• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Magneto-hydrodynamic simulation study of direct current multi-contact circuit breaker for equalizing breaking arc

    2023-03-06 01:49:38BowenJIA賈博文JianwenWU武建文ShuLI李樞HaoWU吳昊XiangjunPENG彭向軍JianDAI戴健andRuangCHEN陳儒盎
    Plasma Science and Technology 2023年2期
    關(guān)鍵詞:吳昊建文博文

    Bowen JIA(賈博文),Jianwen WU(武建文),Shu LI(李樞),Hao WU(吳昊),Xiangjun PENG (彭向軍),Jian DAI (戴健) and Ruang CHEN (陳儒盎)

    1 Systems Engineering Institute,Academy of Military Sciences,Beijing 100071,People’s Republic of China

    2 School of Automation Science and Electrical Engineering,Beihang University,Beijing 100083,People’s Republic of China

    Abstract This work is based on a direct current (DC) natural current commutation topology,which uses load-carrying branch contacts carrying rated current and multiple sets of series arcing branch contacts in parallel to achieve circuit breaking.The proposed topology can meet the new requirements of higher voltage DC switches in aviation,aerospace,energy and other fields.First,a magneto-hydrodynamic arc model is built using COMSOL Multiphysics,and the different arc breaking characteristics of the arcing branch contacts in different gas environments are simulated.Then,a voltage uniformity coefficient is used to measure the voltage sharing effect in the process of dynamic interruption.In order to solve the dispersion of arcing contact action,a structural control method is adopted to improve the voltage uniformity coefficient.The uniform voltage distribution can improve the breaking capacity and electrical life of the series connection structure.

    Keywords:DC circuit breaker,voltage uniformity coefficient,MHD modelling,uniform-voltage regulation method

    1.Introduction

    Direct current (DC) power supply systems have been widely used in the aerospace,urban rail traction,ship power system and new energy industries due to their outstanding advantages such as good system stability,good load characteristics and simple control [1-3].However,the further development of medium and low voltage DC power supply systems to a higher voltage level needs a breakthrough in DC breaking technology and the development of environment-resistant and lightweight DC switchgear.In recent years,high voltage DC power supply systems with a rated voltage of 270 V have been used in modern multi-electric and all-electric aircraft.Similarly,in the field of aerospace,solar power stations have been demonstrated to provide the largest power supply for spacecraft [4].In the future,the power supply of commercial power stations will reach GW level,and adopting high voltage power supply systems will become an important direction of future space technology development [5,6].In the fields of urban rail traction,new energy vehicles and the new generation of ship power distribution systems,the trend is for developing the voltage level of DC systems to several kV and above,and medium voltage DC power supply systems at kV level have become the focus for development.It can be predicted that high voltage and large capacity DC power supply systems will be fully applied in military and civil fields in the future[7,8].

    For the protection of DC high voltage levels,the large capacity DC contactor is a key device that plays the role of connecting,carrying and breaking the normal circuit,and its breaking characteristics are important factors restricting the performance of its system.In principle,the high voltage DC circuit breaker is generally composed of three branches: the load-carrying branch (main branch),the transfer (breaking)branch and the energy absorbing branch[9].Because there is no current zero crossing point in the DC arc,a special method is needed to extinguish the arc [10,11].The following methods can be adopted [12,13]: increasing the arc voltage by using multiple groups of near-pole voltage drop,increasing the electric field intensity of the arc column and lengthening the arc,and forcing the current to cross zero by using a forced branch,etc.

    Therefore,on the premise of meeting the demand for high voltage and large current DC breaking,this paper firstly proposes a DC natural commutation contactor topology and designs a prototype,which can maintain a low on-state voltage drop when carrying rated current.When breaking the circuit,the asynchronous contact realizes the natural transfer of current,and the arcing contact with high voltage breaking ability completes the breaking of the circuit.Then,based on the Gas Discharge Plasma Database (GPLAS,www.plasmadata.net/index),a two-dimensional magneto-hydrodynamic(MHD) arc model is built by using COMSOL Multiphysics software to simulate the breaking characteristics of multicontact arcs in series under different background atmospheres.Considering a 1 atm hydrogen environment[14],the dynamic voltage sharing characteristics of arcs under different mechanical action dispersions are studied by designing different initial arc temperature values.Finally,a structural control method is adopted to make the arc voltage of each contact achieve dynamic uniformity in the breaking process,which improved the breaking capacity and switching electrical life.

    2.Principle and modeling of the current commutation voltage sharing breaking

    The contact structure of a DC natural commutation contactor consists of two parts: the load-carrying branch carries rated current,and the arcing branch breaks the circuit.The loadcarrying branch and arcing branch are parallel in structure.The assembled contactor prototype and internal current distribution are shown in figure 1.Under the rated condition,a large proportion of the current flows through the load-carrying branch,which limits the improvement of the contact voltage drop and solves the problem of rated temperature rise under large DC current.On contact structure,the moving contacts of the load-carrying branch and the arcing branch are installed on the same electromagnetic operating mechanism,but the design of contacts overtravel is different.The contact overtravel of the load-carrying branch is smaller than that of the arcing branch,so that the main contacts are first opened during the breaking process,and the arcing contacts can still maintain a good circuit conduction state.When breaking the circuit,the internal circuit current will naturally commutate in the contactor.Under certain conditions,the main contact does not ignite an arc during the commutation process.After commutation,the arc voltage can be improved by the sealed gas environment.

    2.1.Hypotheses

    As a kind of high temperature plasma which is in a state close to thermodynamic equilibrium,the movement process of an arc can be described by an MHD model during arc extinction.In this paper,the arc MHD model includes the following assumptions.(1)The arc ignition and electrode opening process are ignored,that is,the process of arc extinguishing is simulated under the condition that the opening distance and the initial temperature of the arc are determined.(2)The research object is a macro-neutral Newtonian fluid,and the flow property is weakly compressible.(3) The viscous dissipation and isobaric expansion in the energy equation are neglected.(4) The magnetic field produced by displacement current and arc current is ignored.The movement of the arc depends on the magnetic field generated by the permanent magnet.

    2.2.Geometry of the MHD model

    Figure 2 shows the geometry of the arc MHD model built using COMSOL Multiphysics and the equivalent process of the model.The voltage,current,derivative of current over time,electrical potential,velocity field,pressure and temperature are calculated by using the electrical circuit,electrical current,laminar flow and heat transfer in fluids interface nodes.The thermal flow and the heat transfer in fluids are coupled through the non-isothermal flow interface,and the electrical current and heat transfer in fluids are coupled through the equilibrium discharge head source interface,where the heat source components consider enthalpy transport and Joule heating.

    Figure 1. The assembled contactor prototype and internal current distribution.

    Figure 2. Geometry and equivalent process of the MHD model.

    Figure 3. Simulation results for arc temperature in H2.

    Figure 4.Dynamic voltage sharing coefficients of multi-contact arcs under different gas pressures in H2.

    Figure 5. Simulation results for arc temperature in N2.

    Figure 6.Dynamic voltage sharing coefficients of multi-contact arcs under different gas pressures in N2.

    Figure 7. Simulation results for arc temperature in H7N3.

    Figure 8.Dynamic voltage sharing coefficients of multi-contact arcs under different gas pressures in H7N3.

    Figure 9.The simulation results for dynamic voltage sharing under structural control.

    Figure 10.Voltage sharing breaking effect under magnetic field regulation.

    Due to the symmetry of the structure,the arcs between B1,C1and D1contacts are mirror antisymmetric to those between B2,C2and D2contacts,so the model can be further simplified.The equivalent process of the cathode and anode terminals is as follows.The static and moving contacts of B2,C1and D2in figure 1 are regarded as equipotential,that is,the contacts are kept in contact and no arc is generated.Anode1 and Cathode1 are equivalent to the static and moving contacts of B1respectively,Anode2 and Cathode2 are equivalent to the static and moving contacts of C2respectively,Anode3 and Cathode3 are equivalent to the static and moving contacts of D1respectively,and the equipotential part can be considered to be equivalent to a cylindrical conductor.Since the simplified simulation model corresponds to half of the supply voltage,the external circuit is equivalent to a 1500 V DC power supply,10 μH equivalent line inductance,and 1.1 Ω load resistance.

    The MHD geometric model contains three independent discharge gas regions separated by nylon.The physical parameters of the discharge gas are determined using GPLAS.A magnetic field perpendicular to the plane direction is applied to the three discharge areas,and the magnetic induction intensity is expressed asBz1,Bz2andBz3.In order to realize the reverse motion of the adjacent arc,Bz2is opposite to the other two magnetic fields.At the initial time of the simulation,the geometric dimension of the arc is set as 2 mm in diameter and 3 mm in length.The initial temperature isT0_arc1,T0_arc2andT0_arc3.In the MHD model,the magnetic induction intensity is set to 50 mT.The arc initial temperature is set to 13 000 K.In the simulation model,an auxiliary switch is connected at both ends of the contact at different positions,as shown in figure 2(a).Auxiliary switches are used to form different arc motion conditions.In the simulation model,these auxiliary switches are connected in parallel to the gaps at different positions through the‘terminal’interface in the ‘electric circuit’ module.When the auxiliary switch is closed,since the on-state resistance of the auxiliary switch is much smaller than that of the arc,the current in the circuit will flow through the auxiliary switch,and the arc between the electrodes will not move because there is nearly no current.As shown in figure 2(b),Auxiliary Switch 1 is opened and the currentiin the circuit will flow through arc1,resulting in a movement trend under the magnetic field.The time when large current flows into the arc is changed by setting the opening time of the auxiliary switch.The opening sequence of the three auxiliary switches is set respectively to make the arc move at different times under the action of the Lorentz force,resulting in unbalanced voltage.In the simulation model,the opening times of the auxiliary switches are set as 100 μs and 200 μs.Subsequently,the cooled gas gradually recovers its insulation characteristics to complete the circuit disconnection.

    2.3.Governing equations

    The evolution of an arc plasma is the result of the interaction of gas dynamics and an electromagnetic field.According to MHD theory,the Navier-Stokes equation and energy conservation equation can be used to calculate the flow characteristics of the arc extinction process[15,16].According to the mass conservation equation,the arc plasma should satisfy the mass continuity theorem,as shown in equation (1).

    where ρ is the plasma mass density,kg m-3;u is the velocity vector,m s-1.

    The velocity distribution of the arc plasma is obtained by solving the momentum equation(Navier-Stokes equation),as shown in equations (2) and (3)

    wherepis the plasma pressure,Pa; μ is the viscosity,kg(m·s)-1; J is the current density,A m-2; B is the magnetic induction intensity of arc blowing,T.I in equation (2) is a unit matrix of order 3.

    The dynamic temperature distribution in the interrupter can be obtained by calculating the energy conservation equation through the coupling of multiple physical interfaces,as shown in equations (4)-(6).

    whereCpis the specific heat at constant pressure,J(kg·K)-1;kis the thermal conductivity,W (m·K)-1;Tis the plasma temperature,K.kBis Boltzmann’s constant; the variableqin lower case is the elementary charge,equal to 1.602 × 10-19C; σ is the electrical conductivity,S m-1.In order to obtain the further change of arc plasma temperature at low temperature,the minimum value of electrical conductivity is set in the physical parameters of the arc extinguishing medium.σminequals 0.02 S m-1,and the corresponding cutoff temperatureTcutoffis 4500 K.

    2.4.Boundary settings

    For the wall condition in the model,the no-slip condition is selected,with a no-slip wall where the fluid velocity relative to the wall velocity is zero [17].For a stationary wall that means that u = 0.The open boundary condition describes a boundary in contact with a large volume of fluid,and fluid can both enter and leave the domain on boundaries with this type of condition.

    3.Simulation research and analysis

    3.1.Simulation of dynamic voltage sharing under the same initial conditions

    In this section,under the same initial conditions,MHD modeling and simulation are carried out using the gas physical parameters of H2,N2and H2-N2(7:3 mixture ratio,represented by H7N3) in the plasma database under different gas pressures,and the simulation results of voltage distribution during the interruption process are obtained.In order to define the effect of dynamic voltage sharing in the process of breaking,a normalized voltage uniformity coefficientkis used in this work,as shown in equation (7).

    wherenis the number of arcing contacts,which is 3 in this paper;u i(t)is the arc voltage between theith contacts;(t)is the average voltage of all arcing contacts at the current time;is the static expected voltage sharing value.

    The simulation results for arc temperature under different pressures in the H2environment are shown in figure 3.The solid lines in the figure represent the arc current and the arc voltage at different positions(using three colors to distinguish the positions) under the 4 atm condition,the dashed lines indicate the arc current and the arc voltage at different positions under the 2 atm condition and the dot-dashed line indicates the arc current and the arc voltage at different positions under the 1 atm condition.

    According to the simulation results,H2has a good arc extinguishing effect,and the total arcing time is less than 1.22 ms at three pressure points.In particular,the arcing conditions at the maximum power point (Pmax) under each pressure point are marked in figures 3(a)-(c).The arc is elongated under the action of a magnetic field.When the arc voltage increases,the current gradually decreases,and the insulation performance of the gas medium is restored,which realizes the circuit breaking.In addition,when the gas pressure increases,the arc burning time will be decreased correspondingly,and the arc temperature atPmaxis decreased at the same time.

    Dynamic voltage sharing coefficients of multi-contact arcs under different gas pressures in the H2environment are shown in figure 4.Due to the short arcing time,the voltage of each contact is uneven during the breaking process,and the minimum value of the voltage uniformity coefficient is less than 70%.The overvoltage between some contacts is high,so the energy absorbing element should be considered properly.

    The simulation results for arc temperature atPmaxunder different pressures in the N2environment are shown in figure 5.Unlike in H2,the arcing time in N2increases significantly,ranging from 4.94 to 7.8 ms.The arc temperature at the maximum power point of the arc increases slightly with the arcing time.Similarly,the overvoltage between some contacts is also high,so the energy absorbing element should be considered properly.

    As shown in figure 6,dynamic voltage sharing coefficients of multi-contact arcs under different gas pressures in N2can also be maintained at about 85%.The effect of arc dynamic voltage sharing is obvious.

    In view of the high overvoltage problem of a single gas in the circuit breaking process,H7N3 is selected as the arc extinguishing medium to study the breaking characteristics and voltage sharing characteristics of a mixed gas.The simulation results for arc temperature atPmaxunder different pressures in an H7N3 environment are shown in figure 7.

    Compared with the single component gas,the arcing time of the mixed gas is closer to that of the H2environment,ranging from 1.87 to 3.79 ms.The arc temperature at the maximum power point of the arc is slightly lower,and the dynamic voltage sharing coefficients of the multi-contact arc under different gas pressures in H7N3 have been significantly improved,as shown in figure 8.The voltage uniformity coefficient is about 90%,and it is less affected by gas pressure.In the same way,the overvoltage of the mixed gas arc is obviously lower than that of the single gas arc.

    Table 1.The arcing characteristics under the same initial conditions.

    Under the same initial conditions,table 1 summarizes the arcing characteristics of arc extinguishing media under different gas pressures,including the average temperature at the moment of maximum arc power and the arcing time.

    3.2.Equalizing breaking process regulated by structure

    In this section,research on the voltage equalizing breaking of structural regulation is carried out for an H7N3 arc extinguishing medium under 4 atm.Because of the mechanical dispersion of the opening process,the arc energy between different contacts is not average in the initial stage of arc ignition.

    In the simulation process,three structural regulation methods are designed to study the effect of voltage equalizing breaking.Different auxiliary switch breaking intervals are set as follows.Structural control I:100 μs and 200 μs;structural control II:50 μs and 100 μs;and structural control III: 30 μs and 60 μs.The initial temperature of the arc at different positions is set asT0_arc1=T0_arc2=T0_arc3= 13 000 K,and the magnetic induction is set asBz1=Bz2=Bz3= 50 mT.Based on the above simulation conditions,the simulation results for dynamic voltage sharing under structural control are shown in figure 9.

    According to figure 9,it can be seen that under the condition of the same arc blowing magnetic induction intensity,the first arc always bears a higher voltage during the dynamic breaking process; the contact breaking time sequence istB<tC<tD.The uneven arcing energy will lead to a difference in contact material ablation,which acts against improving the electrical life of the switchgear,and also limits the breaking capacity.The dynamic voltage sharing coefficients of multi-contact arcs under different structural control methods are shown in figure 10.

    According to the simulation results,three kinds of structural control method can affect the dynamic voltage sharing during the breaking process.However,there is a reasonable structural control range for making the voltage uniformity coefficient reach a higher level.When the contact breaking interval is set from 100 μs/200 μs to 50 μs/100 μs,the voltage uniformity coefficient increases from 44.5% to 76.5%.When the contact breaking interval is set from 50 μs/100 μs to 30 μs/60 μs,the voltage uniformity coefficient increases from 76.5% to 83.8%.

    4.Conclusions

    In this work,based on a proposed topology of a DC natural commutation contactor,the voltage sharing breaking simulation of series multi-contact asynchronous breaking is carried out using MHD theory.It can be concluded that:

    (1) Based on the MHD theory,a simulation model of three series multi-contact breaking processes is established.Using H2,N2,and H2-N2mixed gas as the arc extinguishing medium,the arc simulation studies under different gas pressure conditions are carried out and the arc characteristics under different gas types are obtained.

    (2) Under the same initial conditions,the arc dynamic voltage uniformity characteristics between different contacts under a series of gas parameters are obtained.Considering the uneven voltage distribution caused by series multi-contact asynchronous breaking,a structural control method is proposed,and a normalized dynamic voltage uniformity coefficient is used to obtain the dynamic voltage sharing effect after regulation.

    (3) In view of the mechanical dispersion of the opening process,there is a reasonable structural control range to make the voltage uniformity coefficient reach a higher level.The voltage uniformity coefficient is increased from 44.5% to 76.5% when the contact breaking interval is set from 100 μs/200 μs to 50 μs/100 μs,and correspondingly from 76.5% to 83.8% when the contact breaking interval is set from 50 μs/100 μs to 30 μs/60 μs.

    Acknowledgments

    This work is supported by National Natural Science Foundation of China(No.51977002).This manuscript is recommended by the Third International Symposium on Insulation and Discharge Computation for Power Equipment (IDCOMPU2021).The physical parameters of the discharge gas were determined by GPLAS (www.plasma-data.net/index).

    猜你喜歡
    吳昊建文博文
    第一次掙錢
    冼建文
    南風(fēng)(2020年8期)2020-08-06 10:25:54
    Long-Time Dynamics of Solutions for a Class of Coupling Beam Equations with Nonlinear Boundary Conditions
    僑領(lǐng)吳昊:傳遞中俄世代友好的接棒者
    吳昊、呂十鎖國畫作品
    誰和誰好
    Review on Tang Wenzhi’s The Gist of Chinese Writing Gamut
    Measurement and analysis of Doppler shift for high-speed rail scenario①
    打電話2
    當(dāng)代書畫名家
    ——李建文
    18禁国产床啪视频网站| 国产亚洲精品久久久久5区| 久久亚洲精品不卡| 成年动漫av网址| 91精品三级在线观看| 亚洲欧美精品自产自拍| 爱豆传媒免费全集在线观看| 99久久99久久久精品蜜桃| 999精品在线视频| 国产欧美日韩一区二区三 | 国产又色又爽无遮挡免| 老鸭窝网址在线观看| 亚洲成国产人片在线观看| 男男h啪啪无遮挡| 悠悠久久av| 宅男免费午夜| 久久九九热精品免费| 欧美日韩亚洲国产一区二区在线观看 | 亚洲av男天堂| 无限看片的www在线观看| 午夜视频精品福利| 国产精品.久久久| 国产一区二区三区av在线| 亚洲精品国产一区二区精华液| 无限看片的www在线观看| 精品人妻一区二区三区麻豆| 国产熟女欧美一区二区| 少妇的丰满在线观看| 99久久综合免费| 少妇粗大呻吟视频| 国产免费现黄频在线看| 少妇人妻久久综合中文| 高清欧美精品videossex| 亚洲精品一区蜜桃| 欧美激情高清一区二区三区| 亚洲av男天堂| 亚洲午夜精品一区,二区,三区| 久久国产精品男人的天堂亚洲| 久久中文字幕一级| 一边亲一边摸免费视频| 侵犯人妻中文字幕一二三四区| 精品视频人人做人人爽| 精品福利永久在线观看| 国产激情久久老熟女| a级毛片黄视频| 免费少妇av软件| 免费观看人在逋| 日本vs欧美在线观看视频| 热re99久久国产66热| 亚洲专区中文字幕在线| 久久人妻福利社区极品人妻图片 | 成年动漫av网址| 你懂的网址亚洲精品在线观看| 婷婷色麻豆天堂久久| 亚洲av国产av综合av卡| 日韩av在线免费看完整版不卡| 性少妇av在线| 国产男女内射视频| 国产视频首页在线观看| 久久精品国产综合久久久| 久久精品久久久久久久性| 美女中出高潮动态图| 色网站视频免费| 99精品久久久久人妻精品| 一本—道久久a久久精品蜜桃钙片| av一本久久久久| 王馨瑶露胸无遮挡在线观看| 色婷婷久久久亚洲欧美| 丝袜在线中文字幕| 美女午夜性视频免费| 亚洲成av片中文字幕在线观看| 十八禁网站网址无遮挡| 丁香六月天网| 免费看av在线观看网站| 天天躁夜夜躁狠狠躁躁| 人人妻,人人澡人人爽秒播 | www.999成人在线观看| 久久久久精品人妻al黑| 九草在线视频观看| 欧美日韩综合久久久久久| 少妇裸体淫交视频免费看高清 | 亚洲成色77777| 亚洲av成人精品一二三区| 精品少妇久久久久久888优播| 天堂俺去俺来也www色官网| 亚洲国产精品999| 大香蕉久久成人网| 黄色怎么调成土黄色| 国产成人欧美| 国产av精品麻豆| 十分钟在线观看高清视频www| 国产在视频线精品| 人妻 亚洲 视频| 亚洲精品自拍成人| 日日爽夜夜爽网站| 亚洲伊人色综图| 99国产综合亚洲精品| 久久久久久亚洲精品国产蜜桃av| 777久久人妻少妇嫩草av网站| 久久精品aⅴ一区二区三区四区| 一级片免费观看大全| √禁漫天堂资源中文www| 国产精品免费视频内射| 日韩,欧美,国产一区二区三区| 别揉我奶头~嗯~啊~动态视频 | 亚洲av成人不卡在线观看播放网 | 久久久久久亚洲精品国产蜜桃av| 在线 av 中文字幕| 另类亚洲欧美激情| 午夜老司机福利片| 国产老妇伦熟女老妇高清| 人妻 亚洲 视频| 国产黄频视频在线观看| 精品国产国语对白av| 伊人久久大香线蕉亚洲五| 黑丝袜美女国产一区| 亚洲国产欧美在线一区| 国产午夜精品一二区理论片| 69精品国产乱码久久久| 中文字幕精品免费在线观看视频| 无遮挡黄片免费观看| 亚洲国产精品一区二区三区在线| 青青草视频在线视频观看| 亚洲国产欧美日韩在线播放| 免费女性裸体啪啪无遮挡网站| 啦啦啦在线观看免费高清www| 久久久久国产精品人妻一区二区| 国产精品九九99| 亚洲伊人久久精品综合| 精品高清国产在线一区| 国产主播在线观看一区二区 | 日韩制服丝袜自拍偷拍| 一级,二级,三级黄色视频| 久久国产精品人妻蜜桃| 十八禁高潮呻吟视频| 精品免费久久久久久久清纯 | 岛国毛片在线播放| 午夜久久久在线观看| 国产日韩欧美视频二区| 亚洲九九香蕉| 黑人欧美特级aaaaaa片| 日本五十路高清| 国产免费福利视频在线观看| 黄片播放在线免费| 国产精品麻豆人妻色哟哟久久| 久久免费观看电影| 国产成人a∨麻豆精品| 精品亚洲乱码少妇综合久久| 天天躁夜夜躁狠狠久久av| 亚洲情色 制服丝袜| 国产爽快片一区二区三区| 51午夜福利影视在线观看| 国产精品 欧美亚洲| 亚洲精品中文字幕在线视频| 大话2 男鬼变身卡| 青春草亚洲视频在线观看| 欧美日韩亚洲高清精品| 男女下面插进去视频免费观看| 黑人欧美特级aaaaaa片| 国产日韩欧美在线精品| 国产一区二区三区av在线| av国产久精品久网站免费入址| 日韩精品免费视频一区二区三区| 欧美成狂野欧美在线观看| 中文字幕高清在线视频| 国产午夜精品一二区理论片| 日本wwww免费看| 老司机亚洲免费影院| 亚洲国产精品999| 老司机午夜十八禁免费视频| 99热全是精品| 国产有黄有色有爽视频| 久久综合国产亚洲精品| 久久国产精品男人的天堂亚洲| 欧美亚洲 丝袜 人妻 在线| 丁香六月欧美| 热99久久久久精品小说推荐| 99热网站在线观看| 久久久久久免费高清国产稀缺| 老司机影院毛片| 国产精品欧美亚洲77777| 亚洲精品国产区一区二| 亚洲一码二码三码区别大吗| 丁香六月欧美| kizo精华| 午夜激情久久久久久久| 久久久久久久国产电影| 这个男人来自地球电影免费观看| 美国免费a级毛片| 久久精品aⅴ一区二区三区四区| 一区在线观看完整版| 国语对白做爰xxxⅹ性视频网站| 久久久精品免费免费高清| 日韩伦理黄色片| 在现免费观看毛片| 国产精品一区二区在线观看99| 成人三级做爰电影| 蜜桃国产av成人99| 日韩人妻精品一区2区三区| 丁香六月欧美| 亚洲,欧美精品.| 日韩制服骚丝袜av| 久久精品久久久久久久性| 欧美日韩亚洲综合一区二区三区_| 国产高清国产精品国产三级| 亚洲少妇的诱惑av| 午夜av观看不卡| 欧美 亚洲 国产 日韩一| 久久久欧美国产精品| 午夜老司机福利片| 一区二区三区激情视频| av网站免费在线观看视频| 久久99热这里只频精品6学生| 国产又爽黄色视频| 国产成人一区二区三区免费视频网站 | 亚洲国产毛片av蜜桃av| 日韩伦理黄色片| 黄色视频在线播放观看不卡| 人体艺术视频欧美日本| 人人澡人人妻人| av在线老鸭窝| 女警被强在线播放| 亚洲三区欧美一区| 国产成人精品久久二区二区91| 我的亚洲天堂| 国产免费又黄又爽又色| 日本午夜av视频| 美女国产高潮福利片在线看| 成人亚洲欧美一区二区av| 伦理电影免费视频| 久久精品熟女亚洲av麻豆精品| 69精品国产乱码久久久| 欧美精品亚洲一区二区| 一级毛片黄色毛片免费观看视频| 中文字幕高清在线视频| 国产伦理片在线播放av一区| 午夜激情久久久久久久| av在线app专区| 免费高清在线观看视频在线观看| 高清欧美精品videossex| 十八禁网站网址无遮挡| 在线观看国产h片| 国产亚洲精品第一综合不卡| 香蕉国产在线看| 2021少妇久久久久久久久久久| 亚洲国产日韩一区二区| 亚洲av电影在线观看一区二区三区| 新久久久久国产一级毛片| 久久99精品国语久久久| 亚洲国产精品成人久久小说| 人体艺术视频欧美日本| 中文字幕高清在线视频| 亚洲,欧美,日韩| 91麻豆av在线| 日本91视频免费播放| 亚洲一卡2卡3卡4卡5卡精品中文| 国产精品一区二区精品视频观看| 中文字幕另类日韩欧美亚洲嫩草| 看免费av毛片| 精品一品国产午夜福利视频| 日韩一卡2卡3卡4卡2021年| 欧美日韩黄片免| 男的添女的下面高潮视频| 中文字幕高清在线视频| 九草在线视频观看| 中文字幕最新亚洲高清| 久久久精品免费免费高清| 首页视频小说图片口味搜索 | 自拍欧美九色日韩亚洲蝌蚪91| 黄色 视频免费看| 日韩一本色道免费dvd| 丰满少妇做爰视频| 女性生殖器流出的白浆| 精品少妇久久久久久888优播| 久久久精品免费免费高清| 两人在一起打扑克的视频| 啦啦啦啦在线视频资源| 婷婷色麻豆天堂久久| 欧美国产精品va在线观看不卡| 女人久久www免费人成看片| 成年女人毛片免费观看观看9 | 国产精品成人在线| 日韩一区二区三区影片| 777久久人妻少妇嫩草av网站| 精品久久久久久久毛片微露脸 | 亚洲自偷自拍图片 自拍| 国产三级黄色录像| 日日夜夜操网爽| 欧美老熟妇乱子伦牲交| 免费av中文字幕在线| 日本91视频免费播放| bbb黄色大片| 亚洲中文字幕日韩| 亚洲精品日韩在线中文字幕| 黄色视频在线播放观看不卡| 精品福利永久在线观看| 成年人午夜在线观看视频| 国产精品一区二区在线观看99| 校园人妻丝袜中文字幕| 国产av一区二区精品久久| 欧美黄色淫秽网站| 国产亚洲av片在线观看秒播厂| 69精品国产乱码久久久| 亚洲精品中文字幕在线视频| 日本av免费视频播放| 欧美日韩精品网址| 纵有疾风起免费观看全集完整版| 无限看片的www在线观看| 人人妻人人澡人人爽人人夜夜| 精品第一国产精品| 午夜免费男女啪啪视频观看| 亚洲欧洲日产国产| 亚洲欧美色中文字幕在线| 老司机午夜十八禁免费视频| 亚洲国产精品国产精品| 国产精品秋霞免费鲁丝片| 超碰97精品在线观看| 日韩av不卡免费在线播放| 免费在线观看视频国产中文字幕亚洲 | 黄频高清免费视频| 亚洲av片天天在线观看| 国产高清不卡午夜福利| 精品卡一卡二卡四卡免费| 久久精品国产亚洲av涩爱| 青春草亚洲视频在线观看| 日韩欧美一区视频在线观看| 熟女少妇亚洲综合色aaa.| 免费黄频网站在线观看国产| 爱豆传媒免费全集在线观看| 国产日韩欧美在线精品| 爱豆传媒免费全集在线观看| 国产日韩欧美在线精品| 大片电影免费在线观看免费| 无遮挡黄片免费观看| 国产成人91sexporn| 亚洲av成人不卡在线观看播放网 | 丝袜美足系列| 99精国产麻豆久久婷婷| 午夜91福利影院| 国产精品.久久久| 一区二区三区四区激情视频| 亚洲,欧美,日韩| 精品第一国产精品| 一二三四社区在线视频社区8| 亚洲欧洲精品一区二区精品久久久| 在线观看免费视频网站a站| 各种免费的搞黄视频| 午夜福利视频在线观看免费| 久久久久久亚洲精品国产蜜桃av| 涩涩av久久男人的天堂| 国产一区亚洲一区在线观看| 日韩电影二区| 精品欧美一区二区三区在线| av欧美777| 91麻豆av在线| 一区二区日韩欧美中文字幕| 久久ye,这里只有精品| 亚洲人成网站在线观看播放| 在线观看国产h片| 国产91精品成人一区二区三区 | 777米奇影视久久| 日本91视频免费播放| 一级毛片 在线播放| 久久精品国产a三级三级三级| 午夜老司机福利片| videos熟女内射| 国产97色在线日韩免费| 欧美在线黄色| svipshipincom国产片| av视频免费观看在线观看| 日本猛色少妇xxxxx猛交久久| av欧美777| www.精华液| 80岁老熟妇乱子伦牲交| 9色porny在线观看| 黄色视频不卡| 日日摸夜夜添夜夜爱| 日韩,欧美,国产一区二区三区| 啦啦啦中文免费视频观看日本| 欧美日本中文国产一区发布| 国产1区2区3区精品| 19禁男女啪啪无遮挡网站| 久久 成人 亚洲| 亚洲av日韩精品久久久久久密 | 高清视频免费观看一区二区| 日本av手机在线免费观看| 亚洲国产日韩一区二区| 国产免费一区二区三区四区乱码| 最近中文字幕2019免费版| 最近手机中文字幕大全| 久久精品国产亚洲av高清一级| 成年人午夜在线观看视频| 欧美在线一区亚洲| 一级a爱视频在线免费观看| 这个男人来自地球电影免费观看| 婷婷色av中文字幕| 操出白浆在线播放| 亚洲国产精品国产精品| 自拍欧美九色日韩亚洲蝌蚪91| 精品视频人人做人人爽| 中国国产av一级| 亚洲久久久国产精品| av在线播放精品| 亚洲av日韩精品久久久久久密 | 国产一区二区三区综合在线观看| 免费在线观看日本一区| 国产精品.久久久| 久久精品国产综合久久久| 国产有黄有色有爽视频| a 毛片基地| 日韩大码丰满熟妇| 国产精品久久久久久精品古装| 中文字幕人妻熟女乱码| 国产野战对白在线观看| 国产男人的电影天堂91| kizo精华| 黄色毛片三级朝国网站| 精品国产乱码久久久久久男人| 欧美国产精品va在线观看不卡| 美女大奶头黄色视频| 国产亚洲av高清不卡| 成年人黄色毛片网站| 三上悠亚av全集在线观看| 国产精品秋霞免费鲁丝片| 亚洲成人免费av在线播放| 成人三级做爰电影| 熟女av电影| 日日夜夜操网爽| 黑丝袜美女国产一区| 免费日韩欧美在线观看| 日韩av在线免费看完整版不卡| 在线观看www视频免费| 在线观看免费午夜福利视频| 日本五十路高清| 777米奇影视久久| 国产精品久久久人人做人人爽| 黄片播放在线免费| 亚洲av电影在线进入| av电影中文网址| 国产免费福利视频在线观看| 亚洲欧美激情在线| 国产成人av教育| 涩涩av久久男人的天堂| svipshipincom国产片| 午夜福利,免费看| 久久 成人 亚洲| 中文字幕另类日韩欧美亚洲嫩草| 久久久久国产精品人妻一区二区| 观看av在线不卡| av在线app专区| 熟女少妇亚洲综合色aaa.| 亚洲精品第二区| 只有这里有精品99| 韩国精品一区二区三区| 成人三级做爰电影| 人人妻人人爽人人添夜夜欢视频| 好男人视频免费观看在线| 亚洲国产精品一区二区三区在线| 午夜两性在线视频| 一区二区av电影网| 日韩精品免费视频一区二区三区| 人人澡人人妻人| 波野结衣二区三区在线| 欧美日韩av久久| 久久99精品国语久久久| 国产在线一区二区三区精| 可以免费在线观看a视频的电影网站| 午夜福利一区二区在线看| 欧美久久黑人一区二区| 国产精品一区二区在线观看99| 免费日韩欧美在线观看| 男的添女的下面高潮视频| 国产无遮挡羞羞视频在线观看| bbb黄色大片| 亚洲第一av免费看| 在线观看国产h片| av有码第一页| 亚洲午夜精品一区,二区,三区| 91国产中文字幕| 男人舔女人的私密视频| 一级片'在线观看视频| 91麻豆精品激情在线观看国产 | 亚洲图色成人| 男女边吃奶边做爰视频| 欧美激情极品国产一区二区三区| 欧美国产精品va在线观看不卡| 亚洲人成电影观看| 18禁观看日本| 大片电影免费在线观看免费| www.999成人在线观看| 美国免费a级毛片| 免费看十八禁软件| 亚洲图色成人| 欧美少妇被猛烈插入视频| 19禁男女啪啪无遮挡网站| av不卡在线播放| 丝袜人妻中文字幕| 日韩制服丝袜自拍偷拍| 国产精品欧美亚洲77777| 在线天堂中文资源库| 2021少妇久久久久久久久久久| 超色免费av| av线在线观看网站| 黑人猛操日本美女一级片| 国产精品九九99| 中文乱码字字幕精品一区二区三区| 成年人黄色毛片网站| 在线观看人妻少妇| 欧美久久黑人一区二区| 一级毛片黄色毛片免费观看视频| 国产精品一二三区在线看| 99久久精品国产亚洲精品| 午夜免费男女啪啪视频观看| 亚洲国产欧美网| 精品福利永久在线观看| 狠狠精品人妻久久久久久综合| 午夜激情久久久久久久| 看免费成人av毛片| 色婷婷久久久亚洲欧美| 观看av在线不卡| 国产真人三级小视频在线观看| 人人妻人人添人人爽欧美一区卜| 精品免费久久久久久久清纯 | 一本色道久久久久久精品综合| a级片在线免费高清观看视频| 男男h啪啪无遮挡| a级毛片在线看网站| 伊人久久大香线蕉亚洲五| 国产成人啪精品午夜网站| av有码第一页| 亚洲欧美精品综合一区二区三区| 一区二区av电影网| 久久久欧美国产精品| 99九九在线精品视频| 又大又爽又粗| 精品亚洲成国产av| 成人18禁高潮啪啪吃奶动态图| 精品国产一区二区三区久久久樱花| 亚洲精品一卡2卡三卡4卡5卡 | 国产精品 欧美亚洲| 久久久国产精品麻豆| 一二三四在线观看免费中文在| 国产精品秋霞免费鲁丝片| 国产又色又爽无遮挡免| 人妻人人澡人人爽人人| 久久99精品国语久久久| tube8黄色片| 欧美日韩视频高清一区二区三区二| 天堂中文最新版在线下载| 黄色 视频免费看| 久久久国产一区二区| 国产三级黄色录像| 一级a爱视频在线免费观看| 极品人妻少妇av视频| 亚洲精品一二三| 一本大道久久a久久精品| 亚洲熟女精品中文字幕| 成年动漫av网址| 亚洲中文日韩欧美视频| 日韩大码丰满熟妇| 欧美av亚洲av综合av国产av| 久久99热这里只频精品6学生| cao死你这个sao货| 老熟女久久久| 制服人妻中文乱码| 天堂中文最新版在线下载| 国产高清视频在线播放一区 | 国产日韩欧美视频二区| 亚洲成国产人片在线观看| 十八禁网站网址无遮挡| 欧美日韩精品网址| 少妇人妻久久综合中文| 亚洲,欧美,日韩| 久久久久网色| 久久久精品国产亚洲av高清涩受| 18禁国产床啪视频网站| 热99国产精品久久久久久7| 在线观看免费午夜福利视频| 久久毛片免费看一区二区三区| 女人爽到高潮嗷嗷叫在线视频| 两性夫妻黄色片| 精品视频人人做人人爽| 9191精品国产免费久久| 欧美亚洲 丝袜 人妻 在线| 国产在线观看jvid| 日日夜夜操网爽| 麻豆av在线久日| tube8黄色片| 亚洲精品av麻豆狂野| 亚洲国产欧美一区二区综合| 日本五十路高清| 亚洲精品久久午夜乱码| 色精品久久人妻99蜜桃| 女人高潮潮喷娇喘18禁视频| 高潮久久久久久久久久久不卡| 久久久久久久久久久久大奶| 新久久久久国产一级毛片| xxxhd国产人妻xxx| 老鸭窝网址在线观看| 国产亚洲精品第一综合不卡| 久久青草综合色| 免费看十八禁软件| 在线观看一区二区三区激情| 亚洲精品av麻豆狂野| 国产精品国产三级专区第一集| 巨乳人妻的诱惑在线观看| 热re99久久国产66热| 成年人黄色毛片网站| 日韩欧美一区视频在线观看| 日韩免费高清中文字幕av| 操出白浆在线播放| 亚洲,欧美精品.| 欧美日韩精品网址| 首页视频小说图片口味搜索 | 手机成人av网站|