• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Quasi-static magnetic compression of fieldreversed configuration plasma: amended scalings and limits from two-dimensional MHD equilibrium

    2023-03-06 01:48:42AbbaAlhajiBALAPingZHU朱平HaolongLI李浩龍YonghuaDING丁永華JiaxingLIU劉家興SuiWAN萬(wàn)遂YingHE何瑩DaLI李達(dá)NengchaoWANG王能超BoRAO饒波andZhijiangWANG王之江
    Plasma Science and Technology 2023年2期
    關(guān)鍵詞:之江李達(dá)永華

    Abba Alhaji BALA,Ping ZHU (朱平),Haolong LI (李浩龍),Yonghua DING (丁永華),Jiaxing LIU (劉家興),Sui WAN (萬(wàn)遂),Ying HE (何瑩),Da LI (李達(dá)),Nengchao WANG (王能超),Bo RAO (饒波) and Zhijiang WANG (王之江)

    1 International Joint Research Laboratory of Magnetic Confinement Fusion and Plasma Physics,State Key Laboratory of Advanced Electromagnetic Engineering and Technology,School of Electrical and Electronic Engineering,Huazhong University of Science and Technology,Wuhan 430074,People’s Republic of China

    2 School of Physics,Huazhong University of Science and Technology,Wuhan 430074,People’s Republic of China

    3 Department of Physics,Federal University Dutse,Jigawa 720101,Nigeria

    4 Department of Engineering Physics,University of Wisconsin-Madison,Madison,Wisconsin WI-53706,United States of America

    5 College of Physics and Optoelectronic Engineering,Shenzhen University,Shenzhen 518060,People’s Republic of China

    Abstract In this work,several key scaling laws of the quasi-static magnetic compression of field reversed configuration (FRC) plasma (Spencer et al 1983 Phys.Fluids 26 1564) are amended from a series of two-dimensional FRC MHD equilibriums numerically obtained using the Grad-Shafranov equation solver NIMEQ.Based on the new scaling for the elongation and the magnetic fields at the separatrix and the wall,the empirically stable limits for the compression ratio,the fusion gain,and the neutron yield are evaluated,which may serve as a more accurate estimate for the upper ceiling of performance from the magnetic compression of FRC plasma as a potential fusion energy as well as neutron source devices.

    Keywords: magneto-hydrodynamic equilibrium,Grad-Shafranov equation,field reversed configuration,NIMEQ,magnetic compression

    1.Introduction

    Field-reversed configuration (FRC) is an elongated compact torus plasma sustained solely by a poloidal magnetic field[1].Because the FRC has no or little toroidal magnetic field,it has a very high plasma beta (〈β〉 averaged over the separatrix volume lies in the range of 0.5-1).The magnetic field of FRC is composed of open magnetic field lines,separatrix,and closed magnetic field lines,while the plasma almost entirely exists inside the separatrix with an attractive feature of having no material objects linking the torus.The two FRC regions are referred to as ‘open’ and ‘closed’ respectively [2].

    FRC has been one of the preferred candidate configurations for fusion devices such as compact nuclear fusion reactors and neutron sources,which has received increasing attentions from various countries.Both experimental and theoretical studies have been performed to explore the potentials and challenges associated with such an attractive path towards fusion [3-6].The C-2 experiment in TAE Technology has been able to obtain and maintain an FRC withnreaching3 × 1019m-3,TeandTiaround 1 keV respectively,the energy confinement timeEτabout 1 ms,and theβaround 90 percent [7].The Los Alamos National Laboratory (LANL) and the ALPHA project in the United States successfully increased the temperature and density of an FRC plasma by 1 order of magnitude using staged magnetic compression [6].Japan,Canada,Russia and other countries also have related experimental devices as well [8].In China,the Huazhong field reversed configuration has been designed to explore a novel concept of‘two-staged’magnetic compression of FRC as a path to achieve a compact and economic neutron source and potential fusion reactor [9].

    Magnetic compression of FRC is one of the promising paths to fusion that has been pursued over years.For instance,the Princeton ATC device [10]has increased the plasma density by 5 times with adiabatic compression.The FRX-C/LSM device of LANL also adopted the adiabatic compression method for FRC,and the plasma temperature and density are increased by 10 times and 5 times respectively [11].

    A one-dimensional (1D) model for the adiabatic compression of FRC [12,13]was established.In this theory,the quasi-static approximation is used such that compression process is considered as a series of MHD equilibria with sequentially varying compression ratio.Although the magnetic compression of FRC plasma is a highly nonlinear 3D dynamic process,the quasi-static approximation allows us to establish the scaling laws and to evaluate the upper stable limits achievable for the compression ratio,fusion gain and neutron yields from such an approach.

    However,1D approximations are often made in order to obtain the analytical scaling laws for compression,where the two-dimensional (2D) MHD equilibrium conditions or constraints on the FRC parameters are often not well satisfied.The FRC equilibrium is essentially two-dimensional,and previous theory models for FRC magnetic compression often fail to take into account the 2D spatial and geometric features of FRC equilibrium.More importantly,previous FRC magnetic compression theories have not considered the constraints imposed on the accessible parameter space due to the macroscopic instabilities of FRC plasmas.Therefore,subject to the constraints from the strict FRC 2D equilibrium and the stability criterion,whether the FRC plasma parameters can achieve the fusion ignition conditions through the approach of magnetic compression remains one of the primary problems to address in the design of FRC neutron source and fusion reactor today.

    In order to explore this major issue,in this work,we use a series of 2D FRC MHD equilibria from numerically solutions of the Grad-Shafranov (G-S) equation to obtain the amended scaling laws for the key parameters of the FRC plasma during quasi-static magnetic compression including 2D spatial geometric effects,and together with empirical criterion for FRC kinetic MHD stability,to evaluate the fusion ignition conditions and the upper limit of neutron yield that can be achieved through the stable FRC magnetic compression process in the resistive MHD model.

    Figure 1.(a)The numerical error En ofψ as a function of the element polynomial degree for 2 × 2 element mesh () and 8 × 8element mesh () in FRC equilibrium.(b) The numerical error En ofψ as a function of the number of elements for the 2nd order elements ()and the 4th order elements().The black lines stand for the scaling fitted from the decaying numerical errors,where N denotes thenumber of elements.

    The rest of this work is organized as follows.In section 2,the numerical FRC equilibrium solution is determined and checked for convergence.In section 3,the 2D MHD equilibriums during a quasi-static FRC compression process are solved and the numerical solutions are used to obtain the amended scalings for compression.In section 4,the empirically stable limits for the compression ratio,the fusion gain,and the neutron yield are evaluated.Finally,summary and discussion are given in section 5.

    2.The FRC equilibrium

    Figure 2.Contours of equilibrium magnetic flux functions ψ (R ,Z)with initial elongation κ 0= 1and maximum pressure μ 0 Pm i=0.0018,for various radial compression ratios .σ The black dash line denotes the separatrix.The units of R and Z are m.

    In this work,we solve for the 2D MHD equilibrium of FRC that are consistent with the analytical scaling law for the maximum pressure in radial profile during the magnetic compression based on a 1D approximation.The 2D MHD equilibrium of FRC can be obtained from solving the G-S equation.Besides the limited analytical G-S solutions of FRC equilibria[14-17],numerical methods have been applied to solving the G-S equation using 2D spectral element [18],method of fundamental solutions,finite difference method,boundary element method,conformal mapping and Green’s function.Correspondingly,numerical toroidal equilibrium codes have been developed,such as EFIT,CHEASE,ESC,and NIMEQ[15].In this study,we use the G-S equilibrium solver NIMEQ which is based on the spectral element expansions in two dimensions.The NIMEQ solutions for the 2D FRC equilibriums with different compression ratios are then used to obtain the compression scaling laws,which are compared with the Spencer theory based on 1D approximation.

    From the force balance equation,the magnetic divergence constraint,and Ampere’s law,we obtain the G-S equation for the MHD equilibria of an axisymmetric toroidal system.The FRC is characterized by a zero toroidal field,thus the G-S equation for the FRC equilibrium takes the form as

    wheretψis the flux inside the separatrix,P0andP2are constants,equation (1) is reduced to the following linear equation forψ

    Figure 3.Contours of equilibrium magnetic flux functions ψ (R ,Z)with initial elongation κ 0= 5and maximum pressure μ 0 Pm i=0.0018,for various radial compression ratios σ .The black dash line denotes the separatrix.The units of R and Z are m.

    We look for solutions in the cylindrical coordinatesRandZthat are symmetric with respect to the middle planeZ= 0.With boundary conditionsψ(R,Z)= 0atR=aandZ= ±b,whereh= 2b,andaandhare the radius and the length of the cylinder containing the FRC plasma respectively,we obtain

    For a more general pressure profileP(ψ) ,we numerically solve the G-S equation (1) using the NIMEQ code,which is a G-S equilibrium solver developed within the framework of NIMROD for the more realistic geometry [18].The finite element method is used to solve the G-S equation and the Picard scheme is used to advance the iteration.To demonstrate the numerical accuracy and convergence of the NIMEQ code,the numerical and analytical solutions of equation (1) are compared for the special case of pressure profile in equation(2)in terms of the numerical error defined by

    whereψNis the numerical solution from NIMEQ andψAis the analytic solution from equation (4),and the summation is performed over all of the finite-element nodes.

    Two methods are applied to examine the convergence of the NIMEQ solution,namely,the h-refinement and p-refinement.In the p-refinement method,the polynomial degree is increased as the number of elements is kept constant.In contrast,in the h-refinement method,the polynomial degree is fixed while the number of elements is varied.Both methods of comparisons show numerical convergence of the NIMEQ solutions (figure 1).

    3.FRC equilibrium during quasi-static magnetic compression

    The pressure profile inside the separatrix of an FRC plasma during compression can be modelled as

    For any specific radial compression ratio,the 2D FRC equilibrium equation(8)is numerically solved using NIMEQ.The external coils are applied to ensure that the NIMEQ radial compression ratioRs/RwatZ= 0matches that of the pressure profile (figures 2 and 3).For both small and large initial elongations,the last closed flux surface as well as the separatrix of FRC shrinks quickly along the axial direction(i.e.Z-direction) as the FRC is compressed radially to each value ofσ.The FRC lengthlscan be measured from the intersection between the separatrix and theZ-axis atR=0,the elongationκ=ls/2Rs,and the magnetic field at the wallBware compared between the measured values from the 2D MHD equilibrium solutions and the following Spencer scaling law (equations (9)-(11)) for various radial compression ratios (figure 4)

    whereRs0=Rw,and the magnetic field magnitudeBwat wall is measured from the equilibrium solution at(Rw,0) .

    Figure 4.(a) Elongation κ ,(b) wall magnetic field B w ,and (c) FRC separatrix length ls as functions of the radial compression ratioσ from 1D scaling law and 2D MHD equilibrium with various initial elongations.Here the initial separatrix length l s0 = 2.5 m,3.75 m,5.0 m,6.25 m,and 12.5 m for various initial elongations κ0 respectively,and the initial magnetic field strength at wall B0 = 0.06 T which is same in all other figures.

    Figure 5.The μ (? )profiles evaluated from 2D MHD equilibrium with various initial elongations for μ 0 Pm i=0.0018.

    Where as the comparisons show overall quantitative agreement,the degree of quantitative agreement depends on the FRC equilibrium elongation,which is defined as the ratio of the FRC lengthlsover radiusRsat separatrix for the initial elongationκ0= 1.5,the agreement on thelsandκscalings are the best for the smaller initial elongation,the FRC shape measured from 2D equilibrium shrinks slower than the 1D Spencer scaling law.As the initial elongation increases,the shrinking of FRC during compression becomes faster from 2D equilibrium calculations than 1D Spencer scaling law,as indicated in figures 4(a) and (c).This finding may appear surprising,since the Spencer scaling law is expected to apply best when FRC is highly elongated and hence the 1D approximation is more valid.However,the 2D equilibrium calculations show that,even for the FRC with large initial elongation (e.g.κ0≥5),once the magnetic compression process begins,the FRC elongation itself quickly drops out of the regime where the 1D approximation is valid.

    For the entropy per unit flux

    its 1D approximation for the elongated FRC is based on[12]

    where l(ψ) is the half circumference of the flux surface labelled withψin the poloidal plane,and may be approximated aslsin the 1D model for the elongated FRC.Comparisons of the μ(ψ) profiles calculated from the 2D MHD equilibrium using equation (12) with various initial elongations and radial compression ratios(figure 5)suggest that the adiabatic condition underlying the Spencer scaling law is less satisfied in the quasi-static magnetic compression process modelled by the series of 2D MHD equilibriums.This may also contribute to the differences between compression scalings measured from the 2D equilibrium and calculated from the 1D Spencer scaling laws.

    4.Stable limits of FRC compression

    4.1.FRC stability criterion

    Based on experimental data,an empirical stability criterion of FRC can be written as [19-21]

    Using the analytical scaling law for the adiabatic compression of an elongated FRC [12]

    Figure 6. The S /κ stability criterion calculated from (a) 1D scaling laws and (b) 2D MHD equilibrium for different radial compression ratiosσ and magnetic field strengths at the wall B w,with various initial elongations, n i0 =3.0 × 101 9 m -3 ,γ =5/ 3,and ? = -1/ 4.

    wherels0andni0are the scale length of the separatrix and number density for the initial equilibrium,respectively,we obtain an estimate of the ratio /S κfor a given radial compression ratioσas

    The FRC compression results in a reduction in the separatrix radiusRs,but also an even more rapid reduction in the separatrix elongationκ.As a consequence,the more the FRC is compressed,the faster it reaches the stability boundaryS/κ< 3.5and goes unstable,as indicated in fgiure 6.Moreover,the figure further indicates that when the initial elongation increases,the stability window of the compression process becomes broader.The stability boundary crossing range ofσreduces from ~[0.63,0.88]in the 1D model to ~[0.65,0.77]in the 2D results.The fact that the stability boundary crossing values ofσmostly differs for the small initial elongation cases,suggests the dominant stability contribution from the 2D geometrical effects to the FRC compression.

    4.2.Stable ignition regime

    The stability criterion /S3.5κ> sets another boundary for the ignition parameter regime through the magnetic compression of an FRC plasma.One such example is demonstrated in figure 7,where the Lawson criterions [22,23]

    Figure 7.Contours of the fusion triple products nT Eτ as functions of the initial maximum temperature Tmi and the radial compression ratioσ or equivalently the compression magnetic field strength at wall Bw from 1D scaling laws for(a)D-D reaction,(b)D-T reaction,and from 2D MHD equilibrium for (c) D-D reaction,(d) D-T reaction with ls 0 = 2.5 m,n i0 = 3.0 × 101 9 m- 3,and Rw = 0.25 m.The black dash line denotes the /S κ stability criterion boundary and the black solid curve the lowest ignition contour line.The stable ignition regimes are shown as the red line-shaded upper triangular areas.

    4.3.Limits of D-T and D-D neutron yield rates

    We further estimate the upper limits on the neutron yield rates from D-T and D-D fusion reactions through FRC compression imposed by the empirical stability criterion.The neutron yield rate used herein is estimated using [25]

    whereniis the ion number density,σν〈 〉is the reaction rate in cm s .3 1- For D-D reactions,the reaction rate is

    whereTiis in keV.For D-T reactions,

    Using the scalings forniandlsamended by the MHD equilibrium,we compare the neutron yield rates for different compression ratios and magnetic field strengths at the wall in the MHD stable regimes between D-D and D-T reactions(figure 8).The neutron irradiation power can be calculated

    Figure 8. Contours of the neutron yield rates as functions of the initial maximum temperature Tmi and the radial compression ratioσ or equivalently the compression magnetic field strength at wall Bw from 1D scaling laws for (a) D-D reaction,(b) D-T reaction,and from 2D MHD equilibrium for (c) D-D reaction,(d) D-T reaction with ls 0 = 2.5 m,n i0 = 3.0 × 101 9 m- 3,and Rw = 0.25 m.The black dash line denotes the /S κ stability criterion boundary.

    5.Summary and discussion

    In summary,the scaling laws for the adiabatic compression of FRC based on 1D analytical theory have been amended using results from 2D MHD equilibrium calculations.In particular,the FRC elongation has been self-consistently determined from the G-S equation solution for any given radial compression ratio.The amended scaling for FRC elongation during magnetic compression is applied to the estimate of the upper limits for the radial compression ratio along with the empirical stability criterion for FRC.The stability regimes for fusion ignition and neutron yield rates from the approach of FRC compression are also evaluated.Under the combined constraints from FRC 2D MHD equilibrium force balance and empirical kinetic MHD stability conditions,along with the assumption that the magnetic confinement time is governed by the resistive magnetic diffusion,it is found that the FRC plasma can access the fusion ignition parameter regime through a stable quasi-static magnetic compression process,which demonstrates the physical feasibility of quasi-static magnetic compression of FRC plasma as a potential path to achieving fusion ignition conditions.These calculations may help the design of future fusion experiments and devices based on the magnetic compression of FRC plasma.

    The 2D MHD equilibrium calculation for FRC during compression in this work adopts the scaling law for the maximum pressure previously derived from 1D analytical theory.We plan to develop a more self-consistent scaling law for the maximum pressure of FRC plasma during the magnetic compression entirely from the 2D MHD equilibrium and geometry of FRC in future study.

    Acknowledgments

    This work was supported by the National Magnetic Confinement Fusion Program of China (No.2017YFE0301805),National Natural Science Foundation of China (No.51821005),the Fundamental Research Funds for the Central Universities at Huazhong University of Science and Technology (No.2019kfyXJJS193),and the U.S.Department of Energy (Nos.DE-FG02-86ER53218 and DE-SC0018001).The authors are grateful for the supports from the NIMROD team.The author Abba Alhaji Bala acknowledges the support from the Chinese Government Scholarship.

    ORCID iDs

    猜你喜歡
    之江李達(dá)永華
    川之江造機(jī)株式會(huì)社
    在武漢大學(xué)拜謁李達(dá)塑像
    李達(dá)與黨的基礎(chǔ)理論建設(shè)
    How To Get Along With Your Friends Better
    李達(dá):為武大建設(shè)殫精竭慮
    李達(dá)與毛澤東哲學(xué)思想的體系化闡釋
    Club Recruitment
    脾踩踏板有利于學(xué)習(xí)
    聚集十九大:之江大地寫(xiě)鴻篇
    《之江新語(yǔ)》讀后感悟
    高清欧美精品videossex| 亚洲五月色婷婷综合| 日韩中文字幕视频在线看片| 99精品久久久久人妻精品| 亚洲激情五月婷婷啪啪| 永久免费av网站大全| 这个男人来自地球电影免费观看 | 婷婷色综合大香蕉| 久久天躁狠狠躁夜夜2o2o | 欧美日韩综合久久久久久| 国产男女超爽视频在线观看| 99国产精品免费福利视频| 亚洲第一av免费看| 国产精品久久久人人做人人爽| 18禁动态无遮挡网站| 性色av一级| 久久久久久人人人人人| 韩国高清视频一区二区三区| 国产精品国产三级国产专区5o| 亚洲欧美中文字幕日韩二区| 男人爽女人下面视频在线观看| 高清欧美精品videossex| 亚洲欧美清纯卡通| 国产 精品1| 99九九在线精品视频| 99九九在线精品视频| 午夜91福利影院| 午夜日韩欧美国产| 亚洲国产最新在线播放| 王馨瑶露胸无遮挡在线观看| 午夜日韩欧美国产| 王馨瑶露胸无遮挡在线观看| 一本大道久久a久久精品| 久久精品国产综合久久久| 中文字幕av电影在线播放| 欧美国产精品一级二级三级| 夫妻午夜视频| 久久久久久久精品精品| 久久国产亚洲av麻豆专区| 亚洲国产欧美网| 水蜜桃什么品种好| 国产精品嫩草影院av在线观看| 9热在线视频观看99| 又黄又粗又硬又大视频| 久久久久精品性色| 老司机深夜福利视频在线观看 | 国产男女超爽视频在线观看| 亚洲成人av在线免费| 性高湖久久久久久久久免费观看| 久久毛片免费看一区二区三区| 1024香蕉在线观看| √禁漫天堂资源中文www| 久久人妻熟女aⅴ| 男女免费视频国产| 亚洲欧美精品自产自拍| 永久免费av网站大全| 在线看a的网站| 欧美在线一区亚洲| 99国产综合亚洲精品| 欧美激情 高清一区二区三区| 欧美黄色片欧美黄色片| 欧美日本中文国产一区发布| 少妇被粗大的猛进出69影院| 免费在线观看完整版高清| 久久狼人影院| 国产深夜福利视频在线观看| 男人舔女人的私密视频| 国产在线一区二区三区精| 十八禁高潮呻吟视频| 国产在线一区二区三区精| av在线老鸭窝| 国产午夜精品一二区理论片| a级片在线免费高清观看视频| 91精品三级在线观看| 黄色视频不卡| 美女脱内裤让男人舔精品视频| 久久久久久久久久久久大奶| 亚洲精品自拍成人| 操出白浆在线播放| 精品一区二区免费观看| 亚洲伊人久久精品综合| 国产成人欧美在线观看 | 精品国产一区二区三区久久久樱花| 老鸭窝网址在线观看| 亚洲欧洲国产日韩| 日本wwww免费看| 丰满乱子伦码专区| 午夜福利视频精品| 老司机影院成人| 热re99久久精品国产66热6| 一级爰片在线观看| 精品人妻熟女毛片av久久网站| 亚洲久久久国产精品| 女人爽到高潮嗷嗷叫在线视频| 国产亚洲一区二区精品| 80岁老熟妇乱子伦牲交| 国产成人精品久久久久久| 人人妻人人澡人人看| 久久99热这里只频精品6学生| 丰满饥渴人妻一区二区三| tube8黄色片| 久久国产精品大桥未久av| 国产熟女午夜一区二区三区| 青春草亚洲视频在线观看| 国产亚洲av高清不卡| 亚洲精华国产精华液的使用体验| 1024视频免费在线观看| 国产精品免费大片| 亚洲欧美一区二区三区国产| 精品人妻在线不人妻| 亚洲国产精品一区二区三区在线| e午夜精品久久久久久久| av国产久精品久网站免费入址| 亚洲av成人不卡在线观看播放网 | 久久久久久久精品精品| 国产精品久久久久久久久免| 久久狼人影院| 久久久久久久久久久久大奶| 一级毛片电影观看| 老司机亚洲免费影院| 少妇精品久久久久久久| 91精品三级在线观看| 大香蕉久久成人网| 久久午夜综合久久蜜桃| 不卡av一区二区三区| 天天躁夜夜躁狠狠躁躁| 亚洲精华国产精华液的使用体验| 男的添女的下面高潮视频| 777米奇影视久久| 91精品国产国语对白视频| 热re99久久国产66热| 欧美日韩成人在线一区二区| 亚洲av中文av极速乱| 91aial.com中文字幕在线观看| 少妇人妻久久综合中文| 久久综合国产亚洲精品| 亚洲精品日本国产第一区| 老司机靠b影院| 亚洲精品久久成人aⅴ小说| 久久久久久久久久久免费av| 亚洲av中文av极速乱| 七月丁香在线播放| 黄色怎么调成土黄色| 男人爽女人下面视频在线观看| 免费黄网站久久成人精品| 少妇被粗大的猛进出69影院| 国产成人精品在线电影| 免费高清在线观看视频在线观看| 别揉我奶头~嗯~啊~动态视频 | 亚洲成人一二三区av| 国产淫语在线视频| 精品少妇黑人巨大在线播放| 欧美在线一区亚洲| 少妇人妻久久综合中文| 午夜福利一区二区在线看| 99国产精品免费福利视频| 交换朋友夫妻互换小说| 日本vs欧美在线观看视频| 欧美国产精品一级二级三级| 9191精品国产免费久久| 婷婷成人精品国产| 亚洲精品久久成人aⅴ小说| 国产免费现黄频在线看| 又大又爽又粗| 精品午夜福利在线看| 日日爽夜夜爽网站| 久热爱精品视频在线9| 自线自在国产av| 另类亚洲欧美激情| 国产有黄有色有爽视频| 操出白浆在线播放| 青春草亚洲视频在线观看| 亚洲欧美清纯卡通| av线在线观看网站| 在线天堂中文资源库| 亚洲av欧美aⅴ国产| 一本—道久久a久久精品蜜桃钙片| 亚洲精品久久午夜乱码| 中文字幕精品免费在线观看视频| 国产成人欧美| 男女无遮挡免费网站观看| 天天添夜夜摸| 欧美人与性动交α欧美精品济南到| 日韩av免费高清视频| 欧美日韩视频高清一区二区三区二| 女人精品久久久久毛片| 尾随美女入室| 精品国产国语对白av| 成年人免费黄色播放视频| 中国国产av一级| 精品福利永久在线观看| 叶爱在线成人免费视频播放| 又大又黄又爽视频免费| 国产亚洲午夜精品一区二区久久| 99久国产av精品国产电影| 欧美精品一区二区免费开放| 伊人亚洲综合成人网| 中文字幕人妻熟女乱码| 黑人猛操日本美女一级片| 一本大道久久a久久精品| 天天躁夜夜躁狠狠躁躁| 十八禁网站网址无遮挡| 香蕉国产在线看| 久久久久精品国产欧美久久久 | 人妻一区二区av| 精品国产乱码久久久久久男人| 午夜老司机福利片| 一二三四中文在线观看免费高清| 天堂俺去俺来也www色官网| 日韩精品免费视频一区二区三区| 大陆偷拍与自拍| 欧美日韩福利视频一区二区| 欧美国产精品一级二级三级| 下体分泌物呈黄色| 国产又爽黄色视频| 99国产综合亚洲精品| av片东京热男人的天堂| 久久热在线av| 97人妻天天添夜夜摸| 搡老岳熟女国产| 高清黄色对白视频在线免费看| 免费不卡黄色视频| 精品卡一卡二卡四卡免费| 欧美成人精品欧美一级黄| 国产精品二区激情视频| 久久99精品国语久久久| www.熟女人妻精品国产| 欧美精品亚洲一区二区| 赤兔流量卡办理| 黄片无遮挡物在线观看| 日韩成人av中文字幕在线观看| 美女视频免费永久观看网站| 亚洲,欧美精品.| 一级片免费观看大全| 国产成人啪精品午夜网站| 亚洲欧美中文字幕日韩二区| 国产色婷婷99| 国产福利在线免费观看视频| 少妇人妻久久综合中文| 嫩草影院入口| 国产在线一区二区三区精| 久久久国产精品麻豆| 菩萨蛮人人尽说江南好唐韦庄| 啦啦啦中文免费视频观看日本| 中文字幕亚洲精品专区| 99re6热这里在线精品视频| 汤姆久久久久久久影院中文字幕| 国产成人啪精品午夜网站| 亚洲欧美一区二区三区国产| 国产成人午夜福利电影在线观看| 十八禁人妻一区二区| av天堂久久9| 亚洲五月色婷婷综合| 人妻一区二区av| 亚洲一卡2卡3卡4卡5卡精品中文| 黄片播放在线免费| 国产亚洲av高清不卡| 免费在线观看完整版高清| 大香蕉久久成人网| 校园人妻丝袜中文字幕| 亚洲熟女毛片儿| 亚洲欧美成人精品一区二区| 日韩人妻精品一区2区三区| 色综合欧美亚洲国产小说| 亚洲婷婷狠狠爱综合网| www.自偷自拍.com| 久久久久久久久久久免费av| 街头女战士在线观看网站| 99国产综合亚洲精品| 日韩精品有码人妻一区| 人人澡人人妻人| 热re99久久精品国产66热6| 亚洲国产日韩一区二区| 观看av在线不卡| 亚洲精品av麻豆狂野| 悠悠久久av| 九草在线视频观看| 观看av在线不卡| 久久 成人 亚洲| 三上悠亚av全集在线观看| 黄色一级大片看看| 久久久久精品久久久久真实原创| av在线播放精品| 亚洲精品国产av蜜桃| 色94色欧美一区二区| 少妇人妻 视频| 好男人视频免费观看在线| 无遮挡黄片免费观看| 欧美激情高清一区二区三区 | 亚洲精品在线美女| 十八禁网站网址无遮挡| 国产欧美日韩综合在线一区二区| 日日摸夜夜添夜夜爱| 国产在线一区二区三区精| 99精国产麻豆久久婷婷| 欧美日韩福利视频一区二区| 卡戴珊不雅视频在线播放| 伊人久久国产一区二区| 狠狠婷婷综合久久久久久88av| 中文精品一卡2卡3卡4更新| 曰老女人黄片| 国产不卡av网站在线观看| 婷婷色麻豆天堂久久| 久久午夜综合久久蜜桃| 在线免费观看不下载黄p国产| 亚洲视频免费观看视频| 中文欧美无线码| 热re99久久国产66热| 日本91视频免费播放| 久久99一区二区三区| 男女高潮啪啪啪动态图| 亚洲精品第二区| 老汉色av国产亚洲站长工具| 99精品久久久久人妻精品| 国产免费一区二区三区四区乱码| 搡老岳熟女国产| 亚洲av国产av综合av卡| 久久久久久久精品精品| 国产在线一区二区三区精| 大话2 男鬼变身卡| 国产精品欧美亚洲77777| 国产精品国产三级国产专区5o| 亚洲在久久综合| 日本一区二区免费在线视频| 国语对白做爰xxxⅹ性视频网站| 新久久久久国产一级毛片| 亚洲七黄色美女视频| 成人18禁高潮啪啪吃奶动态图| 国产精品久久久久久久久免| 女性生殖器流出的白浆| 各种免费的搞黄视频| 一二三四在线观看免费中文在| 国产在线视频一区二区| 亚洲成国产人片在线观看| 久久久久国产精品人妻一区二区| 深夜精品福利| 一区二区av电影网| 亚洲欧美中文字幕日韩二区| 老汉色av国产亚洲站长工具| 成人国语在线视频| 下体分泌物呈黄色| 成年人免费黄色播放视频| 成人国产av品久久久| 久久久久精品国产欧美久久久 | av.在线天堂| 久久午夜综合久久蜜桃| 少妇 在线观看| 亚洲第一青青草原| 又大又黄又爽视频免费| 一本久久精品| 久久毛片免费看一区二区三区| 中文字幕人妻熟女乱码| 免费日韩欧美在线观看| 国产精品国产av在线观看| 日韩伦理黄色片| 亚洲精品日本国产第一区| 考比视频在线观看| 看非洲黑人一级黄片| 曰老女人黄片| 99re6热这里在线精品视频| 日日撸夜夜添| a 毛片基地| 欧美日本中文国产一区发布| 桃花免费在线播放| 久久精品久久久久久久性| 亚洲人成77777在线视频| 777米奇影视久久| 悠悠久久av| 久久99一区二区三区| 久久99热这里只频精品6学生| 亚洲国产毛片av蜜桃av| 最近最新中文字幕大全免费视频 | 亚洲成人手机| 久久精品aⅴ一区二区三区四区| 亚洲美女黄色视频免费看| 天天躁日日躁夜夜躁夜夜| 亚洲男人天堂网一区| 日本vs欧美在线观看视频| 一二三四在线观看免费中文在| 黄色视频不卡| 国产成人欧美在线观看 | av一本久久久久| 新久久久久国产一级毛片| 一级,二级,三级黄色视频| 男男h啪啪无遮挡| 另类亚洲欧美激情| 日本av免费视频播放| 不卡av一区二区三区| 国产一区二区三区综合在线观看| 精品久久蜜臀av无| 999精品在线视频| av.在线天堂| 9色porny在线观看| 91成人精品电影| 亚洲一区二区三区欧美精品| 丁香六月欧美| 精品人妻在线不人妻| 亚洲欧美成人综合另类久久久| 下体分泌物呈黄色| 久久久国产精品麻豆| svipshipincom国产片| 免费黄网站久久成人精品| 飞空精品影院首页| 三上悠亚av全集在线观看| 男女下面插进去视频免费观看| 国产99久久九九免费精品| 巨乳人妻的诱惑在线观看| 又大又黄又爽视频免费| 少妇 在线观看| 欧美日韩综合久久久久久| 久久久久久久久免费视频了| 国产精品麻豆人妻色哟哟久久| 岛国毛片在线播放| 中文精品一卡2卡3卡4更新| 国产欧美日韩一区二区三区在线| 国产女主播在线喷水免费视频网站| 搡老乐熟女国产| 欧美97在线视频| 国产麻豆69| 国产精品久久久久久精品古装| 国产福利在线免费观看视频| 免费观看性生交大片5| 在线观看免费视频网站a站| 一区二区av电影网| 国产日韩欧美视频二区| 在线天堂最新版资源| 亚洲 欧美一区二区三区| 久久久精品免费免费高清| 亚洲免费av在线视频| 女人被躁到高潮嗷嗷叫费观| 老鸭窝网址在线观看| 精品久久久精品久久久| 亚洲精华国产精华液的使用体验| 精品久久蜜臀av无| 熟妇人妻不卡中文字幕| 亚洲一区二区三区欧美精品| 中文字幕精品免费在线观看视频| 捣出白浆h1v1| 精品久久蜜臀av无| 女的被弄到高潮叫床怎么办| 国产精品 国内视频| 欧美 亚洲 国产 日韩一| 五月开心婷婷网| 人人澡人人妻人| 午夜福利乱码中文字幕| 国产成人欧美在线观看 | 高清不卡的av网站| a级片在线免费高清观看视频| 成年av动漫网址| 一本一本久久a久久精品综合妖精| 成人国语在线视频| 狠狠精品人妻久久久久久综合| 久久精品亚洲av国产电影网| 欧美国产精品va在线观看不卡| 久久久国产精品麻豆| 人人妻人人添人人爽欧美一区卜| 国产xxxxx性猛交| 亚洲美女视频黄频| 日韩中文字幕欧美一区二区 | 国产女主播在线喷水免费视频网站| 国精品久久久久久国模美| 免费在线观看完整版高清| 国产成人啪精品午夜网站| av在线老鸭窝| 日韩不卡一区二区三区视频在线| 日韩中文字幕欧美一区二区 | 亚洲精品视频女| 一边摸一边抽搐一进一出视频| 大陆偷拍与自拍| 亚洲国产精品一区三区| avwww免费| 亚洲免费av在线视频| 老熟女久久久| 69精品国产乱码久久久| 久久人人爽人人片av| 最近中文字幕2019免费版| 久久热在线av| 精品人妻在线不人妻| 可以免费在线观看a视频的电影网站 | 高清欧美精品videossex| 男女床上黄色一级片免费看| 777米奇影视久久| av在线app专区| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲欧美精品综合一区二区三区| av.在线天堂| netflix在线观看网站| 久久精品国产亚洲av涩爱| 亚洲精品国产一区二区精华液| 亚洲av成人不卡在线观看播放网 | 国产精品一二三区在线看| 国产精品久久久久久人妻精品电影 | 男女边吃奶边做爰视频| 一个人免费看片子| 精品一区二区免费观看| 中文字幕亚洲精品专区| 91国产中文字幕| 国产黄色视频一区二区在线观看| 国产免费福利视频在线观看| 久久精品国产综合久久久| 国产在线视频一区二区| 亚洲国产精品一区三区| 人妻 亚洲 视频| 亚洲国产中文字幕在线视频| 日本91视频免费播放| 十分钟在线观看高清视频www| 男女午夜视频在线观看| 日本wwww免费看| 在线亚洲精品国产二区图片欧美| 丝袜人妻中文字幕| 侵犯人妻中文字幕一二三四区| 精品免费久久久久久久清纯 | 性少妇av在线| 欧美亚洲日本最大视频资源| 久久免费观看电影| 老司机亚洲免费影院| 国产伦人伦偷精品视频| 午夜日韩欧美国产| 色94色欧美一区二区| 日本av手机在线免费观看| 宅男免费午夜| www.熟女人妻精品国产| 国产淫语在线视频| 最新在线观看一区二区三区 | av在线观看视频网站免费| 久久久久网色| 精品免费久久久久久久清纯 | 亚洲欧洲国产日韩| 纯流量卡能插随身wifi吗| 亚洲美女黄色视频免费看| 亚洲熟女毛片儿| 久久久亚洲精品成人影院| 国产精品久久久久久精品电影小说| 成年美女黄网站色视频大全免费| 久久精品国产综合久久久| 亚洲成人av在线免费| 精品国产国语对白av| 亚洲精品美女久久av网站| 人人妻人人添人人爽欧美一区卜| 人妻一区二区av| 国产人伦9x9x在线观看| 秋霞伦理黄片| 成人三级做爰电影| 日韩精品免费视频一区二区三区| 一级毛片 在线播放| 日日啪夜夜爽| 国产麻豆69| 在线观看人妻少妇| 十分钟在线观看高清视频www| 女人高潮潮喷娇喘18禁视频| av片东京热男人的天堂| 丁香六月天网| 国产一区亚洲一区在线观看| 午夜福利乱码中文字幕| 丰满乱子伦码专区| 欧美精品高潮呻吟av久久| 国产男人的电影天堂91| 一区福利在线观看| 国产精品一区二区在线不卡| 欧美激情 高清一区二区三区| 免费av中文字幕在线| 深夜精品福利| 久久韩国三级中文字幕| 亚洲成人av在线免费| 国语对白做爰xxxⅹ性视频网站| av.在线天堂| 一边摸一边抽搐一进一出视频| 久久久亚洲精品成人影院| 黄网站色视频无遮挡免费观看| 美女主播在线视频| 18禁观看日本| 国产97色在线日韩免费| 午夜影院在线不卡| 2018国产大陆天天弄谢| h视频一区二区三区| 久久热在线av| 国产探花极品一区二区| 卡戴珊不雅视频在线播放| 国产男女超爽视频在线观看| 不卡av一区二区三区| 国产黄色免费在线视频| 飞空精品影院首页| 色婷婷av一区二区三区视频| 美女午夜性视频免费| 丰满乱子伦码专区| 中文字幕人妻丝袜一区二区 | 成年人免费黄色播放视频| netflix在线观看网站| 免费女性裸体啪啪无遮挡网站| 一边摸一边抽搐一进一出视频| 18在线观看网站| 久久久久久久国产电影| 国产成人欧美在线观看 | 日韩中文字幕欧美一区二区 | 亚洲免费av在线视频| 十八禁高潮呻吟视频| 国产精品人妻久久久影院| 一区二区日韩欧美中文字幕| 黄片播放在线免费| 成人亚洲精品一区在线观看| 99久国产av精品国产电影| 人成视频在线观看免费观看| 日韩中文字幕欧美一区二区 | 免费不卡黄色视频| 亚洲国产看品久久| 亚洲情色 制服丝袜| 久久久国产精品麻豆| 2021少妇久久久久久久久久久| 丝袜人妻中文字幕| 亚洲精品国产av蜜桃| av又黄又爽大尺度在线免费看| 欧美黑人精品巨大| 亚洲精品久久午夜乱码| 欧美日韩综合久久久久久| 国产精品久久久久久精品电影小说|