• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Anti-Disturbance Control for Tethered Aircraft System With Deferred Output Constraints

    2023-03-09 01:03:56MengshiSongFanZhangBingxiaoHuangandPanfengHuangSenior
    IEEE/CAA Journal of Automatica Sinica 2023年2期

    Mengshi Song,Fan Zhang,,Bingxiao Huang,and Panfeng Huang, Senior

    Abstract—In this paper,we investigate the peaking issue of extended state observers and the anti-disturbance control problem of tethered aircraft systems subject to the unstable flight of the main aircraft,airflow disturbances and deferred output constraints.Independent of exact initial values,a modified extended state observer is constructed from a shifting function such that not only the peaking issue inherently in the observer is circumvented completely but also the accurate estimation of the lumped disturbance is guaranteed.Meanwhile,to deal with deferred output constraints,an improved output constrained controller is employed by integrating the shifting function into the barrier Lyapunov function.Then,by combining the modified observer and the improved controller,an anti-disturbance control scheme is presented,which ensures that the outputs with any bounded initial conditions satisfy the constraints after a pre-specified finite time,and the tethered aircraft tracks the desired trajectory accurately.Finally,both a theoretical proof and simulation results verify the effectiveness of the proposed control scheme.

    I.INTRODUCTION

    THE relevant technology of the tethered aircraft system(TAS) is extensively applied in autonomous aerial refueling (AAR) systems [1],towed aerial recovery drogue systems[2],etc.It is known that the technological index of the position accuracy of the tethered aircraft is needed in practical applications,i.e.,the tethered aircraft is required to be constrained within a certain range and track the desired trajectory as accurately as possible.For example,in an AAR system,the drogue needs to stabilize itself in the neighborhood of the desired position to ensure the precise docking between the drogue and the receiver aircraft and avoid a collision with the receiver aircraft [3].

    However,due to the unstable flight of the main aircraft and complex airflow disturbances [4],especially gusts,it is difficult to maintain the tethered aircraft within the expected range without the output constraint controller (OCC).Consequently,the OCC is vital for TAS.A necessary condition of the traditional OCC is that initial outputs satisfy constraints.Nevertheless,under airflow disturbances,the tethered aircraft may fluctuate greatly before the OCC operates,resulting in a situation where the tethered aircraft violates the output constraints at the beginning.In [5],the deferred output constraint is presented,which indicates the output constraint is imposed after the system runs for a period of time.By assuming that the output constraint is not imposed for a period of time after the system operates,the deferred output constraint also includes the situation where the output constraint may be violated initially.To sum things up,we can draw the conclusion that TAS satisfies the deferred output constraint rather than the traditional output constraint.

    In recent decades,a lot of barrier Lyapunov function (BLF)-based control methods have been presented to cope with output/state constraints [6]–[8].In [9],a strict-feedback nonlinear system with output constraints is studied based on BLF.In[10],an adaptive control scheme is constructed for nonlinear stochastic systems with full state constraints by introducing symmetric and asymmetric BLFs.In [11],a BLF-based adaptive fault tolerant control method is presented to deal with the problem caused by state constraints and unknown faults of the elevators of hypersonic flight vehicles.It is known that these existing BLF-based control methods have a common prerequisite where the constraints are established from the beginning of the system operation.In other words,these methods cannot be directly used to solve the control problem of TAS subject to deferred output constraints.

    To further deal with such problems,Song and Zhou [5] proposed a shifting function-based tracking control scheme of strict-feedback systems in the presence of deferred and asymmetric yet time-varying constraints.Although the method presented by Song and Zhou can not deal with the output constrained issue of TAS due to its nonlinear coupling characteristics,the shifting function in [5] has the ability to solve such problems.In the light of the shifting function,Sunet al.[12]developed the tracking control strategy of unmanned surface vessels subject to deferred asymmetric constraints.

    From the control point of view,a key factor to enhance the tracking accuracy of the tethered aircraft is to improve the anti-disturbance ability of the controller by exactly estimating unknown disturbances.So far,many disturbance observers have been proposed to estimate disturbances accurately,such as the extended state observer (ESO) [13],sliding mode disturbance observer [14] and nonlinear disturbance observer[15].Among them,due to its high-performance and easy implementation [16],ESO is widely adopted in underwater vehicles [17],quadrotor unmanned aerial vehicles [18],AAR systems [19],etc.

    The basic idea of ESO is to expand the unknown disturbance into a new state and then establish a novel extended state equation to estimate the new state in real time.An implicit condition of ESO is to avoid the large initial estimation error of the new state.Otherwise,the peaking phenomenon will appear due to the large observer parameters.Nevertheless,it is difficult to obtain exact initial values of observers in practice.

    The peaking problem is an intrinsic characteristic of observers,which may lead to system performance degradation or hazards [20].Khalil and Praly [21] illustrated the basic principle of peak phenomenon in detail,and further analyzed it with simulations.Puet al.[22] designed an adaptive ESO with a linear time-varying form to inhibit the peaking phenomenon.Zhao and Guo [23] proposed a fal-based singleparameter-tuning ESO,resulting in better performance and smaller peaking value than the linear ESO.However,the existing ESOs only weaken the peaking value,and do not completely solve the peaking problem.Hence,an effective modified ESO to completely remove the peaking phenomenon is essential to improving system performance.

    Inspired by the aforementioned analysis,to solve deferred output constraints and peaking problems,an anti-disturbance control method for TAS with the unstable flight of the main aircraft and airflow disturbances is proposed by introducing the shifting function into ESO and BLF.The main contributions of this paper are concluded as follows:

    1) Unlike the previous works [24] and [25],the paper considers the fact that the main aircraft flies unsteadily,removing the common assumption that the main aircraft flies at a constant velocity.

    2) Different from the current ESO [23],which can only weaken the peaking value,the modified shifting functionbased ESO (SFESO) completely circumvents the peaking phenomenon and guarantees the accurate estimation performance.

    3) Compared with the existing BLF-based constrained control method [26] and [27],the improved output constrained controller solves the deferred output constraint problem of TAS by combining the shifting function and BLF.

    4) By integrating the modified observer and improved output constrained controller into the dynamic surface control(DSC) scheme,an anti-disturbance control method is proposed,which ensures that the tethered aircraft with any bounded initial condition tracks the desired trajectory exactly and satisfies the output constraints after a pre-specified finite time.

    The rest of this paper is organized as follows.In Section II,the tethered aircraft model and some technical lemmas are introduced.Section III constructs the SFESO and then designs the anti-disturbance control method for the TAS subject to deferred output constraints.In Section IV,the AAR system is simulated as an example to verify the effectiveness of the proposed control scheme.Finally,Section V concludes this paper.

    II.PROBLEM STATEMENT AND PRELIMINARIES

    A.Problem Statement

    As shown in Fig.1,o g xgygzgis the inertial frame.To conveniently express the unstable flight of the main aircraft and establish the dynamic model of the tethered aircraft,oIxIyIzIis introduced as the reference frame,parallel toog xg yg zg,whereoIflies at a constant speedvI.l his the position vector fromoItoob,andlhand ξh,?hare the length and orientations ofl h,respectively.l iis the position vector from jointi+1 to jointiwithi=1,...,n.oh xh yh zh,o1x1y1z1andob xb yb zbare the body-fixed frame ofl h,l1and the tethered aircraft,respectively.ψ,?andγare the yaw angle,the pitch angle,and the roll angle of the tethered aircraft,respectively.For any vectorY,Y h,Y1andY bdenote the representation ofYinoh xhyhzh,o1x1y1z1ando b xb yb zb,respectively.

    Fig.1.TAS configuration.

    Remark 1:The lumped mass model is adopted to represent the tether,where each link is massless and elastic,and the natural length of each link is constant,except for the last link.The main purpose of the last variable link is to change the position of the tethered aircraft by controlling the release and recovery of the tether.The lumped mass model is widely used in the previous works involving TAS [28],which is not described in detail here.

    The assumptions are given as follows.

    Assumption 1:Because the attitude of the main aircraft has no effect on the tethered aircraft,the main aircraft is assumed as a particle located at jointn+1 to conveniently display the unstable flight of the main aircraft.

    Assumption 2 [25]:Consider the situation that the reverse torque of the tether is large enough.The rolling angle of the tethered aircraft is very small,which is ignored here.

    Assumption 3:Since the tethered aircraft is dragged by the main aircraft through a tether and flies at a high speed in the air,the tether is tensioned.

    The translational dynamic model of the tethered aircraft inoh xhyhzhis formulated as

    The attitude kinematic model of the tethered aircraft inob xbybzbis derived as

    The attitude dynamic model of the tethered aircraft inob xb yb zbis given by

    wherex dis the desired trajectory.

    Further,define the deferred out constraints as

    The control objective is to design an anti-disturbance controller for TAS (8) subject to the unstable flight of the main aircraft,airflow disturbances and deferred output constraints such that the tracking errorz1evolves within the specified constraint despite any bounded initial condition,and the deferred out constraints (10) are never violated after the prespecified finite timeTc.

    Assumption 4 [2]:System statesx i(i=1,...,4) can be obtained directly or indirectly through the global positioning system(GPS),IMU,camera and tension sensor installed on the main aircraft and the IMU installed on the tethered aircraft.

    Assumption 5:The inverse matrix ofexists.

    B.Preliminaries

    The shifting function is defined as [5]

    whereTsis a pre-specified finite settling time.Nis a positive integer.

    Lemma 1 [5]: s(t) has the following properties:

    1)s(t) is strictly increasing for [0,Ts] withs(0)=0 ands(Ts)=1;

    2)s(t)=1 fort≥Ts;

    3) The time derivatives ofs(t) up to (N+1)th order are continuous and bounded.

    Lemma 2 [29]:Considering the system=f(x L,u L) withx L∈Rnandu L∈Rmbeing the systemstate and input,if there exists a Lyapunov functionVL(x L) satisfying ?1(∥x L∥)≤VL(x L)≤?2(∥x L∥) such that≤?σLVL(x L)+εL,in which ?1,?2are classKfunctions,and σL,εLare positive constants.Then,the system statex Lis bounded.

    Lemma 3 [30]:For |zb|<|kb| with ?kb∈R+,?zb∈R,the following inequality holds:

    III.OBSERVER AND CONTROLLER DESIGN

    In this section,the SFESO is constructed by combing the traditional ESO and shifting function,circumventing the inherent peaking problem in the observer.By using the shifting function to transform the output tracking errors,a SFESO based DSC scheme is developed,which ensures that the system outputs track the desired trajectories exactly and satisfy constraints after a pre-specified finite time,even if the initial outputs exceed constraint boundaries.

    A.SFESO Design

    Remark 6:Note thati=2,4 without special instructions in this subsection.In terms of the definition ofC3and Assumption 2,we know thatC3≈0,which does not need to be approximated by an observer but can be attenuated by the robustness of the controller itself.Therefore,onlyC2andC4are estimated by the SFESO designed in this subsection.

    Assumption 6 [31]: C2,C4andare bou nded.

    Because the shifting functions in the observer and controller do not affect each other,the setting time of the shifting function introduced in the SFESO can be different from that applied in the controller.Define the shifting function in the SFESO with the setting timeT oas

    whereNo=1 satisfyingNo≥1 to ensure thatin (15) is continuous and smooth.

    Define the auxiliary state as

    Taking the time derivative ofx s,iand substituting (8) into it,one yields

    Remark 9:About the constant vectorit is only introduced to guarantee the stability of the system at the initial stage,alleviating the negative influence of the excessive initial estimation error for the controller.Therefore,the exact initial value ofC iis not required.

    Remark 10:The large observer gains in the observer with the initial estimation error always induce serious peaking issues,which may lead to further instability of the system[21].The result is not expected and needs to be avoided as much as possible in practice.In this SFESO,(0)=0,resulting in the situations where the initial estimation errors of (17) and (18) are completely removed.Therefore,by estimatingx s,i,instead ofx i,C i,the peaking issue is completely circumvented,even if the large observer gains are used in the SFESO.

    B.Controller Design

    To cope with the strong coupling nonlinear termA2in the system model (8),a modified coordinate transformation is introduced.Define the following tracking errors as:

    where τiis the filtering output.

    To solve the differential explosion problem about the virtual control signal,the following first order low pass filter is introduced as:

    where λiis the positive diagonal matrix,and αiis the virtual control signal to be designed later.The filtering error is formulated as

    Unlike the shifting function in the SFESO,the shifting functionsc(t) with the different setting timeTcis constructed as the following form in the controller:

    Here,we adopt the above shifting functionsc(t) to obtain a novel transformation tracking error onz i,which is given by

    Remark 11:In terms of Lemma 1,(27) and (28),the novel transformation tracking errorz s,1satisfiesz s,1(0)=0 andz s,1(t)=z1(t) fort≥Tc,regardless of the initial value ofz1.In the following steps,the property will be used to solve the deferred output constraint problem.

    Step 1: According to (8),(23) and (28),the time derivative ofz s,1can be derived as

    To address the deferred output constraint onz1,a barrier Lyapunov function aboutz s,1is expressed as

    whereai(i=1,2,3) are the positive design parameters for the purpose of adjusting the magnitude of the followingk zssuch that its magnitude can be suitable for the virtual control law α1in (34).

    The time derivative ofV1is denoted as

    In terms of Young’s inequality,the following equations hold:

    Then,the virtual control law α1is constructed as

    Step 4: Similar to (37),the time derivative ofz4is described as the following form:

    In the end,the anti-disturbance control law for TAS in the presence of the unstable flight of the main aircraft,airflow disturbances and deferred output constraints is designed as

    wherek4is the positive diagonal matrix.

    From(30),(38),(45) and (52),define the Lyapunov function as

    On the basis of (35),(43),(50) and (55),the following inequality holds:

    Based on the above analysis,the following theorem is presented.

    Theorem 2:Consider the nonlinear system(8) under the unstable flight of the main aircraft,airflow disturbances and deferred output constraints.Suppose Assumptions 1–6 hold.By choosing the proper design parametersk i(i=1,...,4),λi(i=1,2,3) andb1satisfying the inequalities (58),the antidisturbance control law (54) is designed based on the SFESOs (13)?(21),the virtual control laws (34),(42),(49),and the first order low pass filter (24),which guarantees that 1)The tracking errorz1can be made arbitrarily small;2) The output constraint (10) is never violated after the pre-specified finite timeTc;3) A ll signals in the closed-loop system are bounded.

    Proof:Integrating (57) yields

    Considering (30),(56) and (59),the following inequality holds:

    In terms ofz1=x1?x dand the boundness ofz1,x d,we can prove thatx1is bounded.Due to the definitions ofk zs,Q zs,it follows thatk zs,Q zsare bounded.Further,by using the fact thatare bounded,the boundness of α1is ensured.Sincee1=τ1? α1ande1is bounded,τ1is also bounded.Furthermore,based onz2=x2?τ1and the boundness ofz2,it is obvious thatx2is bounded.By continuing this reasoning process,the boundness of αi,τi(i=1,2,3) anduis proved.Therefore,all signals in the closed-loop system are bounded.

    IV.SIMULATION RESULTS

    This paper adopts the controllable drogue-based AAR system[25] as the simulation object,in which the tanker,hose and drogue are regarded as the main aircraft,tether and tethered aircraft,respectively.The physical parameters are selected as Table I based on [25] and [32].The acceleration ofthe main aircraft is chosen as[0.3cos(t),0.4cos(t),0.01cos(t)]Tdenoted ino IxIyIzIto show the unstable flight of the main aircraft.The design parameters are selected as

    TABLE I PHYSICAL PARAMETERS

    To verify the effectiveness of the proposed control method under different initial conditions,the following two cases are simulated,where the design parameters under the two cases are the same.

    Case 1:Output constraints are violated at the beginning.The initialvalue of the tracking error isz1(0)=[0.0394,0.0013,0.0014]T.

    Case 2:Initial outputs satisfy the constraints.The initial value of the tracking error isz1(0)=[0.01,0.0005,0.0008]T.

    Fig.2 shows the composite airflow disturbances including the turbulence,gust and wake,in which the turbulence applies the Dryden turbulence model [25],the gust uses the cosine gust model,and the wake induced by the main aircraft adopts the Hallock-Burnham model [33].The figure proves that the airflow environment around TAS is complex and changeable,and that a gust is an extreme airflow disturbance,whose amplitude is much larger than that of the turbulence and wake within 6–12 s.The airflow disturbances bring great challenges to the accurate control of the tethered aircraft with deferred output constraints.

    Fig.2.Composite airflow disturbances including the turbulence,gust and wake.(a) v a,x;(b) v a,y ;(c) v a,z.

    Fig.3.Tracking trajectories.(a) lh ;(b) ξh ;(c) ?h.

    Fig.4.Tracking errors.(a) el ;(b) eξ ;(c) e?.

    Figs.3 and 4 represent the tracking trajectories and tracking errors with the proposed control method in the presence of the unstable flight of the main aircraft,airflow disturbances and deferred output constraints under Cases 1 and 2,respectively.It is clearly observed that the tracking trajectories and tracking errors can meet the constraints after the pre-specified finite timeTc,whether the initial conditions violate or satisfy output constraints.Furthermore,in the face of complex and changeable airflow disturbances described in Fig.2,the tethered aircraft under the proposed control method can still accurately track the desired trajectory,except that the fluctuation ofelis slightly larger at 6–12 s in Fig.4(a) due to an extreme gust.

    Fig.5 shows that the time response of the projection of the tether on thex-axis andy-axis in the presence of the unstable flight of the main aircraft at 15–30 s,where A0 denotes the barycenter of the tethered aircraft and A21 represents the jointn+1.It is obviously seen that the tethered aircraft is still stable in the case with unstable flight of the main aircraft.Fig.6 exhibits the time response ofls,which denotes the total length of the released tether.From Figs.5 and 6,we can draw the conclusion that the negative impact of the unstable flight of the main aircraft on the tethered aircraft can be eliminated by retracting and releasing the tether.

    As depicted in Figs.7 and 8,the real values and estimations ofC′s,2andC′s,4with the proposed control method under Case 1 are exhibited,respectively,confirming good estimation performance of the SFESO.In addition,the peaking issue of the observer is completely circumvented because the initial values of the real values and estimations are equal to zero vectors by introducing (15).Further,it is clearly observed from Fig.8 thatC′s,4,xis not plotted because it is equal to zero during the whole process.Finally,the boundedness of the attitude angles and control inputs is also verified in Figs.9 and 10.

    Fig.5.Time response of the projection of the tether on the x-axis and y-axis under Case 1.

    Fig.6.Total length of the released tether under Case 1.

    Fig.7.Time response of under Case 1.(a) ;(b) ;(c)

    Fig.8.Time response of under Case 1.(a) ;(b)

    Fig.9.Time response of ψ,?, γ .(a) ψ ;(b) ?;(c) γ.

    Fig.10.Control inputs.(a) tn ;(b) uz ;(c) uy.

    V.CONCLUSIONS

    This paper addresses the anti-disturbance control issue of TAS under the conditions of strong coupling nonlinearity,deferred output constraints,unmeasurable tether tension and tension torque,airflow disturbances,and unstable flight of the main aircraft.To deal with nonlinearity,the modified coordinate transformation is constructed.Then,the shifting function is introduced into the BLF-based DSC scheme to solve the deferred output constraint problem of TAS,even when the initial outputs violate constraints.Moreover,the lumped disturbances caused by unmeasurable tether tension and tension torque,airflow disturbances,and unstable flight of the main aircraft are estimated by the proposed SFESO,which also features the ability of completely removing the peaking phenomenon.Finally,the simulation results of the AAR system illustrate the effectiveness of the proposed control method for TAS.In the future,we will study the anti-disturbance control of TAS with deferred output constraints and input saturations,focusing on the trade off when they occur at the same time.

    APPENDIX

    国产成人a∨麻豆精品| 日韩制服骚丝袜av| 黄色配什么色好看| 最近最新中文字幕免费大全7| 熟女电影av网| 免费在线观看完整版高清| 成年av动漫网址| 十八禁高潮呻吟视频| 国产日韩欧美亚洲二区| 免费少妇av软件| 日韩精品免费视频一区二区三区| 欧美激情 高清一区二区三区| 不卡视频在线观看欧美| 精品国产一区二区三区久久久樱花| 交换朋友夫妻互换小说| 欧美激情高清一区二区三区 | 老汉色av国产亚洲站长工具| 免费观看在线日韩| 寂寞人妻少妇视频99o| 日韩一卡2卡3卡4卡2021年| 观看美女的网站| 人妻少妇偷人精品九色| 午夜福利一区二区在线看| 满18在线观看网站| 久久久国产一区二区| 久久国内精品自在自线图片| 欧美在线黄色| 久久久亚洲精品成人影院| 中文精品一卡2卡3卡4更新| 精品久久久精品久久久| 欧美av亚洲av综合av国产av | 国产成人91sexporn| 黄色毛片三级朝国网站| 麻豆乱淫一区二区| 亚洲国产精品999| 国产精品欧美亚洲77777| videossex国产| 亚洲美女搞黄在线观看| 免费高清在线观看日韩| 国产97色在线日韩免费| 高清欧美精品videossex| 极品少妇高潮喷水抽搐| 亚洲第一区二区三区不卡| 99久久中文字幕三级久久日本| 亚洲国产欧美网| 18禁观看日本| 你懂的网址亚洲精品在线观看| 日韩一卡2卡3卡4卡2021年| 久久97久久精品| 婷婷色av中文字幕| 精品酒店卫生间| 欧美日韩一级在线毛片| 丝袜美足系列| 久久久久久久亚洲中文字幕| 亚洲av欧美aⅴ国产| 亚洲精品国产一区二区精华液| av不卡在线播放| 老女人水多毛片| 精品酒店卫生间| 国产极品粉嫩免费观看在线| 国产1区2区3区精品| 国产一级毛片在线| 色94色欧美一区二区| 日韩精品有码人妻一区| 一级毛片我不卡| 女人高潮潮喷娇喘18禁视频| 永久网站在线| 久久久精品94久久精品| 精品少妇一区二区三区视频日本电影 | 免费久久久久久久精品成人欧美视频| 国产片特级美女逼逼视频| 亚洲欧美精品综合一区二区三区 | av片东京热男人的天堂| 免费在线观看视频国产中文字幕亚洲 | 日产精品乱码卡一卡2卡三| 国产精品欧美亚洲77777| 免费黄色在线免费观看| 亚洲成av片中文字幕在线观看 | 狂野欧美激情性bbbbbb| 高清视频免费观看一区二区| 日韩一卡2卡3卡4卡2021年| 国语对白做爰xxxⅹ性视频网站| 女人高潮潮喷娇喘18禁视频| 国产精品 国内视频| 久久久精品94久久精品| 在线观看www视频免费| 国产精品二区激情视频| 中文字幕人妻熟女乱码| 丰满少妇做爰视频| 国产精品麻豆人妻色哟哟久久| 日本-黄色视频高清免费观看| 日日撸夜夜添| 又黄又粗又硬又大视频| 久久久久久人人人人人| 最近2019中文字幕mv第一页| 高清黄色对白视频在线免费看| 满18在线观看网站| 国产精品偷伦视频观看了| 精品久久蜜臀av无| 久久久久久久久免费视频了| 中文乱码字字幕精品一区二区三区| 黄色 视频免费看| 一区二区日韩欧美中文字幕| 午夜福利在线免费观看网站| 超色免费av| 免费不卡的大黄色大毛片视频在线观看| 青青草视频在线视频观看| 又黄又粗又硬又大视频| 久久人人97超碰香蕉20202| 蜜桃在线观看..| 亚洲欧美精品自产自拍| 搡女人真爽免费视频火全软件| 爱豆传媒免费全集在线观看| 满18在线观看网站| 国产精品秋霞免费鲁丝片| 国产日韩一区二区三区精品不卡| 久久国内精品自在自线图片| 在线观看人妻少妇| 精品少妇黑人巨大在线播放| 亚洲成人av在线免费| 欧美精品一区二区免费开放| 一级片'在线观看视频| 精品少妇内射三级| 天天躁日日躁夜夜躁夜夜| 国产精品99久久99久久久不卡 | 欧美日韩国产mv在线观看视频| 国产精品国产三级国产专区5o| 亚洲av综合色区一区| 国产色婷婷99| 看十八女毛片水多多多| 久久99精品国语久久久| 精品久久蜜臀av无| 91精品伊人久久大香线蕉| 在线观看www视频免费| 日韩欧美一区视频在线观看| 丝袜美腿诱惑在线| 五月伊人婷婷丁香| 亚洲欧洲精品一区二区精品久久久 | 日韩av不卡免费在线播放| 日韩中文字幕视频在线看片| 久久青草综合色| 亚洲伊人色综图| 大话2 男鬼变身卡| 久久人人爽av亚洲精品天堂| 精品亚洲成国产av| 国产精品国产三级专区第一集| 日本爱情动作片www.在线观看| 丝瓜视频免费看黄片| 成年美女黄网站色视频大全免费| 黑人欧美特级aaaaaa片| 丝袜喷水一区| 街头女战士在线观看网站| 久久 成人 亚洲| tube8黄色片| 日韩人妻精品一区2区三区| 69精品国产乱码久久久| 99久国产av精品国产电影| 热99久久久久精品小说推荐| 国产成人免费观看mmmm| 侵犯人妻中文字幕一二三四区| 91精品三级在线观看| 日韩一卡2卡3卡4卡2021年| 9热在线视频观看99| 国产毛片在线视频| 亚洲伊人久久精品综合| 侵犯人妻中文字幕一二三四区| 九草在线视频观看| 2018国产大陆天天弄谢| 久久久久久久国产电影| 日韩av在线免费看完整版不卡| 久久久久久久精品精品| 免费少妇av软件| 国产黄频视频在线观看| 王馨瑶露胸无遮挡在线观看| 亚洲欧美成人精品一区二区| 久久久久视频综合| 婷婷色av中文字幕| 久久精品人人爽人人爽视色| 亚洲欧洲日产国产| 日韩制服丝袜自拍偷拍| 这个男人来自地球电影免费观看 | 亚洲精品国产av蜜桃| 一级毛片黄色毛片免费观看视频| 欧美精品av麻豆av| 新久久久久国产一级毛片| 精品人妻偷拍中文字幕| 99久久综合免费| 男女无遮挡免费网站观看| 日本av免费视频播放| 一级毛片我不卡| 免费看不卡的av| 又大又黄又爽视频免费| 中文乱码字字幕精品一区二区三区| 伊人久久国产一区二区| 久久久久久久久久久久大奶| 久久综合国产亚洲精品| 国产精品一二三区在线看| 亚洲av电影在线进入| 午夜久久久在线观看| 中文字幕制服av| 亚洲精品aⅴ在线观看| xxxhd国产人妻xxx| 亚洲精品久久成人aⅴ小说| 看非洲黑人一级黄片| 亚洲精品日本国产第一区| 国产在线视频一区二区| 国产精品 欧美亚洲| 纯流量卡能插随身wifi吗| 国产成人精品久久二区二区91 | 又黄又粗又硬又大视频| 国产欧美亚洲国产| 中文字幕最新亚洲高清| 亚洲第一av免费看| 免费在线观看黄色视频的| 中文乱码字字幕精品一区二区三区| 不卡视频在线观看欧美| www.熟女人妻精品国产| 丝瓜视频免费看黄片| 麻豆av在线久日| 美女福利国产在线| 亚洲男人天堂网一区| 免费不卡的大黄色大毛片视频在线观看| 天堂俺去俺来也www色官网| 色网站视频免费| 91久久精品国产一区二区三区| 少妇人妻精品综合一区二区| 久久久国产欧美日韩av| 啦啦啦中文免费视频观看日本| 少妇猛男粗大的猛烈进出视频| 性色av一级| 深夜精品福利| 男人操女人黄网站| 国产亚洲最大av| 建设人人有责人人尽责人人享有的| 亚洲欧美成人精品一区二区| 免费人妻精品一区二区三区视频| 亚洲av电影在线观看一区二区三区| 日韩中文字幕欧美一区二区 | 色视频在线一区二区三区| 欧美成人精品欧美一级黄| 国产免费现黄频在线看| 七月丁香在线播放| www.熟女人妻精品国产| 制服丝袜香蕉在线| 久久久久国产一级毛片高清牌| 国产 精品1| 精品一品国产午夜福利视频| 制服丝袜香蕉在线| 亚洲国产av影院在线观看| 丰满少妇做爰视频| 国产精品久久久av美女十八| 在线看a的网站| 国产片内射在线| 天堂俺去俺来也www色官网| 国产一区二区三区综合在线观看| 中文字幕人妻熟女乱码| 最近手机中文字幕大全| 亚洲第一av免费看| 精品人妻偷拍中文字幕| 久久人人爽av亚洲精品天堂| 三上悠亚av全集在线观看| 色网站视频免费| 可以免费在线观看a视频的电影网站 | 国产av一区二区精品久久| 人妻系列 视频| 久久这里有精品视频免费| 最新的欧美精品一区二区| av网站在线播放免费| 久久国内精品自在自线图片| 男女午夜视频在线观看| 天堂中文最新版在线下载| 有码 亚洲区| 99热全是精品| 99国产精品免费福利视频| 视频区图区小说| 99九九在线精品视频| 国产免费又黄又爽又色| 亚洲av国产av综合av卡| www.精华液| 久久精品夜色国产| 精品人妻熟女毛片av久久网站| 亚洲国产av影院在线观看| 热99国产精品久久久久久7| 欧美黄色片欧美黄色片| 亚洲av成人精品一二三区| 日韩免费高清中文字幕av| 午夜免费观看性视频| 国产黄频视频在线观看| 久久 成人 亚洲| 91成人精品电影| 男的添女的下面高潮视频| 青春草亚洲视频在线观看| 一级片免费观看大全| 七月丁香在线播放| 18禁观看日本| 免费在线观看黄色视频的| 日韩中文字幕欧美一区二区 | 精品人妻在线不人妻| 亚洲伊人久久精品综合| av线在线观看网站| 亚洲国产av新网站| www.自偷自拍.com| 欧美日韩精品成人综合77777| 久久人人爽人人片av| 国产成人精品无人区| 一级毛片我不卡| 国产一区二区激情短视频 | 大陆偷拍与自拍| 亚洲精品久久午夜乱码| 精品一品国产午夜福利视频| 欧美日韩成人在线一区二区| 精品卡一卡二卡四卡免费| 日韩视频在线欧美| 午夜日本视频在线| 国产1区2区3区精品| 如何舔出高潮| 国产av码专区亚洲av| 国产精品欧美亚洲77777| 美女视频免费永久观看网站| 国产av码专区亚洲av| 亚洲精品国产色婷婷电影| 18禁动态无遮挡网站| 精品国产乱码久久久久久男人| 久久久精品94久久精品| 中文字幕制服av| 最近最新中文字幕大全免费视频 | 男女免费视频国产| 制服人妻中文乱码| av在线app专区| 久久99精品国语久久久| 天天躁日日躁夜夜躁夜夜| 在线精品无人区一区二区三| 在线观看美女被高潮喷水网站| 欧美变态另类bdsm刘玥| 国产人伦9x9x在线观看 | 国精品久久久久久国模美| 欧美+日韩+精品| 久久ye,这里只有精品| 久热这里只有精品99| 成年女人毛片免费观看观看9 | 日本欧美国产在线视频| 满18在线观看网站| 丝袜脚勾引网站| 日本免费在线观看一区| 我要看黄色一级片免费的| 成人亚洲欧美一区二区av| 高清不卡的av网站| 90打野战视频偷拍视频| 毛片一级片免费看久久久久| 久久精品人人爽人人爽视色| 王馨瑶露胸无遮挡在线观看| 精品国产露脸久久av麻豆| 99久久综合免费| 国产免费现黄频在线看| 午夜老司机福利剧场| 久久久国产精品麻豆| 中文字幕av电影在线播放| 国产在线视频一区二区| 卡戴珊不雅视频在线播放| 大香蕉久久网| 精品国产国语对白av| 久久久久久久久久久免费av| 一级毛片电影观看| 国产精品国产三级国产专区5o| 少妇猛男粗大的猛烈进出视频| 久久久久久久国产电影| 久久女婷五月综合色啪小说| 大片电影免费在线观看免费| 飞空精品影院首页| 边亲边吃奶的免费视频| 高清不卡的av网站| 秋霞伦理黄片| 人人妻人人澡人人看| 久久久久国产精品人妻一区二区| 久久女婷五月综合色啪小说| 久久ye,这里只有精品| 日日啪夜夜爽| 大香蕉久久成人网| 99久久精品国产国产毛片| 欧美+日韩+精品| 国产男女内射视频| 成年av动漫网址| 这个男人来自地球电影免费观看 | 亚洲,欧美精品.| 亚洲人成电影观看| 久久久久人妻精品一区果冻| videos熟女内射| 91国产中文字幕| 亚洲四区av| 九草在线视频观看| 97在线视频观看| 亚洲国产精品国产精品| 18在线观看网站| 春色校园在线视频观看| 亚洲国产日韩一区二区| 亚洲精品国产一区二区精华液| 老熟女久久久| 国产精品成人在线| 亚洲av免费高清在线观看| 大香蕉久久网| 成人18禁高潮啪啪吃奶动态图| 国产成人精品一,二区| 国产欧美日韩综合在线一区二区| 最近2019中文字幕mv第一页| 国产精品av久久久久免费| 午夜福利在线免费观看网站| 午夜免费鲁丝| 18+在线观看网站| 欧美国产精品一级二级三级| 美女午夜性视频免费| 一级毛片 在线播放| 纯流量卡能插随身wifi吗| 成人手机av| av女优亚洲男人天堂| 国产成人精品久久久久久| 亚洲国产最新在线播放| 黄色配什么色好看| 久久人人爽av亚洲精品天堂| 宅男免费午夜| 日韩三级伦理在线观看| 欧美 日韩 精品 国产| 国产精品无大码| 一级黄片播放器| 欧美精品一区二区大全| 丰满少妇做爰视频| 欧美日本中文国产一区发布| 国产精品三级大全| 欧美精品高潮呻吟av久久| 日韩一卡2卡3卡4卡2021年| 久久人人97超碰香蕉20202| 日产精品乱码卡一卡2卡三| 日韩 亚洲 欧美在线| 一级毛片黄色毛片免费观看视频| 国产精品久久久久久av不卡| 亚洲欧美成人精品一区二区| 多毛熟女@视频| 成年动漫av网址| 日韩av免费高清视频| 免费黄频网站在线观看国产| 搡女人真爽免费视频火全软件| 啦啦啦啦在线视频资源| 成人毛片60女人毛片免费| 搡老乐熟女国产| 在线观看一区二区三区激情| 国产成人91sexporn| 中文字幕制服av| 国产精品偷伦视频观看了| 午夜激情av网站| 大话2 男鬼变身卡| 午夜老司机福利剧场| 制服诱惑二区| 午夜精品国产一区二区电影| 少妇人妻久久综合中文| 久久久久久久亚洲中文字幕| 97在线视频观看| 亚洲成av片中文字幕在线观看 | 亚洲第一av免费看| www.熟女人妻精品国产| 91精品三级在线观看| 99久久综合免费| 男女免费视频国产| 久久人人爽人人片av| 欧美日韩精品成人综合77777| 亚洲精品一区蜜桃| 中文精品一卡2卡3卡4更新| kizo精华| 日日摸夜夜添夜夜爱| 欧美激情高清一区二区三区 | 久久毛片免费看一区二区三区| 黄色怎么调成土黄色| 黑丝袜美女国产一区| 亚洲国产精品成人久久小说| 一区二区三区精品91| 18禁观看日本| 国产一区亚洲一区在线观看| 另类亚洲欧美激情| 亚洲 欧美一区二区三区| 国产av码专区亚洲av| 国产黄色视频一区二区在线观看| 亚洲天堂av无毛| 亚洲伊人色综图| 国产男女内射视频| 亚洲久久久国产精品| 国产免费一区二区三区四区乱码| 亚洲精品aⅴ在线观看| 国产无遮挡羞羞视频在线观看| 日韩一卡2卡3卡4卡2021年| 久久精品熟女亚洲av麻豆精品| 天堂8中文在线网| 大陆偷拍与自拍| 日韩 亚洲 欧美在线| 国产熟女午夜一区二区三区| 新久久久久国产一级毛片| 97在线视频观看| 免费大片黄手机在线观看| 国产在视频线精品| 婷婷色麻豆天堂久久| 中文字幕制服av| xxx大片免费视频| 亚洲男人天堂网一区| 午夜91福利影院| 永久网站在线| 亚洲综合精品二区| 黄色一级大片看看| 午夜福利视频精品| 国产欧美亚洲国产| 在线观看免费高清a一片| 黄色一级大片看看| 亚洲 欧美一区二区三区| 久久久久精品人妻al黑| 日韩成人av中文字幕在线观看| 国产精品二区激情视频| 精品少妇久久久久久888优播| 精品人妻熟女毛片av久久网站| 校园人妻丝袜中文字幕| 不卡视频在线观看欧美| 一区二区三区四区激情视频| 看免费成人av毛片| 91在线精品国自产拍蜜月| 亚洲精品美女久久av网站| 久久人人爽av亚洲精品天堂| 在线精品无人区一区二区三| 久久精品久久精品一区二区三区| 大香蕉久久网| 色播在线永久视频| 黑丝袜美女国产一区| 亚洲综合精品二区| 日本-黄色视频高清免费观看| 在线 av 中文字幕| a级毛片在线看网站| 少妇熟女欧美另类| 香蕉国产在线看| 三上悠亚av全集在线观看| 一区二区av电影网| 国产亚洲av片在线观看秒播厂| 亚洲一级一片aⅴ在线观看| 少妇精品久久久久久久| 一本色道久久久久久精品综合| 亚洲视频免费观看视频| 亚洲欧美一区二区三区久久| 午夜日本视频在线| 久久精品国产鲁丝片午夜精品| 激情五月婷婷亚洲| 午夜福利在线免费观看网站| 在线免费观看不下载黄p国产| 极品人妻少妇av视频| 赤兔流量卡办理| 久久精品国产综合久久久| 丝袜人妻中文字幕| 精品人妻一区二区三区麻豆| 成人18禁高潮啪啪吃奶动态图| 人体艺术视频欧美日本| 三级国产精品片| 亚洲av男天堂| 深夜精品福利| 老司机亚洲免费影院| 香蕉国产在线看| 欧美97在线视频| 高清不卡的av网站| 熟女电影av网| 曰老女人黄片| 麻豆av在线久日| 国产无遮挡羞羞视频在线观看| 亚洲熟女精品中文字幕| 狠狠精品人妻久久久久久综合| 日韩不卡一区二区三区视频在线| 国产精品免费视频内射| av免费观看日本| 国产97色在线日韩免费| 国产精品久久久久久久久免| 欧美bdsm另类| 黑人巨大精品欧美一区二区蜜桃| 99热网站在线观看| 欧美精品高潮呻吟av久久| 欧美中文综合在线视频| 午夜免费男女啪啪视频观看| 人人澡人人妻人| 久久久国产精品麻豆| 超碰成人久久| a级毛片在线看网站| 成人二区视频| 精品久久久久久电影网| 国产xxxxx性猛交| 精品一区在线观看国产| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 美女xxoo啪啪120秒动态图| 九草在线视频观看| 亚洲精品第二区| 日日撸夜夜添| 日韩欧美一区视频在线观看| 久久人人爽av亚洲精品天堂| 国产精品一区二区在线观看99| 在现免费观看毛片| 亚洲人成电影观看| 亚洲美女搞黄在线观看| 亚洲综合色网址| 亚洲人成网站在线观看播放| 亚洲 欧美一区二区三区| 最近中文字幕2019免费版| a级毛片黄视频| 亚洲精品,欧美精品| 纯流量卡能插随身wifi吗| 日日撸夜夜添| 久久婷婷青草| 欧美日韩视频高清一区二区三区二| 国产成人精品福利久久| 卡戴珊不雅视频在线播放| 国产免费福利视频在线观看| 精品卡一卡二卡四卡免费| 欧美日韩国产mv在线观看视频| 99热全是精品| 久久精品国产亚洲av高清一级| 99九九在线精品视频| 黄色一级大片看看| 黄色毛片三级朝国网站|