Nat Rev Cardiol, 2018, 15(7):387-407.
[3] Kawaguchi R, Yu J, Honda J, et al. A membrane receptor for retinol binding protein mediates cellular uptake of vitamin A[J]. Science, 2007, 315(5813):820-825.
[4] Obrochta KM, Krois CR, Campos B, et al. Insulin regulates retinol dehydrogenase expression and all--retinoic acid biosynthesis through FoxO1[J]. J Biol Chem, 2015, 290(11):7259-7268.
[5] Ferlosio A, Doldo E, Agostinelli S, et al. Cellular retinol binding protein 1 transfection reduces proliferation and AKT-related gene expression in H460 non-small lung cancer cells[J]. Mol Biol Rep, 2020, 47(9):6879-6886.
[6] Choi H, Lee H, Kim TH, et al. G0/G1 switch gene 2 has a critical role in adipocyte differentiation[J]. Cell Death Differ, 2014, 21(7):1071-1080.
[7] Xie J, Zhou X, Hu X, et al. H2O2evokes injury of cardiomyocytes through upregulating HMGB1[J]. Hellenic J Cardiol, 2014, 55(2):101-106.
[8] Wang J, Lu L, Chen S, et al. PERK overexpression-mediated Nrf2/HO-1 pathway alleviates hypoxia/reoxyge-nation-induced injury in neonatal murine cardiomyocytes via improving endoplasmic reticulum stress[J]. Biomed Res Int, 2020, 2020:6458060.
[9] Diedrichs H, Chi M, Boelck B, et al. Increased regulatory activity of the calcineurin/NFAT pathway in human heart failure[J]. Eur J Heart Fail, 2004, 6(1):3-9.
[10] Chen C, Zou LX, Lin QY, et al. Resveratrol as a new inhibitor of immunoproteasome prevents PTEN degradation and attenuates cardiac hypertrophy after pressure overload[J]. Redox Biol, 2019, 20:390-401.
[11] Javadov S, Jang S, Agostini B. Crosstalk between mitogen-activated protein kinases and mitochondria in cardiac diseases: therapeutic perspectives[J]. Pharmacol Ther, 2014, 144(2):202-225.
[12] Heineke J, Molkentin JD. Regulation of cardiac hypertrophy by intracellular signalling pathways[J]. Nat Rev Mol Cell Biol, 2006, 7(8):589-600.
[13] Gibb AA, Hill BG. Metabolic coordination of physiological and pathological cardiac remodeling[J]. Circ Res, 2018, 123(1):107-128.
[14] Bisserier M, Berthouze-Duquesnes M, Breckler M, et al. Carabin protects against cardiac hypertrophy by blocking calcineurin, Ras, and Ca2+/calmodulin-dependent protein kinase II signaling[J]. Circulation, 2015, 131(4):390-400.
[15] Gao W, Wang H, Zhang L, et al. Retinol-binding protein 4 induces cardiomyocyte hypertrophy by activating TLR4/MyD88 pathway[J]. Endocrinology, 2016, 157(6):2282-2293.
[16] Melis M, Tang XH, Trasino SE, et al. Effects of AM80 compared to AC261066 in a high fat diet mouse model of liver disease[J]. PLoS One, 2019, 14(1):e0211071.
[17] Zhou X, Sun F, Luo S, et al. Let-7a is an antihypertrophic regulator in the heart via targeting calmodulin[J]. Int J Biol Sci, 2017, 13(1):22-31.
[18] Zhang Y, Bloem LJ, Yu L, et al. Protein kinase C beta II activation induces angiotensin converting enzyme expre-ssion in neonatal rat cardiomyocytes[J]. Cardiovasc Res, 2003, 57(1):139-146.
[19] Jadrich JL, O'Connor MB, Coucouvanis E. The TGFβ activated kinase TAK1 regulates vascular development[J]. Development, 2006, 133(8):1529-1541.
[20] Li L, Chen Y, Doan J, et al. Transforming growth factor β-activated kinase 1 signaling pathway critically regulates myocardial survival and remodeling[J]. Circulation, 2014, 130(24):2162-2172.
[21] Sato S, Sanjo H, Takeda K, et al. Essential function for the kinase TAK1 in innate and adaptive immune responses[J]. Nat Immunol, 2005, 6(11):1087-1095.
[22] Wang S, Luo M, Zhang Z, et al. Zinc deficiency exacerbates while zinc supplement attenuates cardiac hypertrophy in high-fat diet-induced obese mice through modulating P38 MAPK-dependent signaling[J]. Toxicol Lett, 2016, 258:134-146.
[23] 彭波輝, 彭昌, 黃麗欣, 等. P38 MAPK信號通路在漆樹酸改善苯腎上腺素誘導(dǎo)的小鼠心肌細(xì)胞肥大中的作用[J]. 中國病理生理雜志, 2020, 36(2):200-205.
Peng B, Peng C, Huang L, et al. Effects of P38 MAPK signaling pathway on anacardic acid attenuating mouse cardiomyocyte hypertrophy induced by phenylephrine[J]. Chin J Pathophysiol, 2020, 36(2):200-205.
[24] Li J, Yan C, Wang Y, et al. GCN5-mediated regulation of pathological cardiac hypertrophy via activation of the TAK1-JNK/P38 signaling pathway[J]. Cell Death Dis, 2022, 13(4):421.
[25] Zhao J, Jiang X, Liu J, et al. Dual-specificity phosphatase 26 protects against cardiac hypertrophy through TAK1[J]. J Am Heart Assoc, 2021, 10(4):e014311.
Retinol binding protein 1 promotes hypertrophy of primary neonatal rat cardiomyocytes via activating TAK1
XIE Jing, ZHOU Yanli, CHEN Sisi, WANG Jichun, JIANG Hong△
(,,,,,430000,)
To investigate of the function and mechanism of retinol binding protein 1 (Rbp1) in the hypertrophy of primary neonatal rat cardiomyocytes.The microarray data from Gene Expression Omnibus (GEO) database was analyzed to identify the key regulatory factors in the process of cardiac hypertrophy. In order to explore the function of the key gene in the hypertrophy induced by angiotensin II (Ang II), overexpression and knockdown adenoviruses were constructed to infect primary neonatal rat cardiomyocytes. Western blot and RT-qPCR were used to explore the mechanism of the key gene regulating hypertrophy of primary neonatal rat cardiomyocytes.The expression ofwas significantly up-regulated (<0.01) in the heart of mouse cardiac hypertrophy models. Moreover,experimentsshowed that compared with control group, the area of primary neonatal rat cardiomyocytes and the expression of cardiac hypertrophy marker gene atrial natriuretic peptide () and myosin heavy chain 7 () was significantly increased in Rbp1 overexpression group, indicating that overexpression of Rbp1 promotes Ang II-induced primary neonatal rat cardiomyocytes hypertrophy. On the contrary, knockdown ofdramatically inhibited the increase in primary neonatal rat cardiomyocyte area and the expression of cardiac hypertrophy markers induced by Ang II. Overexpression ofactivated transforming growth factor-β-activated kinase 1 (TAK1) and its downstream target P38 (<0.01). Treatment with TAK1 inhibitor blocked the effect ofoverexpression on Ang II-induced primary neonatal rat cardiomyocyte hypertrophy.The Rbp1 promotes Ang II-induced primary neonatal rat cardiomyocyte hypertrophy by activating the TAK1/P38 signaling pathway.
retinol binding protein 1; primary neonatal rat cardiomyocytes; cardiomyocyte hypertrophy; TAK1/P38 signaling pathway
R541.6; R363.2
A
10.3969/j.issn.1000-4718.2023.02.005
1000-4718(2023)02-0233-08
2022-09-02
2022-12-19
[基金項(xiàng)目]中央高校基本科研業(yè)務(wù)費(fèi)專項(xiàng)資金青年教師資助項(xiàng)目(No. 2042019kf0093)
Tel: 027-88041911; E-mail: hongj0505@126.com
(責(zé)任編輯:宋延君,李淑媛)