• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The Distribution of Zeros of Quasi-Polynomials

    2023-03-22 20:22:13ByHonghaiWangandQingLongHan
    IEEE/CAA Journal of Automatica Sinica 2023年2期

    By Honghai Wang and Qing-Long Han,

    PROFESSOR Yitang Zhang,a number theorist at the University of California,Santa Barbara,USA,has posted a paper on arXiv [1] that hints at the possibility that he may have solved the Landau-Siegel zeros conjecture.He has claimed that he has disproved a weaker version of the Landau-Siegel zeroes conjecture,an important problem related to the hypothesis.The conjecture is that there are solutions to the zeta function that do not assume the form prescribed by the Riemann hypothesis.Inspired by his work,in thisPerspective,we would like to discuss about the distribution of zeros of quasi-polynomials for linear time-invariant(LTI) systems with time delays.

    The stability and dynamic performance of an LTI system depend on its eigenvalue location,i.e.,the location of zeros of its characteristic function.An LTI system is asymptotically stable if and only if all its eigenvalues are located in the open left-half complex plane.Therefore,analysis of the performance of an LTI system via determination of the eigenvalue location is an important way by applying a frequency-domain method.Moreover,one can design an LTI control system via assigning the zeros of its characteristic function to the desired positions,which is known as eigenvalue assignment [2].

    For an LTI system,one usually considers the eigenvalues in the open right-half complex plane due to the fact that such eigenvalues have a direct influence on the stability of the system.The characteristic function of an LTI system without time delay is a polynomial.One can analyze the distribution of zeros of a polynomial by applying some mathematic tools including the Routh-Hurwitz criterion,Nyquist plot,root locus,and so forth [2].These tools can not only judge the stability of such an LTI system but also determine the number of zeros of the characteristic function in the open right-half complex plane.In addition,one can obtain the location of the zeros by numerical computation because the number of zeros of a polynomial is finite.

    A time-delay system is also called a system with after-effect or dead-time [3].Time-delay systems have received considerable attention due to the fact that time delays exist in a wide range of practical applications,including networked control systems,vehicular traffic flow,and biology [4]–[6].Time-delay systems are a class ofinfinite dimensional systems,which have complicated dynamic properties compared with delay-free systems.For an LTI time-delay system,the location of zeros of the characteristic function plays a significant role in analysis and synthesis of the system[7]–[9].However,it should be pointed out that determination of the distribution of zeros of the characteristic function has always been a difficult issue [10].

    The characteristic functions of LTI time-delay systems can be described by a class of quasi-polynomials [11].Over the last decade,we have conducted research on the distribution of zeros of the quasipolynomials for LTI time-delay systems and derived some results on revealing information about the distribution of zeros of quasi-polynomials with real coefficients and the design of PID type controllers via dominant eigenvalue assignment for LTI systems with single delay[12],[13].Based on our own experience and results in the literature over the past decades,we would like to present some problems on the distribution of zeros of quasi-polynomials for LTI time-delay systems.

    A large class of models of LTI systems with lumped delays can be described by a differential difference equation in the form of

    where x is then-dimensional state variable,Ak,Ckwithk=0,1,...,qare givenn×nreal (or complex) constant matrices,0=τ0<τ1<···<τqare time delays,andq≥1,or in the form of

    where x is a system variable,ak,j,j=0,1,...,n,k=0,1,...,m,are real (or complex) constant numbers,and 0=τ0<τ1<···<τmare time delays.The characteristic function of (1) or (2) can be described by a quasi-polynomial as

    wheresis a complex variable, αk,j,j=0,1,...,n,k=0,1,...,m,are real (or complex) constant numbers,andm=qn.

    ThisPerspectiveis concerned with the following questions:1)How can one determine whether or not all the zeros of the quasipolynomial(3)are located in the open left-half complex plane? and 2) If there exist some zeros of the quasi-polynomial(3)in the open right-half complex plane,how can one determine the number of zeros?

    Determining the distribution of zeros of the quasi-polynomial (3)bydirect calculationis difficult because the inclusion of delays leads to an infinite-dimensional function which hasan infinite number of zeros.Over the past decades,several mathematical methods and techniques for analyzing the distribution of zeros of different types of the quasi-polynomial (3) have been developed.It is necessary for us to introduce some types of the quasi-polynomial (3).

    (i) Commensurate and Incommensurate Delays

    For the delay parameters in the quasi-polynomial (3),τk,k=0,1,...,m,they are calledcommensurateif there exists a positive real number τ which leads to

    where ?kis a nonnegative integer number.Other wise,the delays are calledincommensurate.

    (ii) Retarded Type and Neutral Type

    For (3),if α0,n≠0 and α1,n= α2,n=···= αm,n=0,it reduces to a quasi-polynomial of retarded type.Otherwise,if α0,n≠0 and at least one of αk,n≠0,k=1,2,...,m,the corresponding characteristic function is a quasi-polynomial of neutral type.τk k=0,1,...,m

    If,in (3) are commensurate,the quasi-polynomial can be written as

    by substitutings=into δ(s),where λ is a complex variable,βk,j,j=0,1,...,N,k=0,1,...,M,are real (or complex) constant numbers,M=?mandN=n.Note that δ(s) and H(λ) have the same number of zeros in the open left-half complex plane,in the open right-half complex plane,and on the imaginary axis,respectively,because τ is a positive real number.Then,multiplying H(λ) byeMλ,we have a functionH(λ) in the form of

    where γk,j,j=0,1,...,N,k=0,1,...,M,are real (or complex)constant numbers.Here,H(λ) is also a quasi-polynomial [11].It should be pointed out that the location of zeros of the quasi-polynomialH(λ) is the same as that of H (λ) since the terme Mλ≠0 in the whole complex plane.Therefore,one can exactly analyze the stability and instability of an LTI system with commensurate delays through the location of zeros of the quasi-polynomialH(λ) in (6),which is the work by Pontryagin in 1942 [14].The main results derived by Pontryagin are listed as follows.

    Theorem1:LetH(λ) be a quasi-polynomial in the form (6) with γNM≠0.Write

    where ω is a real number,andHr(ω)andHi(ω) present the real part and the imagi nary part ofH(iω),respectively.IfH(λ)is Hurwitz stable,then the zeros of the functionsHrandHiare real,alternate,and for each ω,

    Each of the conditions given below is sufficient forH(λ) being Hurwitz stable:

    (i) All the zeros of the functionsHr(ω) andHi(ω) are real,alternate,and (8) holds at some ω;

    (ii) All the zeros of the functionsare real and at each zero ω0(8)holds,i.e.,

    (iii)All the zeros of the functionsHi(ω) are real and at each zero ω0(8) holds,i.e.,

    In Theorem1,checking whether all the zeros ofHr(ω) orHi(ω) are real plays a crucial role.To ascertain such a property,one can apply the following theorem due to Pontryagin [14],[15].

    Theorem 2:Let η be a real number such that the coefficient of the term of the highest degree inHr(ω) orHi(ω) does not vanish at ω= η .Then,Hr(ω) orHi(ω) has only real zeros if and only ifHr(ω) orHi(ω) has exactly 4lM+Nreal zeros over the interval [?2lπ+η,2lπ+η],wherelis asufficiently largepositive integer.

    In theory,Protryagin’s Theorems can serve as stability criteria for an LTI system with commensurate delays,whose characteristic function is a quasi-polynomial of retarded type or neutral type,where the coefficients are real or complex.However,they are difficult to benumerically implementedin practice due to the fact that there is no effective method for determining thesufficiently largenumberl.Thus,it is difficult to apply Pontryagin’s Theorems to judge whether or not an LTI time-delay system is asymptotically stable.Consequently,there is no further development in the direction of Pontryagin’s theorems for a long period.

    Since 1969,a τ-decomposition method has been widely developed in the analysis of the location of zeros of the quasi-polynomials for LTI time-delay systems.Such a method involves first decomposing the positive time delay τ axis into many intervals over each of which the number of zeros of the quasi-polynomial in the open right-half plane never change,and then investigating the change of the number of zeros in the open right-half plane when crossing the boundary points of the intervals [16].One can analyze the Hurwitz stability of an LTI system with fixed time delays indirectly via the τ-decomposition method.Most of the existing results in the distribution analysis of zeros of the quasi-polynomials for LTI time-delay systems in the literature are based on the τ-decomposition method,see e.g.,[16]–[26],where references [16]–[19],[23],[25],[26] considered the quasi-polynomials of retarded type for LTI systems with commensurate delays,and reference [21] stressed the quasi-polynomial of neutral type for LTI systems with commensurate delays.Besides,there are other methods for the analysis of the distribution of zeros of the quasi-polynomials for LTI systems with commensurate delays.A Lambert W function based method can be applied to calculation of zeros of the characteristic function of retarded type one by one from right to left in the complex plane for the LTI systems with single delay or commensurate delays [27].Reference [28] is devoted to the analytic study of the distribution of zeros of the quasi-polynomial with respect to the coefficient variation for a scaler retarded single delay system with either real or complex coefficients.Reference [29]describes DDE-BIFTOOL,a Matlab package for numerical bifurcation analysis of systems of delay differential equations with several fixed,discrete delays.For more information about time-delay systems,one can see references [4],[30],[31].

    It should be pointed out that on the one hand,only a few studies in the literature consider the distribution of zeros of quasi-polynomials with complex coefficients.In fact,a quasi-polynomial with complex coefficients also plays an important role in applications,such as consensus of multi-agent systems with a directed network topology [32].On the other hand,many results in the literature focus on LTI systems withcommensurate delays,where most of the results are only valid for the quasi-polynomials of retarded type due to the messy property of the quasi-polynomials of neutral type [31].For an LTI system withincommensurate delays,the analysis of the distribution of zeros of the corresponding quasi-polynomial is a challenge issue[11].Most of the previous studies on this issue are still based on a τ decomposition method with respect to the quasi-polynomials with real coefficients.The cluster treatment of characteristic zeros for LTI systems with two delays of retarded type or neutral type was studied in [20],[33]–[35].Stability switching hypersurfaces of a class of LTI systems with three or multiple time delays were extracted [22].Stability crossing sets were obtained for an LTI system of neutral type with two delays [36] and with three or multiple delays [24] in the delay parameter space.

    We are now back to Pontryagin’s Theorems and would like to discuss about future research.Among the existing results on the distribution of zeros of quasi-polynomials for LTI time-delay systems,Pontryagin’s Theorems can be directly applied to stability judgement in theory.Furthermore,the quasi-polynomial form due to Pontryagin is probably one of the most general [16] in various methods for stability analysis of LTI time-delay systems.Besides,over the past two decades,the stability criteria by Pontryagin for quasi-polynomials play an important role in low-order stabilization of time-delay systems,see e.g.,[11],[37]–[42].Based on Pontryagin’s Theorems,we proposed a new one revealing information about zeros of quasi-polynomials with real coefficients in the open right-half plane and presented some PID controllers for LTI systems with single delay via dominant eigenvalue assignment to further improve the dynamic performance in addition to stability [12].However,due to the difficulty innumerical implementation,Pontyagin’s Theorems have not found wide applications expect for some single delay systems [11].It seems that it is challenging to solve the problemon the numerical implementation for Pontryagin’s Theorems.

    To end this perspective,we raise two open questions for future research.

    i) How to derive Pontryagin-like results that can be numerically implemented for the determination of the number of zeros in the open right-half complex plane of the quasi-polynomials for LTI systems with commensurate delays?

    ii) How to develop a general mathematical analysis of the distribution of zeros of the quasi-polynomials for LTI systems with incommensurate delays?

    We do hope you will join us in this endeavor to discuss about this important issue with your own insight and research.

    ACKNOWLEDGMENTS

    This work was supported in part by the National Natural Science Foundation of China (NSFC) (61703086),the Fundamental Research Funds for the Central Universities (N2104009),the IAPI Fundamental Research Funds (2013ZCX02-03).

    人体艺术视频欧美日本| 男男h啪啪无遮挡| 久热爱精品视频在线9| 老汉色∧v一级毛片| 成年动漫av网址| 中文字幕人妻丝袜制服| 日本vs欧美在线观看视频| 高清不卡的av网站| 亚洲精品中文字幕在线视频| 日韩,欧美,国产一区二区三区| 十八禁人妻一区二区| 午夜久久久在线观看| 夜夜骑夜夜射夜夜干| 在线亚洲精品国产二区图片欧美| 视频区欧美日本亚洲| 国产精品一国产av| 日日爽夜夜爽网站| 亚洲av成人不卡在线观看播放网 | 91麻豆精品激情在线观看国产 | 国产精品三级大全| 久久久久国产精品人妻一区二区| 91麻豆精品激情在线观看国产 | 亚洲一区二区三区欧美精品| 免费高清在线观看视频在线观看| 久久久久国产一级毛片高清牌| 亚洲欧美一区二区三区久久| 国产xxxxx性猛交| 免费观看av网站的网址| 国产精品人妻久久久影院| 丰满少妇做爰视频| 精品亚洲成a人片在线观看| 成人免费观看视频高清| 日本vs欧美在线观看视频| 色播在线永久视频| av在线app专区| 国产在线视频一区二区| 日本午夜av视频| 一级毛片电影观看| 天堂8中文在线网| 一级毛片女人18水好多 | 欧美人与善性xxx| 亚洲av电影在线进入| 99国产综合亚洲精品| 性色av乱码一区二区三区2| 狠狠婷婷综合久久久久久88av| 你懂的网址亚洲精品在线观看| 久久久久久久久久久久大奶| 国产福利在线免费观看视频| 久久99一区二区三区| 日本a在线网址| 亚洲一码二码三码区别大吗| 欧美精品一区二区免费开放| 国产激情久久老熟女| 久久久久网色| 国产精品国产av在线观看| 日韩av在线免费看完整版不卡| www.精华液| 曰老女人黄片| 蜜桃在线观看..| 久久精品成人免费网站| 久久精品久久精品一区二区三区| 飞空精品影院首页| 国产高清不卡午夜福利| 久久久久视频综合| 一二三四在线观看免费中文在| 国产精品香港三级国产av潘金莲 | 每晚都被弄得嗷嗷叫到高潮| 国产欧美亚洲国产| 桃花免费在线播放| 曰老女人黄片| 在线精品无人区一区二区三| 亚洲av男天堂| 国产老妇伦熟女老妇高清| 欧美在线黄色| a级毛片在线看网站| 夫妻午夜视频| 免费在线观看影片大全网站 | 丰满迷人的少妇在线观看| 亚洲欧美精品综合一区二区三区| 国产伦理片在线播放av一区| 久久这里只有精品19| 丁香六月欧美| 无遮挡黄片免费观看| 国产伦人伦偷精品视频| xxx大片免费视频| 欧美日韩av久久| 国产欧美日韩一区二区三 | 菩萨蛮人人尽说江南好唐韦庄| 国产免费一区二区三区四区乱码| 美女中出高潮动态图| 国产精品久久久久久人妻精品电影 | 精品亚洲成a人片在线观看| 肉色欧美久久久久久久蜜桃| 夫妻午夜视频| 久久精品久久久久久久性| 国产在线视频一区二区| 一本色道久久久久久精品综合| 超碰成人久久| 18禁国产床啪视频网站| 亚洲欧美成人综合另类久久久| 欧美乱码精品一区二区三区| 久久精品aⅴ一区二区三区四区| 日韩av不卡免费在线播放| 国产人伦9x9x在线观看| 丝瓜视频免费看黄片| 久久人妻福利社区极品人妻图片 | 亚洲,欧美精品.| 波多野结衣一区麻豆| 国产1区2区3区精品| 午夜免费成人在线视频| 麻豆av在线久日| 亚洲国产精品一区三区| 亚洲国产精品国产精品| 久久久亚洲精品成人影院| 黄片播放在线免费| 男人舔女人的私密视频| 国产福利在线免费观看视频| 免费在线观看日本一区| 亚洲第一av免费看| 色精品久久人妻99蜜桃| 高潮久久久久久久久久久不卡| 伊人久久大香线蕉亚洲五| 欧美激情高清一区二区三区| 中文字幕最新亚洲高清| 黑人巨大精品欧美一区二区蜜桃| 人成视频在线观看免费观看| 脱女人内裤的视频| 国产真人三级小视频在线观看| 免费看十八禁软件| 91精品国产国语对白视频| 精品亚洲成a人片在线观看| 满18在线观看网站| 国产av国产精品国产| 精品亚洲乱码少妇综合久久| 国产精品 国内视频| 久久综合国产亚洲精品| 亚洲av成人不卡在线观看播放网 | 国产男女内射视频| 晚上一个人看的免费电影| 久久女婷五月综合色啪小说| 国产精品 欧美亚洲| 国产精品久久久久久精品古装| 女人久久www免费人成看片| 桃花免费在线播放| 精品国产超薄肉色丝袜足j| 成人亚洲精品一区在线观看| 各种免费的搞黄视频| 水蜜桃什么品种好| 久久久久精品人妻al黑| 国产成人91sexporn| www日本在线高清视频| 国产午夜精品一二区理论片| 老司机午夜十八禁免费视频| 99热全是精品| 天堂中文最新版在线下载| 男女高潮啪啪啪动态图| 亚洲精品一区蜜桃| 大香蕉久久成人网| 91九色精品人成在线观看| 一区二区日韩欧美中文字幕| 人人妻人人澡人人看| 五月天丁香电影| 熟女av电影| 国产极品粉嫩免费观看在线| 一级a爱视频在线免费观看| 91精品三级在线观看| 日本vs欧美在线观看视频| 欧美日韩精品网址| 国产精品一区二区在线观看99| 首页视频小说图片口味搜索 | 久久精品国产亚洲av涩爱| 免费女性裸体啪啪无遮挡网站| 欧美精品一区二区免费开放| 久久久国产一区二区| 一本综合久久免费| 18禁观看日本| 久久精品国产亚洲av涩爱| 久久精品亚洲av国产电影网| svipshipincom国产片| 老司机影院成人| av在线老鸭窝| 夫妻性生交免费视频一级片| 日本午夜av视频| 我的亚洲天堂| 黄网站色视频无遮挡免费观看| 久久久精品免费免费高清| 天天操日日干夜夜撸| 日韩av免费高清视频| 色婷婷久久久亚洲欧美| 亚洲,欧美,日韩| 午夜老司机福利片| 777久久人妻少妇嫩草av网站| 日本黄色日本黄色录像| 国产亚洲欧美精品永久| 亚洲伊人色综图| 视频在线观看一区二区三区| 亚洲自偷自拍图片 自拍| 1024香蕉在线观看| 啦啦啦在线观看免费高清www| 亚洲精品在线美女| 永久免费av网站大全| av在线播放精品| 亚洲国产看品久久| 99热网站在线观看| 国产欧美日韩综合在线一区二区| 午夜福利影视在线免费观看| 免费看不卡的av| 精品国产一区二区久久| 国产精品一二三区在线看| 看免费成人av毛片| 欧美精品av麻豆av| 纯流量卡能插随身wifi吗| 国产成人精品无人区| 黄片播放在线免费| 男人添女人高潮全过程视频| 精品一区二区三区四区五区乱码 | 狠狠婷婷综合久久久久久88av| 两个人看的免费小视频| avwww免费| 国产精品成人在线| 亚洲欧美中文字幕日韩二区| 国产av精品麻豆| 久久午夜综合久久蜜桃| 成年动漫av网址| 黄色片一级片一级黄色片| 丝袜脚勾引网站| 国产在线免费精品| 国产精品免费大片| 亚洲欧美色中文字幕在线| 别揉我奶头~嗯~啊~动态视频 | 国产亚洲av片在线观看秒播厂| 欧美亚洲 丝袜 人妻 在线| 亚洲欧美清纯卡通| 国产三级黄色录像| 中文字幕最新亚洲高清| 国产精品香港三级国产av潘金莲 | 一区福利在线观看| 欧美黄色淫秽网站| 伊人久久大香线蕉亚洲五| 18在线观看网站| 一本大道久久a久久精品| 亚洲男人天堂网一区| av又黄又爽大尺度在线免费看| 国产高清视频在线播放一区 | 欧美另类一区| 美女中出高潮动态图| 国产成人一区二区三区免费视频网站 | 国产精品香港三级国产av潘金莲 | 国产主播在线观看一区二区 | 久久毛片免费看一区二区三区| 日本vs欧美在线观看视频| 热re99久久精品国产66热6| 久久人妻熟女aⅴ| 啦啦啦在线免费观看视频4| h视频一区二区三区| 黄色片一级片一级黄色片| 亚洲精品成人av观看孕妇| 欧美激情高清一区二区三区| 99久久99久久久精品蜜桃| 深夜精品福利| www.精华液| 日本五十路高清| 成年人黄色毛片网站| a 毛片基地| 国产熟女欧美一区二区| 午夜91福利影院| 精品人妻熟女毛片av久久网站| 男女边吃奶边做爰视频| 国产淫语在线视频| 欧美黄色淫秽网站| 新久久久久国产一级毛片| 成年人黄色毛片网站| 老司机在亚洲福利影院| 中文字幕另类日韩欧美亚洲嫩草| 丝袜美足系列| 黄色视频不卡| 啦啦啦中文免费视频观看日本| 免费看不卡的av| 国产男人的电影天堂91| 搡老岳熟女国产| 午夜老司机福利片| 国产一级毛片在线| 日本av免费视频播放| 欧美性长视频在线观看| 肉色欧美久久久久久久蜜桃| 少妇猛男粗大的猛烈进出视频| 另类亚洲欧美激情| √禁漫天堂资源中文www| 欧美av亚洲av综合av国产av| 一级毛片 在线播放| 亚洲国产成人一精品久久久| 一区在线观看完整版| 秋霞在线观看毛片| 日韩熟女老妇一区二区性免费视频| 亚洲av男天堂| a级片在线免费高清观看视频| 大话2 男鬼变身卡| 桃花免费在线播放| 一级黄色大片毛片| 国产不卡av网站在线观看| 大话2 男鬼变身卡| 亚洲情色 制服丝袜| 天天躁狠狠躁夜夜躁狠狠躁| 欧美日本中文国产一区发布| 久久精品久久久久久噜噜老黄| 国产免费视频播放在线视频| 在线观看人妻少妇| 免费高清在线观看视频在线观看| 亚洲精品国产色婷婷电影| 国产精品国产三级国产专区5o| 亚洲男人天堂网一区| 中文字幕人妻熟女乱码| 黄片播放在线免费| 国产欧美日韩一区二区三区在线| 高清黄色对白视频在线免费看| 国产高清videossex| 韩国高清视频一区二区三区| 日韩熟女老妇一区二区性免费视频| 日韩中文字幕视频在线看片| 老司机深夜福利视频在线观看 | 一边摸一边做爽爽视频免费| 九草在线视频观看| 首页视频小说图片口味搜索 | av网站免费在线观看视频| 国产精品亚洲av一区麻豆| 水蜜桃什么品种好| 岛国毛片在线播放| 一本色道久久久久久精品综合| 一边摸一边做爽爽视频免费| 亚洲av电影在线进入| 欧美少妇被猛烈插入视频| 悠悠久久av| 亚洲午夜精品一区,二区,三区| 日本欧美视频一区| 日韩av不卡免费在线播放| 久久久久久久精品精品| 自线自在国产av| 国产精品熟女久久久久浪| 免费黄频网站在线观看国产| 成人亚洲精品一区在线观看| 老司机午夜十八禁免费视频| 无限看片的www在线观看| 国产淫语在线视频| 国产伦人伦偷精品视频| 精品一区在线观看国产| 久久人人97超碰香蕉20202| 叶爱在线成人免费视频播放| 成人18禁高潮啪啪吃奶动态图| 老汉色∧v一级毛片| 日本a在线网址| 国产精品久久久人人做人人爽| 亚洲精品自拍成人| 99国产精品99久久久久| 久久精品熟女亚洲av麻豆精品| 波多野结衣一区麻豆| 不卡av一区二区三区| 老汉色av国产亚洲站长工具| 久久久久久亚洲精品国产蜜桃av| 亚洲专区国产一区二区| 久久精品人人爽人人爽视色| 天堂8中文在线网| 欧美黑人欧美精品刺激| 日日夜夜操网爽| www.av在线官网国产| 久久久久久久久免费视频了| 欧美日本中文国产一区发布| 亚洲中文日韩欧美视频| 大陆偷拍与自拍| 欧美日韩国产mv在线观看视频| 成人亚洲欧美一区二区av| 美女福利国产在线| 大陆偷拍与自拍| 精品久久久精品久久久| 亚洲国产精品一区二区三区在线| 国产精品99久久99久久久不卡| 天天躁夜夜躁狠狠久久av| 国产精品一区二区精品视频观看| 丝袜人妻中文字幕| 欧美亚洲日本最大视频资源| 国产极品粉嫩免费观看在线| av在线app专区| 色婷婷av一区二区三区视频| 国产精品久久久av美女十八| 大片电影免费在线观看免费| 国产又色又爽无遮挡免| 国产精品一区二区免费欧美 | 欧美日本中文国产一区发布| 热re99久久国产66热| 亚洲人成77777在线视频| 午夜91福利影院| 一级毛片黄色毛片免费观看视频| 色婷婷久久久亚洲欧美| 中国美女看黄片| 午夜两性在线视频| 99精品久久久久人妻精品| 国产爽快片一区二区三区| 久久这里只有精品19| 精品亚洲成a人片在线观看| 各种免费的搞黄视频| 日韩视频在线欧美| 丰满人妻熟妇乱又伦精品不卡| 久久毛片免费看一区二区三区| 成人18禁高潮啪啪吃奶动态图| 欧美黑人欧美精品刺激| 精品高清国产在线一区| 免费观看av网站的网址| 水蜜桃什么品种好| 亚洲美女黄色视频免费看| 每晚都被弄得嗷嗷叫到高潮| 国产成人91sexporn| tube8黄色片| 日韩av免费高清视频| 午夜免费男女啪啪视频观看| 久久人人爽av亚洲精品天堂| 久久久国产精品麻豆| 丰满少妇做爰视频| 高清黄色对白视频在线免费看| 日韩 亚洲 欧美在线| 日韩大码丰满熟妇| 欧美 日韩 精品 国产| 久久精品久久久久久噜噜老黄| 亚洲国产精品国产精品| 欧美日韩亚洲国产一区二区在线观看 | 亚洲七黄色美女视频| 97人妻天天添夜夜摸| 日韩大码丰满熟妇| 三上悠亚av全集在线观看| 性少妇av在线| 男女无遮挡免费网站观看| www.熟女人妻精品国产| 亚洲精品美女久久av网站| 大片免费播放器 马上看| 国产亚洲精品久久久久5区| a 毛片基地| 国产精品偷伦视频观看了| 在线亚洲精品国产二区图片欧美| 国产精品亚洲av一区麻豆| 在线观看免费视频网站a站| 在线观看国产h片| 老汉色av国产亚洲站长工具| 一区二区三区乱码不卡18| 99国产精品一区二区蜜桃av | 国产麻豆69| 国产精品麻豆人妻色哟哟久久| 亚洲,欧美,日韩| xxx大片免费视频| 成年动漫av网址| 久久热在线av| 成人免费观看视频高清| 无限看片的www在线观看| 欧美精品人与动牲交sv欧美| 啦啦啦啦在线视频资源| 国产精品秋霞免费鲁丝片| av在线老鸭窝| 国产亚洲欧美精品永久| 亚洲国产毛片av蜜桃av| av片东京热男人的天堂| 欧美在线黄色| 日本猛色少妇xxxxx猛交久久| 波多野结衣av一区二区av| e午夜精品久久久久久久| 国产xxxxx性猛交| 午夜激情久久久久久久| 国产精品久久久av美女十八| 首页视频小说图片口味搜索 | 一本大道久久a久久精品| 午夜免费男女啪啪视频观看| 爱豆传媒免费全集在线观看| 另类精品久久| 满18在线观看网站| 国产免费一区二区三区四区乱码| 午夜影院在线不卡| 亚洲国产av影院在线观看| 久久久久国产精品人妻一区二区| 大陆偷拍与自拍| 一区二区三区四区激情视频| 国产精品二区激情视频| 国产精品三级大全| 精品国产一区二区三区四区第35| 首页视频小说图片口味搜索 | 你懂的网址亚洲精品在线观看| 黄色毛片三级朝国网站| 1024香蕉在线观看| 中文字幕色久视频| 亚洲欧美色中文字幕在线| 国产精品成人在线| 亚洲国产精品成人久久小说| 国产一区二区三区综合在线观看| 男女国产视频网站| 999久久久国产精品视频| 亚洲图色成人| 欧美成狂野欧美在线观看| 国产精品免费视频内射| 伊人亚洲综合成人网| 99久久综合免费| 19禁男女啪啪无遮挡网站| 日日夜夜操网爽| 黄色视频不卡| 日日夜夜操网爽| 黄色一级大片看看| 高潮久久久久久久久久久不卡| 欧美黄色片欧美黄色片| 搡老乐熟女国产| 熟女av电影| 久久人人爽av亚洲精品天堂| 午夜福利,免费看| 精品一区二区三区av网在线观看 | 精品熟女少妇八av免费久了| 欧美日韩亚洲高清精品| 观看av在线不卡| 纯流量卡能插随身wifi吗| 国产极品粉嫩免费观看在线| 亚洲av在线观看美女高潮| av片东京热男人的天堂| 丝袜喷水一区| 2018国产大陆天天弄谢| 国产精品久久久av美女十八| 国产成人啪精品午夜网站| 国产真人三级小视频在线观看| 91老司机精品| 成年美女黄网站色视频大全免费| 日韩中文字幕欧美一区二区 | 国产又色又爽无遮挡免| 好男人视频免费观看在线| 久久天躁狠狠躁夜夜2o2o | 免费久久久久久久精品成人欧美视频| 久久久久精品人妻al黑| 在现免费观看毛片| 亚洲一卡2卡3卡4卡5卡精品中文| 久久狼人影院| 免费一级毛片在线播放高清视频 | 免费女性裸体啪啪无遮挡网站| 天堂俺去俺来也www色官网| 亚洲免费av在线视频| 1024香蕉在线观看| 午夜福利影视在线免费观看| 成人手机av| av在线老鸭窝| 校园人妻丝袜中文字幕| 高清黄色对白视频在线免费看| 欧美 日韩 精品 国产| 大片电影免费在线观看免费| 大香蕉久久网| 97人妻天天添夜夜摸| 午夜老司机福利片| 考比视频在线观看| 咕卡用的链子| 欧美日韩成人在线一区二区| 新久久久久国产一级毛片| 精品第一国产精品| 欧美xxⅹ黑人| 老司机靠b影院| 美女扒开内裤让男人捅视频| 国产一区二区激情短视频 | 少妇被粗大的猛进出69影院| 99九九在线精品视频| 汤姆久久久久久久影院中文字幕| 无遮挡黄片免费观看| 午夜免费鲁丝| 亚洲黑人精品在线| 黑人巨大精品欧美一区二区蜜桃| 欧美大码av| 丝袜美腿诱惑在线| 下体分泌物呈黄色| 十八禁人妻一区二区| 亚洲成人手机| 天天躁夜夜躁狠狠躁躁| 日本wwww免费看| 丝袜在线中文字幕| 制服诱惑二区| 免费看av在线观看网站| 一区二区三区精品91| 韩国高清视频一区二区三区| av福利片在线| 久久精品国产a三级三级三级| 桃花免费在线播放| 男女无遮挡免费网站观看| 久久久久精品国产欧美久久久 | 国产亚洲av高清不卡| 国产精品一国产av| 午夜免费成人在线视频| 亚洲综合色网址| 免费在线观看完整版高清| 国产成人免费无遮挡视频| 丝袜美腿诱惑在线| 777久久人妻少妇嫩草av网站| 久久性视频一级片| 国产高清视频在线播放一区 | 丰满人妻熟妇乱又伦精品不卡| 男女床上黄色一级片免费看| 久久国产亚洲av麻豆专区| 成年美女黄网站色视频大全免费| 亚洲欧美一区二区三区国产| 国产精品成人在线| 老熟女久久久| av又黄又爽大尺度在线免费看| 人妻 亚洲 视频| 国产成人精品久久二区二区免费| 久久精品亚洲av国产电影网| 精品视频人人做人人爽| 午夜91福利影院| 免费观看a级毛片全部| h视频一区二区三区| 精品久久久精品久久久| 欧美人与性动交α欧美精品济南到| 日本欧美视频一区| 大片免费播放器 马上看| 成年人黄色毛片网站| 一区二区日韩欧美中文字幕| 国产免费一区二区三区四区乱码| 日本av免费视频播放| 久久久精品免费免费高清| 婷婷色综合www| 女警被强在线播放| 亚洲男人天堂网一区|