楊星, 陳鏗銓, 汪璐蕓, 蔣建剛
·論著·
1-磷酸鞘氨醇通過提高心臟微血管密度緩解壓力負(fù)荷誘導(dǎo)的小鼠心力衰竭*
楊星, 陳鏗銓, 汪璐蕓, 蔣建剛△
(華中科技大學(xué)同濟醫(yī)學(xué)院附屬同濟醫(yī)院心血管內(nèi)科,心血管病遺傳與分子機制湖北省重點實驗室,湖北 武漢 430030)
探究1-磷酸鞘氨醇(sphingosine-1-phosphate, S1P)通過調(diào)節(jié)心臟微血管密度對壓力負(fù)荷誘導(dǎo)的小鼠心力衰竭的作用及相關(guān)機制。將8周齡的雄性C57BL/6小鼠隨機分為4組:假手術(shù)(sham)組、sham+2-乙?;?5-四羥基丁基咪唑(2-acetyl-5-tetrahydroxybutyl imidazole, THI; S1P裂解酶抑制劑)組、主動脈弓縮窄術(shù)(transverse aortic constriction, TAC)組和TAC+THI組。TAC手術(shù)后1周給予THI灌胃處理,實驗終點檢測各組小鼠血漿和心臟勻漿組織中S1P水平;心臟超聲和Millar導(dǎo)管檢測心功能;HE染色檢測各組小鼠心臟肥大程度,Masson染色觀察各組小鼠心臟間質(zhì)和管周纖維化程度,CD31和麥胚凝集素免疫熒光染色觀察各組小鼠心肌細(xì)胞橫截面積和心臟微血管密度;RT-qPCR檢測心房鈉尿肽(atrial natriuretic peptide, ANP)、腦鈉肽(brain natriuretic peptide, BNP)、I型膠原蛋白(collagen type I)、III型膠原蛋白(collagen type III)、CD31、血管性血友病因子(von Willebrand factor, vWF)和血管生成素1(angiopoietin 1, Ang1)的mRNA表達(dá)水平;Western blot檢測各組小鼠心臟組織中血管內(nèi)皮生長因子(vascular endothelial growth factor, VEGF)、VEGF受體(VEGF receptor, VEGFR)、磷酸化VEGFR、蛋白激酶B(protein kinase B, PKB/Akt)和磷酸化Akt的蛋白水平。TAC小鼠體內(nèi)S1P水平明顯降低,給予THI可顯著升高小鼠血漿和心臟勻漿組織中S1P水平。S1P能顯著改善心衰小鼠心功能,減輕心肌肥大和纖維化表型,抑制ANP、BNP、collagen type I和collagen type III的表達(dá),上調(diào)血管內(nèi)皮標(biāo)志物CD31、Ang1和vWF的表達(dá),激活VEGF-VEGFR-Akt信號通路,促進心臟微血管生成。S1P通過VEGF-VEGFR-Akt信號通路提高心衰小鼠心臟微血管密度,從而緩解壓力負(fù)荷誘導(dǎo)的心力衰竭。
1-磷酸鞘氨醇;心力衰竭;心臟肥大;心臟微血管密度
心力衰竭是各種心血管疾病的終末期表現(xiàn),由于其發(fā)病率、住院率以及死亡率居高不下,給全世界的臨床和公共衛(wèi)生系統(tǒng)帶來了嚴(yán)重的經(jīng)濟負(fù)擔(dān)[1],現(xiàn)有的治療方法和療效有限,新的治療方案亟待開發(fā)。隨著社會人口的老齡化,高血壓、心臟瓣膜退行性變等壓力超負(fù)荷是引起心肌肥大、心力衰竭的主要原因之一[2]。病理性心肌肥大的程度與心臟微血管密度密切相關(guān)[3]。在壓力負(fù)荷增加的早期,主要表現(xiàn)為向心性心肌肥大,心臟微血管生成正常或增加,維持著肥大心肌的營養(yǎng)和氧耗,射血分?jǐn)?shù)保留;隨著壓力負(fù)荷時間延長,心肌細(xì)胞凋亡、壞死,室壁厚度逐漸變薄,心臟微血管密度下降,進一步導(dǎo)致心肌組織持續(xù)缺氧,心肌細(xì)胞壞死、心臟纖維化、室壁僵硬、心功能下降,最終進展為射血分?jǐn)?shù)下降的心力衰竭[3-5]。Sano等[6]在慢性壓力負(fù)荷誘導(dǎo)的心力衰竭小鼠模型中發(fā)現(xiàn),心力衰竭小鼠心臟中p53蛋白累積,并通過減少缺氧誘導(dǎo)因子1α表達(dá)抑制心臟微血管生成,因此加劇心衰進展。心臟微血管生成由多種血管生成因子調(diào)節(jié),如血管內(nèi)皮生長因子家族(vascular endothelial growth factors, VEGFs)、血管生成素1/2(angiopoietin 1/2, Ang1/2)[7]、成纖維細(xì)胞生長因子家族(fibroblast growth factors, FGFs)[8]、血小板源性生長因子家族(platelet-derived factors, PDGFs)[9]等,其中VEGFs在心臟微血管生成過程中起著主要作用[10]。上述研究表明,促進心臟微血管生成有望延緩甚至逆轉(zhuǎn)慢性心力衰竭的進展[11]。
1-磷酸鞘氨醇(sphingosine-1-phosphate, S1P)是細(xì)胞膜鞘磷脂在代謝過程中產(chǎn)生的一種具有多種生物學(xué)活性的小分子磷脂類物質(zhì),可在胞外刺激作用下,由S1P激酶1/2(S1P kinase 1/2, SPHK1/2)催化鞘氨醇(sphingosine)磷酸化生成,主要經(jīng)血管內(nèi)皮細(xì)胞、紅細(xì)胞和血小板合成并分泌到胞外,參與調(diào)節(jié)多種心血管系統(tǒng)疾?。?2-14]。S1P裂解酶(S1P lyase, SPL)參與了S1P主要的降解過程,被認(rèn)為是調(diào)控S1P水平的關(guān)鍵酶[15]。SPL在應(yīng)激情況下激活,Bandhuvula等[16]發(fā)現(xiàn),在缺血性心衰模型中SPL活性上調(diào),不可逆地降解S1P,從而使心臟S1P含量減少并促進細(xì)胞凋亡,而2-乙?;?5-四羥基丁基咪唑(2-acetyl-5-tetrahydroxybutyl imidazole, THI)作為SPL抑制劑,可顯著升高小鼠體內(nèi)S1P水平,明顯減輕病理損傷[16-22]。THI治療還可促進小鼠心臟驟停后的復(fù)蘇和生存[23]。S1P除了顯著的心肌細(xì)胞保護作用外,在調(diào)控血管生成、維持內(nèi)皮穩(wěn)定性及調(diào)節(jié)血管張力中亦發(fā)揮著重要作用[24],并可調(diào)節(jié)心肌梗死后修復(fù)性巨噬細(xì)胞釋放VEGF,促進心肌梗死后血管生成[25]。
基于以上證據(jù),我們提出升高S1P水平可能通過增加心肌微血管密度緩解壓力超負(fù)荷誘導(dǎo)的心功能障礙。本研究擬通過構(gòu)建壓力超負(fù)荷誘導(dǎo)的心力衰竭模型,給予THI升高小鼠體內(nèi)S1P水平,探究S1P是否促進心臟微血管形成,進而緩解心力衰竭,并對其機制進行初步探索。
SPF級8周齡的雄性C57BL/6小鼠購自江蘇集萃藥康生物科技股份有限公司,飼養(yǎng)于華中科技大學(xué)同濟醫(yī)學(xué)院實驗動物中心。適應(yīng)性飼養(yǎng)1周后,采用隨機數(shù)字表法將小鼠分為假手術(shù)(sham)組、主動脈弓縮窄術(shù)(transverse aortic constriction, TAC)組、sham+THI組和TAC+THI組。小鼠接受TAC和假手術(shù)(手術(shù)過程同TAC,但不進行主動脈弓縮窄)1周后,通過灌胃的方式給予THI(10 μg,每天2次),對照組給予等體積的藥物溶劑(生理鹽水),連續(xù)給藥干預(yù)7周。
THI購自Cayman Chemical;CD31抗體(1∶150)、蛋白激酶B(protein kinase B, PKB/Akt)抗體(1∶1 000)和磷酸化Akt(phosphorylated Akt, p-Akt)抗體(1∶1 000)均購自Cell Signaling Technology;VEGF抗體(1∶1 000)購自Santa Cruz;VEGF受體(VEGF receptor, VEGFR)抗體和磷酸化VEGFR(phosphorylated VEGFR, p-VEGFR)抗體(1∶1 000)均購自Abclonal;GAPDH抗體(1∶20 000)購自Proteintech;辣根過氧化物酶(horseradish peroxidase, HRP)標(biāo)記的山羊抗兔IgG和山羊抗小鼠IgG(1∶10 000)均購自Jackson ImmunoResearch;Cy3標(biāo)記的山羊抗小鼠IgG(1∶100)和4′,6-二脒基-2-苯基吲哚(4′,6-diamidino-2-phenylindole, DAPI)購自Servicebio;麥胚凝集素(wheat germ agglutinin, WGA)染液(1∶500)購自Sigma;RT-qPCR試劑購自南京諾唯贊生物科技有限公司;心房鈉尿肽(atrial natriuretic peptide, ANP)、腦鈉肽(brain natriuretic peptide, BNP)、I型膠原蛋白(collagen type I)、III型膠原蛋白(collagen type III)、CD31、Ang1、血管性血友病因子(von Willebrand factor, vWF)和GAPDH引物均由武漢奧科生物科技技術(shù)有限公司合成,序列見表1。
表1 RT-qPCR引物
ANP: atrial natriuretic peptide; BNP: brain natriuretic peptide; Ang1: angiopoietin 1; vWF: von Willebrand factor.
3.1TAC小鼠稱重,按50 mg/kg濃度腹腔注射戊巴比妥鈉誘導(dǎo)麻醉,小鼠取仰臥位固定,用異氟烷維持麻醉。使用靜脈留置針外鞘管作為氣管插管接呼吸機,控制潮氣量2~3 mL,呼吸頻率90~110 min-1。剪毛后用碘伏消毒手術(shù)區(qū)域,以左側(cè)第2肋為中心在小鼠胸前行縱行切口剪開皮膚,鈍性分離肌肉組織,斷第2肋。使用開胸器撐開縱膈,分離胸腺,暴露主動脈弓。在右頸總動脈分出大約3 mm處,用7-0絲線繞在主動脈弓處,用27號鈍性針頭放置于絲線和主動脈弓之間墊扎,制造70%左右狹窄。確認(rèn)結(jié)扎后抽出針頭,逐層關(guān)閉縱膈。待小鼠自主呼吸恢復(fù)后,拔除氣管插管,放入飼養(yǎng)籠內(nèi)飼養(yǎng)。假手術(shù)組過程同手術(shù)組,只是不進行主動脈弓縮窄。
3.2小鼠心臟超聲檢測1.5%的異氟烷麻醉小鼠后,使用配有30 MHz高頻探頭的VisualSonic Vevo 770型超聲儀獲取5個以上連續(xù)心動周期M型超聲影像,采集影像后使用分析軟件進行分析。
3.3小鼠Millar導(dǎo)管檢測小鼠腹腔注射戊巴比妥鈉(50 mg/kg)誘導(dǎo)麻醉后,用異氟烷維持麻醉,固定于小動物手術(shù)臺,頸部正中剪一長約2 cm的豎形切口,鈍性分離各層組織,游離頸動脈;結(jié)扎頸動脈遠(yuǎn)心端,動脈夾夾閉近心端;在遠(yuǎn)心端作一斜形向心切口,將前端帶有電極的P-V微導(dǎo)管(SPR-838, Millar Instruments)經(jīng)右頸總動脈插入至主動脈,導(dǎo)管通過壓力-容積傳導(dǎo)系統(tǒng)(Millar instruments)連接PowerLab/4SP A/D轉(zhuǎn)換器與MS-302多媒體生物信號采集分析系統(tǒng)連接,動態(tài)觀察壓力波形變化,穩(wěn)定數(shù)分鐘后記錄動脈波形;將導(dǎo)管緩慢向左心室送入,根據(jù)監(jiān)視儀上顯示的波形變化,直至出現(xiàn)較好的壓力-容積環(huán)圖形,記錄血流動力學(xué)指標(biāo)。
3.4小鼠心臟及血漿中S1P含量檢測在實驗終點取小鼠血漿和心臟勻漿組織,根據(jù)小鼠S1P ELISA檢測試劑盒(購自上海江萊生物科技有限公司)技術(shù)手冊測定各組小鼠體內(nèi)S1P含量。用緩沖液將S1P抗體稀釋至1~10 mg/L,每孔加入100 μL,4 ℃過夜。次日,棄去孔內(nèi)溶液,并用洗滌緩沖液洗3次,每次5 min。按1∶10的稀釋比稀釋小鼠血漿和心臟勻漿組織,取50 μL待測樣品與標(biāo)準(zhǔn)品加入已包被的反應(yīng)孔中,37 ℃孵育1 h。洗滌液洗滌3次,每次5 min。于各反應(yīng)孔中,加入稀釋好的酶標(biāo)二抗50 μL,37 ℃孵育1 h,洗滌液洗滌3次,每次5 min。加入新鮮配置的3,3',5,5'-四甲基聯(lián)苯胺(3,3',5,5'-tetramethylbenzidine, TMB)底物100 μL,37 ℃避光孵育30 min后,于各反應(yīng)孔中加入終止液50 μL,15 min之內(nèi)用酶標(biāo)儀于450 nm檢測樣本和標(biāo)品的吸光度,并根據(jù)標(biāo)品繪制標(biāo)準(zhǔn)曲線,計算出小鼠心臟組織和血漿中S1P含量。
3.5HE染色取小鼠心臟組織,在4% 中性多聚甲醛固定24 h后,經(jīng)過石蠟包埋,使用石蠟切片機進行切片,厚度約5 μm。心臟組織切片經(jīng)過二甲苯脫蠟和梯度乙醇復(fù)水后,使用HE染色試劑盒進行染色。在中性樹膠封片后,在顯微鏡下對各組小鼠心臟組織切片進行觀察并拍照。
3.6Masson染色取小鼠心臟組織,用4%多聚甲醛固定24 h后,脫水、石蠟包埋,使用石蠟切片機將心臟組織切成5 μm左右的切片。心臟組織切片經(jīng)二甲苯脫蠟和梯度乙醇復(fù)水后進行Masson染色。使用中性樹膠封片后,在相同參數(shù)下,用光學(xué)顯微鏡對各組小鼠心臟組織切片進行觀察并拍照。
3.7免疫熒光染色心臟組織切片經(jīng)過脫蠟和梯度乙醇復(fù)水后,用檸檬酸緩沖液進行抗原修復(fù),再用0.3%的Triton X-100通透15 min,磷酸鹽緩沖液洗3次,每次5 min。用5%牛血清白蛋白在室溫下封閉1~2 h后,向切片中加入抗CD31抗體,放入濕盒中4 ℃孵育過夜。次日取出切片,并于室溫復(fù)溫30 min,TBST洗3次,每次5 min。隨后加入Cy3標(biāo)記的山羊抗小鼠熒光Ⅱ抗和WGA染液,室溫孵育1~2 h,TBST洗3次,每次5 min。最后DAPI復(fù)染核后,用抗熒光淬滅封片劑封片,熒光顯微鏡下觀察并拍照。
3.8RT-qPCR用Trizol法提取各組樣本心肌組織的RNA,逆轉(zhuǎn)錄成cDNA,按照說明書進行RT-qPCR,檢測ANP、BNP、collagen type I、collagen type III、CD31、vWF和GAPDH的mRNA表達(dá)水平。RT-qPCR擴增程序:95 ℃ 30 s;95 ℃ 5 s,60 ℃ 30 s,循環(huán)40次。以GAPDH為內(nèi)參照,使用2-ΔΔCt方法計算mRNA的相對表達(dá)量。
3.9Western blot預(yù)先將組織研磨儀和離心機調(diào)至4 ℃預(yù)冷,按1∶100比例于蛋白裂解液中加入100×蛋白酶抑制劑和100×磷酸酶抑制劑,混勻后置于冰上。切取10 mg心臟組織于研磨管中,加入適量裂解液和研磨珠,研磨3 min;4 ℃、12 000 r/min離心15 min,取上清并用BCA法測定蛋白濃度。加入相應(yīng)體積的loading buffer后,于100 ℃水浴加熱變性5 min。經(jīng)10% SDS-PAGE分離蛋白后轉(zhuǎn)膜,5%脫脂牛奶封閉2 h,加入相應(yīng)Ⅰ抗,4 ℃搖床孵育過夜。次日取出,TBST洗膜3次,每次5 min。加入相應(yīng)Ⅱ抗,室溫?fù)u床孵育1 h,TBST洗膜3次,每次5 min。ECL試劑盒顯影蛋白條帶,ImageJ圖像分析軟件測定目的蛋白和內(nèi)參照蛋白的灰度值,計算兩者之間的比值,并進行統(tǒng)計分析。
實驗過程中的所有實驗數(shù)據(jù)均以均數(shù)±標(biāo)準(zhǔn)差(mean±SD)的形式表示,使用GraphPad Prism 8軟件進行數(shù)據(jù)分析。組間均數(shù)比較采用單因素方差分析(one-way ANOVA),進一步兩兩比較采用LSD-檢驗。以<0.05為差異有統(tǒng)計學(xué)意義。
TAC術(shù)后8周,與sham組相比,TAC組小鼠血漿和心臟中S1P水平明顯下降(<0.01),給予THI干預(yù)可明顯升高基線水平和TAC術(shù)后小鼠心臟和血漿中S1P的含量(<0.01),見圖1。
Figure 1. Effects of transverse aortic constriction (TAC) and 2-acetyl-5-tetrahydroxybutyl imidazole (THI) on sphingosine-1-phosphate (S1P) levels in mouse plasma and heart. A: eight weeks after TAC, the concentration of S1P in plasma of mice in each group was detected by ELISA; B: eight weeks after TAC, the content of S1P in the heart of mice in each group was detected by ELISA. Mean±SD. n=6. **P<0.01 vs sham group; ##P<0.01 vs TAC group.
心臟超聲結(jié)果顯示,TAC術(shù)后8周,小鼠心室肥大明顯,舒張末期左室內(nèi)徑(left ventricular internal dimension at end-diastole, LVIDd)、收縮末期左室內(nèi)徑(left ventricular internal dimension at end-systole, LVIDs)、舒張期左室前壁厚度(left ventricular anterior wall thickness during diastole, LVAWd)和收縮期左室前壁厚度(left ventricular anterior wall thickness during systole, LVAWs)均顯著增大,射血分?jǐn)?shù)(ejection fraction, EF)和縮短分?jǐn)?shù)(fractional shortening, FS)較sham組明顯下降;給予THI能顯著減輕TAC小鼠心肌肥大和心臟收縮功能障礙,見圖2A。同樣的,小鼠心臟Millar導(dǎo)管結(jié)果顯示,與sham組相比,TAC組小鼠d/dmax和d/dmin顯著下降;升高S1P水平后,小鼠心臟收縮功能明顯改善,見圖2B。
Figure 2. Sphingosine-1-phosphate (S1P) improved cardiac function of transverse aortic constriction (TAC) mice. A: representative images of echocardiography of mice in each group, and statistical charts of ejection fraction (EF), fractional shortening (FS), left ventricular internal dimension at end-diastole (LVIDd), left ventricular internal dimension at end-systole (LVIDs), left ventricular anterior wall thickness during diastole(LVAWd) and left ventricular anterior wall thickness during systole (LVAWs) of mice in each group; B: Millar catheter was used to detect dp/dtmax and dp/dtmin of mice in each group. Mean±SD. n=6. **P<0.01 vs sham group; ##P<0.01 vs TAC group.
在TAC術(shù)后8周,心臟大體圖和HE染色顯示,TAC組小鼠心臟肥大明顯,心肌細(xì)胞橫截面積顯著增大;升高小鼠體內(nèi)S1P水平可明顯減輕TAC小鼠心肌肥大,見圖3A。RT-qPCR檢測各組小鼠ANP和BNP的mRNA表達(dá)量,結(jié)果顯示,TAC組小鼠心臟ANP和BNP表達(dá)上調(diào),而S1P可抑制TAC誘導(dǎo)的心肌肥大指標(biāo)的表達(dá),見圖3B。
Figure 3. Sphingosine-1-phosphate (S1P) attenuated transverse aortic constriction (TAC)-induced hypertrophy. A: representative images of gross mouse heart specimens and HE staining (scale bar=50 μm), and statistical chart of the cross-sectional area of cardiomyocytes in each group (n=3); B: relative mRNA levels of cardiac hypertrophic markers, atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP), in mouse heart tissues of each group (n=4). Mean±SD. **P<0.01 vs sham group; #P<0.05, ##P<0.01 vs TAC group.
Masson染色顯示,與sham組相比,TAC組心肌間質(zhì)和管周膠原纖維沉積明顯;而在給予THI干預(yù)后,可觀察到TAC+THI組小鼠心肌間質(zhì)和管周纖維化明顯減輕,見圖4A。RT-qPCR結(jié)果顯示,TAC小鼠心臟collagen type I和collagen type III的mRNA表達(dá)顯著增多,而升高S1P可減少TAC小鼠心臟膠原蛋白的mRNA表達(dá),見圖4B。
Figure 4. Sphingosine-1-phosphate (S1P) inhibited transverse aortic constriction (TAC)-induced myocardial fibrosis. A: representative Masson staining images of mouse heart tissues in each group (scale bar=50 μm); B: relative mRNA levels of fibrotic markers, collagen type I and collagen type III, in mouse heart tissues of each group. Mean±SD. n=4. **P<0.01 vs sham group; #P<0.05, ##P<0.01 vs TAC group.
WGA和CD31免疫熒光染色結(jié)果顯示,TAC術(shù)后,小鼠心臟中微血管密度(microvascular count/area)和微血管/心肌細(xì)胞比值(microvascular count/cardiomyocytes)較sham組顯著降低;而與TAC組相比,TAC+THI組小鼠心臟組織中微血管密度和微血管/心肌細(xì)胞比值顯著上調(diào),見圖5A。RT-qPCR結(jié)果顯示,TAC+THI組小鼠心臟血管生成標(biāo)志物CD31、vWF和Ang1的mRNA表達(dá)較TAC組增多,差異有統(tǒng)計學(xué)意義(<0.05),見圖5B。以上結(jié)果表明,升高S1P水平可增加TAC小鼠心臟微血管密度。
Figure 5. Sphingosine-1-phosphate (S1P) promoted cardiac micro-angiogenesis in transverse aortic constriction (TAC) mice. A: representative images of wheat germ agglutinin (WGA; red) and CD31 (green) immunofluorescence staining of mouse heart tissues (scale bar=50 μm), and statistical charts of cardiac microvascular density (microvascular count/area) and microvascular count/cardiomyocyte ratio of mice in each group; B: relative mRNA levels of vascular endothelial markers, CD31, angiopoietin 1 (Ang1) and von Willebrand factor (vWF), in mouse heart tissues of each group. Mean±SD. n=3. **P<0.01 vs sham group; #P<0.05, ##P<0.01 vs TAC group.
VEGF家族是血管生成過程中最重要的一類細(xì)胞因子之一,主要通過和其受體(VEGFR)結(jié)合,激活細(xì)胞內(nèi)信號通路,在血管生成中起著主要作用[26]。因此,我們檢測各組小鼠心臟組織中VEGF、VEGFR/p-VEGFR的蛋白水平,以及其下游Akt信號通路活化狀態(tài)。Western blot結(jié)果顯示,與TAC組相比,THI能顯著上調(diào)小鼠心臟中VEGF蛋白表達(dá)和p-VEGFR水平;與sham組相比,TAC降低了心臟組織中Akt磷酸化水平,而給予THI干預(yù)后磷酸化Akt蛋白水平顯著升高,見圖6。
Figure 6. Sphingosine-1-phosphate (S1P) promoted cardiac micro-angiogenesis through regulating vascular endothelial growth factor (VEGF)-VEGF receptor (VEGFR)-protein kinase B (PKB/Akt) signaling pathway. The protein levels of vascular endothelial growth factor A (VEGFA), VEGFR, phosphorylated VEGFR (p-VEGFR), Akt and phosphorylated Akt (p-Akt) in mouse heart tissues of each group were detected by Western blot. Mean±SD, n=4. *P<0.05, **P<0.01 vs sham group; #P<0.05, ##P<0.01 vs TAC group.
本實驗通過TAC誘導(dǎo)的心力衰竭小鼠模型,證實了S1P通過對心臟微血管密度的調(diào)節(jié)影響心力衰竭的發(fā)展。本研究結(jié)果表明,在TAC模型小鼠血漿和心臟組織中S1P的含量都明顯下降,而通過給予THI糾正小鼠體內(nèi)紊亂的S1P水平,可以明顯改善TAC小鼠心功能,減輕心肌肥大和心肌纖維化。該作用可能是通過調(diào)節(jié)VEGF-VEGFR-Akt信號通路介導(dǎo)的心臟微血管生成,增加TAC小鼠心臟微血管密度,從而緩解TAC誘導(dǎo)的心力衰竭。
心臟微血管密度稀疏是心力衰竭發(fā)生發(fā)展的重要機制,且既往研究表明促進心臟微血管增生可以緩解心力衰竭[27-28]。Flanagan等[29]利用成年羊羔壓力超負(fù)荷模型中證實,在病理性肥大的心臟中,毛細(xì)血管密度在由心肌肥大向心力衰竭轉(zhuǎn)變的過程中降低。這一現(xiàn)象在臨床試驗中得到了進一步驗證,在一項納入110人的臨床研究中,血管內(nèi)超聲結(jié)果發(fā)現(xiàn),與無左室肥大的患者相比,伴有左室肥大的高血壓患者心臟微血管密度降低,冠狀動脈血流儲備減少[30]。Wadowski等[4]在臨床研究中亦發(fā)現(xiàn),慢性心力衰竭患者心臟組織中微血管密度明顯低于健康對照。在移植外周血單個核細(xì)胞(peripheral blood mononuclear cells, PB-MNC)治療下肢缺血的臨床試驗中,PB-MNC促進缺血區(qū)骨骼肌釋放大量促血管生成因子,促進新生血管形成,不僅緩解了患者下肢缺血癥狀[31-32],亦有益于心肌缺血與心功能的改善,這可能得益于大量促血管生成因子對心臟微血管的調(diào)控[11]。此外,包括補充諸如VEGF[33-34]、成纖維細(xì)胞生長因子5(fibroblast growth factor-5, FGF-5)[35]、基質(zhì)細(xì)胞衍生因子1(stromal cell-derived factor-1, SDF-1)[36]、肝細(xì)胞生長因子(hepatocyte growth factor, HGF)[37]等血管生成因子蛋白及基因治療的試驗證實了促血管生成治療在緩解心力衰竭上的良好應(yīng)用前景。其中VEGFs由于其強大的促新生血管形成功能,被認(rèn)為是對血管內(nèi)皮細(xì)胞最有力的刺激物之一[38-39],其通過結(jié)合VEGFR(包括VEGFR1/2/3,均屬于酪氨酸激酶受體家族),導(dǎo)致受體磷酸化激活,隨后激活下游的Akt信號通路,促進內(nèi)皮細(xì)胞的生長、增殖和成熟,最終促使新生血管形成[40-41]。因此,從增加心臟微血管密度為切入點的治療方案的開發(fā),有望為解決目前臨床心力衰竭治療效果不佳的問題提供新的思路和方法。
S1P是細(xì)胞膜鞘磷脂代謝產(chǎn)物,具有重要的心血管保護功能[24, 42]。S1P由鞘氨醇磷酸化產(chǎn)生,主要由SPL分解為磷酸乙醇胺和十六烯醛。由于S1P被SPL不可逆地降解,SPL被認(rèn)為是調(diào)節(jié)S1P水平最關(guān)鍵的代謝酶[43]。THI作為SPL的抑制劑,在多項研究中被證明可增加體內(nèi)外S1P水平,并發(fā)揮重要作用[17, 43-44]。Bandhuvula等[16]在缺血再灌注小鼠模型中表明,THI可升高心臟和血漿S1P的水平,并保護小鼠心臟免受缺血再灌注損傷。在我們之前的研究[45]以及本次實驗也觀察到,TAC術(shù)后,小鼠心臟及血漿中S1P水平明顯降低,THI糾正了S1P的水平下降,同時緩解了壓力負(fù)荷模型小鼠心力衰竭,表明S1P具有明顯的心臟保護作用。之前的研究顯示,S1P是血管功能的重要調(diào)節(jié)因子,參與了多種病理生理情況下的血管生成及內(nèi)皮功能調(diào)節(jié)[46],且在多種疾病研究中被證實參與VEGF信號通路的調(diào)控。在風(fēng)濕性關(guān)節(jié)炎中,S1P可通過c-Src/FAK信號通路阻斷miR-16-5p的合成,增加成骨細(xì)胞VEGF的表達(dá)與分泌,從而促進內(nèi)皮祖細(xì)胞(endothelial progenitor cells, EPCs)介導(dǎo)的血管生成[47]。在視網(wǎng)膜新生血管性疾病中,S1P-VEGF信號通路亦被證實有重要的應(yīng)用價值,針對S1P介導(dǎo)的新生血管形成過程被越來越多的基礎(chǔ)實驗證實具有治療靶向性[48-49]。但是,S1P是否通過調(diào)控心臟微血管密度而緩解心力衰竭尚未見報道?;谝陨涎芯?,我們猜想S1P很可能在心力衰竭心臟中微血管生成過程起著重要作用。我們構(gòu)建了壓力負(fù)荷誘導(dǎo)的心肌肥大小鼠模型,發(fā)現(xiàn)在TAC組小鼠心臟中微血管密度和微血管/心肌細(xì)胞比值較sham組明顯降低,給予THI升高TAC小鼠體內(nèi)S1P水平后,小鼠心臟微血管密度增加,且血管生成相關(guān)標(biāo)志物如CD31、Ang1和vWF的mRNA水平升高,并與心功能的改善和心室重構(gòu)的緩解呈現(xiàn)一致性。進一步的實驗證實,S1P可增加TAC小鼠心臟中VEGF和p-VEGFR蛋白水平,并激活其下游的Akt信號通路,發(fā)揮促進心臟微血管生成功能,這可能與TAC+THI組小鼠心臟血管生成增加及心力衰竭緩解有關(guān)。
綜上所述,我們的研究發(fā)現(xiàn)S1P可能通過調(diào)控VEGF-VEGFR-Akt信號通路,促進心臟微血管的生成,減輕心肌肥大和纖維化,進而緩解壓力超負(fù)荷所致的心力衰竭。本研究為心力衰竭的治療提供了新的方向和思路,為S1P及其調(diào)控物作為臨床上治療心力衰竭的藥物提供了新的理論依據(jù)。
[1] Tanai E, Frantz S. Pathophysiology of heart failure[J]. Compr Physiol, 2015, 6(1):187-214.
[2] Cabassi A, Dancelli S, Pattoneri P, et al. Characterization of myocardial hypertrophy in prehypertensive spontaneously hypertensive rats: interaction between adrenergic and nitrosative pathways[J]. J Hypertens, 2007, 25(8):1719-1730.
[3] Camici PG, Tsch?pe C, Di Carli MF, et al. Coronary microvascular dysfunction in hypertrophy and heart failure[J]. Cardiovasc Res, 2020, 116(4):806-816.
[4] Wadowski PP, HüLsmann M, Sch?rgenhofer C, et al. Sublingual functional capillary rarefaction in chronic heart failure[J]. Eur J Clin Invest, 2018, 48(2):e12869.
[5] Walsh K, Shiojima I. Cardiac growth and angiogenesis coordinated by intertissue interactions[J]. J Clin Invest, 2007, 117(11):3176-3179.
[6] Sano M, Minamino T, Toko H, et al. p53-induced inhibition of Hif-1 causes cardiac dysfunction during pressure overload[J]. Nature, 2007, 446(7134):444-448.
[7] Dallabrida SM, Ismail NS, Pravda EA, et al. Integrin binding angiopoietin-1 monomers reduce cardiac hypertrophy[J]. FASEB J, 2008, 22(8):3010-3023.
[8] Kardami E, Detillieux K, Ma X, et al. Fibroblast growth factor-2 and cardioprotection[J]. Heart Fail Rev, 2007, 12(3/4):267-277.
[9] Andrae J, Gallini R, Betsholtz C. Role of platelet-derived growth factors in physiology and medicine[J]. Genes Dev, 2008, 22(10):1276-1312.
[10] Oka T, Akazawa H, Naito AT, et al. Angiogenesis and cardiac hypertrophy: maintenance of cardiac function and causative roles in heart failure[J]. Circ Res, 2014, 114(3):565-571.
[11] Oka T, Morita H, Komuro I. Novel molecular mechanisms and regeneration therapy for heart failure[J]. J Mol Cell Cardiol, 2016, 92:46-51.
[12] Venkataraman K, Lee YM, Michaud J, et al. Vascular endothelium as a contributor of plasma sphingosine 1-phosphate[J]. Circ Res, 2008, 102(6):669-676.
[13] Yatomi Y, Igarashi Y, Yang L, et al. Sphingosine 1-phosphate, a bioactive sphingolipid abundantly stored in platelets, is a normal constituent of human plasma and serum[J]. J Biochem, 1997, 121(5):969-973.
[14] Proia RL, Hla T. Emerging biology of sphingosine-1-phosphate: its role in pathogenesis and therapy[J]. J Clin Invest, 2015, 125(4):1379-1387.
[15] Cartier A, Hla T. Sphingosine 1-phosphate: lipid signaling in pathology and therapy[J]. Science, 2019, 366(6463):eaar5551.
[16] Bandhuvula P, Honbo N, Wang GY, et al. S1P lyase: a novel therapeutic target for ischemia-reperfusion injury of the heart[J]. Am J Physiol Heart Circ Physiol, 2011, 300(5):H1753-H1761.
[17] Klyachkin YM, Nagareddy PR, Ye S, et al. Pharmacological elevation of circulating bioactive phosphosphingolipids enhances myocardial recovery after acute infarction[J]. Stem Cells Transl Med, 2015, 4(11):1333-1343.
[18] Baranowska U, Holownia A, Chabowski A, et al. Pharmacological inhibition of sphingosine-1-phosphate lyase partially reverses spatial memory impairment in streptozotocin-diabetic rats[J]. Mol Cell Neurosci, 2020 107:103526.
[19] Karuppuchamy T, Tyler CJ, Lundborg LR, et al. Sphingosine-1-phosphate lyase inhibition alters the S1P gradient and ameliorates Crohn's-like ileitis by suppressing thymocyte maturation[J]. Inflamm Bowel Dis, 2020, 26(2):216-228.
[20] Nguyen-Tran DH, Hait NC, Sperber H, et al. Molecular mechanism of sphingosine-1-phosphate action in Duchenne muscular dystrophy[J]. Dis Model Mech, 2014, 7(1):41-54.
[21] Bagdanoff JT, Donoviel MS, Nouraldeen A, et al. Inhibition of sphingosine-1-phosphate lyase for the treatment of autoimmune disorders[J]. J Med Chem, 2009, 52(13):3941-3953.
[22] Shirakabe K, Higashiyama M, Furuhashi H, et al. Amelioration of colitis through blocking lymphocytes entry to Peyer's patches by sphingosine-1-phosphate lyase inhibitor[J]. J Gastroenterol Hepatol, 2018, 33(9):1608-1616.
[23] Gorshkova IA, Wang H, Orbelyan GA, et al. Inhibition of sphingosine-1-phosphate lyase rescues sphingosine kinase-1-knockout phenotype following murine cardiac arrest[J]. Life Sci, 2013, 93(9/10/11):359-366.
[24] Jozefczuk E, Guzik TJ, Siedlinski M. Significance of sphingosine-1-phosphate in cardiovascular physiology and pathology[J]. Pharmacol Res, 2020, 156:104793.
[25] Kuang Y, Li X, Liu X, et al. Vascular endothelial S1pr1 ameliorates adverse cardiac remodeling via stimulating reparative macrophage proliferation after myocardial infarction[J]. Cardiovasc Res, 2021, 117(2):585-599.
[26] Giacca M, Zacchigna S. VEGF gene therapy: therapeutic angiogenesis in the clinic and beyond[J]. Gene Ther, 2012, 19(6):622-629.
[27] Shiojima I, Sato K, Izumiya Y, et al. Disruption of coordinated cardiac hypertrophy and angiogenesis contributes to the transition to heart failure[J]. J Clin Invest, 2005, 115(8):2108-2118.
[28] Mitsos S, Katsanos K, Koletsis E, et al. Therapeutic angiogenesis for myocardial ischemia revisited: basic biological concepts and focus on latest clinical trials[J]. Angiogenesis, 2012, 15(1):1-22.
[29] Flanagan MF, Fujii AM, Colan SD, et al. Myocardial angiogenesis and coronary perfusion in left ventricular pressure-overload hypertrophy in the young lamb. Evidence for inhibition with chronic protamine administration[J]. Circ Res, 1991, 68(5):1458-1470.
[30] Hamasaki S, Al Suwaidi J, Higano ST, et al. Attenuated coronary flow reserve and vascular remodeling in patients with hypertension and left ventricular hypertrophy[J]. J Am Coll Cardiol, 2000, 35(6):1654-1660.
[31] Tateno K, Minamino T, Toko H, et al. Critical roles of muscle-secreted angiogenic factors in therapeutic neovascularization[J]. Circ Res, 2006, 98(9):1194-202.
[32] Moriya J, Minamino T, Tateno K, et al. Long-term outcome of therapeutic neovascularization using peripheral blood mononuclear cells for limb ischemia[J]. Circ Cardiovasc Interv, 2009, 2(3):245-254.
[33] Serpi R, Tolonen AM, Huusko J, et al. Vascular endothelial growth factor-B gene transfer prevents angiotensin II-induced diastolic dysfunction via proliferation and capillary dilatation in rats[J]. Cardiovasc Res, 2011, 89(1):204-213.
[34] Huusko J, Lottonen L, Merentie M, et al. AAV9-mediated VEGF-B gene transfer improves systolic function in progressive left ventricular hypertrophy[J]. Mol Ther, 2012, 20(12):2212-2221.
[35] Suzuki G, Lee TC, Fallavollita JA, et al. Adenoviral gene transfer of FGF-5 to hibernating myocardium improves function and stimulates myocytes to hypertrophy and reenter the cell cycle[J]. Circ Res, 2005, 96(7):767-775.
[36] Sundararaman S, Miller TJ, Pastore JM, et al. Plasmid-based transient human stromal cell-derived factor-1 gene transfer improves cardiac function in chronic heart failure[J]. Gene Ther, 2011, 18(9):867-873.
[37] Siltanen A, Kitabayashi K, Lakkisto P, et al. hHGF overexpression in myoblast sheets enhances their angiogenic potential in rat chronic heart failure[J]. PLoS One, 2011, 6(4):e19161.
[38] Yl?-Herttuala S. Gene therapy with vascular endothelial growth factors[J]. Biochem Soc Trans, 2009, 37(Pt 6):1198-1200.
[39] 張夢澤, 李國珅, 趙欣童, 等. 血管新生的分子機制與相關(guān)疾?。跩]. 中國病理生理雜志, 2016, 32(9):1718-1722, 1728.
Zhang MZ, Li GK, Zhao XT, et al. Angiogenesis: molecular mechanism and related diseases[J]. Chin J Pathophysiol, 2016, 32(9):1718-1722, 1728.
[40] Uemura A, Fruttiger M, D'Amore PA, et al. VEGFR1 signaling in retinal angiogenesis and microinflammation[J]. Prog Retin Eye Res, 2021, 84:100954.
[41] 劉繼彥, 魏于全. 血管內(nèi)皮生長因子受體2的結(jié)構(gòu)功能與信號轉(zhuǎn)導(dǎo)[J]. 中國病理生理雜志, 2004, 20(7):192-196.
Liu JY, Wei YQ. Structure, function and signal transduction of vascular endothelial growth factor receptor-2[J]. Chin J Pathophysiol, 2004, 20(7):192-196.
[42] Takuwa Y, Okamoto Y, Yoshioka K, et al. Sphingosine-1-phosphate signaling and biological activities in the cardiovascular system[J]. Biochim Biophys Acta, 2008, 1781(9):483-488.
[43] Schwab SR, Pereira JP, Matloubian M, et al. Lymphocyte sequestration through S1P lyase inhibition and disruption of S1P gradients[J]. Science, 2005, 309(5741):1735-1739.
[44] Harris CM, Mittelstadt S, Banfor P, et al. Sphingosine-1-phosphate (S1P) lyase inhibition causes increased cardiac S1P levels and bradycardia in rats[J]. J Pharmacol Exp Ther, 2016, 359(1):151-158.
[45] Chen K, Wang Z, Liu C, et al. Sphingosine-1-phosphate attenuates endoplasmic reticulum stress-induced cardiomyocyte apoptosis through sphingosine-1-phosphate receptor 1[J]. Arch Med Res, 2022, 53(6):562-573.
[46] Mendelson K, Evans T, Hla T. Sphingosine 1-phosphate signalling[J]. Development, 2014, 141(1):5-9.
[47] Huang CC, Tseng TT, Liu SC, et al. S1P increases VEGF production in osteoblasts and facilitates endothelial progenitor cell angiogenesis by inhibiting miR-16-5p expression via the c-Src/FAK signaling pathway in rheumatoid arthritis[J]. Cells, 2021, 10(8):2168.
[48] Alshaikh RA, Ryan KB, Waeber C. Sphingosine 1-phosphate, a potential target in neovascular retinal disease[J]. Br J Ophthalmol, 2022, 106(9):1187-1195.
[49] Eresch J, Stumpf M, Koch A, et al. Sphingosine kinase 2 modulates retinal neovascularization in the mouse model of oxygen-induced retinopathy[J]. Invest Ophthalmol Vis Sci, 2018, 59(2):653-661.
Sphingosine-1-phosphate alleviates pressure overload-induced heart failure via increasing cardiac microvascular density
YANG Xing, CHEN Kengquan, WANG Luyun, JIANG Jiangang△
(,,,,,,430030,)
To investigate the effect of sphingosine-1-phosphate (S1P) on pressure overload-induced heart failure in mice, and to explore its mechanism.Eight-week-old male C57BL/6 mice were randomly divided into 4 groups: sham group, sham+2-acetyl-5-tetrahydroxybutyl imidazole (THI; an S1P lyase inhibitor) group, transverse aortic constriction (TAC) group, and TAC+THI group. The THI was administered by gavage one week after TAC surgery. The S1P level in the plasma and heart were measured by ELISA. Cardiac function of mice was detected by echocardiography and Millar catheter. Cardiac hypertrophy was observed by HE staining. Immunofluorescence staining of CD31 and wheat germ agglutinin was used to indicate the cross-sectional area of cardiomyocytes and cardiac microvascular density. Cardiac fibrosis was evaluated by Masson staining. The mRNA expression levels of atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), collagen type I, collagen type III, CD31, angiopoietin 1 (Ang1) and von Willebrand factor (vWF) were detected by RT-qPCR. The protein levels of vascular endothelial growth factor (VEGF), VEGF receptor (VEGFR), phosphorylated VEGFR, protein kinase B (PKB/Akt) and phosphorylated Akt were determined by Western blot.The ELISA results showed that plasma and heart S1P levels were decresed in TAC mice, while THI increased S1P levels in plasma and heart. Treatment with THI improved cardiac function of mice with heart failure. Compared with TAC group, THI increased cardiac microvascular density, while the cross-sectional area of cardiomyocytes was reduced. Masson staining revealed that S1P attenuated myocardial collagen deposition in TAC mice. The RT-qPCR results showed that S1P inhibited the expression of ANP, BNP, collagen type I and collagen type III, but up-regulated the expression of vascular endothelial makers CD31, Ang1 and vWF. Western blot results indicated that S1P activated VEGF-VEGFR-Akt signaling pathway.The S1P increases cardiac microvascular density via activation of VEGF-VEGFR-Akt signaling pathway, thus alleviating pressure overload-induced heart failure in mice.
sphingosine-1-phosphate; heart failure; cardiac hypertrophy; cardiac microvascular density
R541; R363.2
A
10.3969/j.issn.1000-4718.2023.02.001
1000-4718(2023)02-0193-11
2022-07-25
2022-11-02
[基金項目]國家自然科學(xué)基金資助項目(No. 81873505);湖北省自然科學(xué)基金資助項目(No. 2018CFB552)
Tel: 027-83663607; E-mail: jiangjg618@126.com
(責(zé)任編輯:林白霜,羅森)