• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Experimental studies of cusp stabilization in Keda Mirror with AXisymmetricity (KMAX)

    2023-03-06 01:48:32QingLI李清GuanghuiZHU朱光輝BaomingREN任寶明JiachengYING應嘉成ZhidaYANG楊智達andXuanSUN孫玄
    Plasma Science and Technology 2023年2期
    關鍵詞:李清光輝

    Qing LI (李清),Guanghui ZHU (朱光輝),Baoming REN (任寶明),Jiacheng YING (應嘉成),Zhida YANG (楊智達) and Xuan SUN (孫玄),*

    1 School of Nuclear Science and Technology,University of Science and Technology of China,Hefei 230026,People’s Republic of China

    2 College of Physics and Optoelectronic Engineering,Shenzhen University,Shenzhen 518060,People’s Republic of China

    Abstract Stabilization of the axisymmetric magnetic mirror relies on the pressure-weighted magnetic field curvature.We report a new experiment by configuring a magnetic cusp structure to stabilize m = 1 interchange mode in the KMAX tandem mirror.The cusp configuration is formed by reversing currents in the two side cell coils,and a stronger cusp can lead to a more stable plasma once the null point of the cusp is less than 35-40 cm away from the device axis.The density fluctuations measured by four axial Langmuir probes are mitigated by 70%-80%.The stabilization effect is consistent with the prediction of a theoretical calculation.

    Keywords: tandem mirror,interchange mode,density fluctuations,cusp stabilization

    1.Introduction

    The research on magnetic mirror devices dates back to the 1950s[1].Soon it was found that magnetohydrodynamic (MHD)instability plagued the plasma and the axial confinement rendered a simply mirror’s fusion gain barely able to reach breakeven [2].To combat these deficits,the tandem mirror concept was proposed independently in the former Soviet Union and in the United States [3].In the plug cells,a positive potential barrier was produced to reflect the escaped ions back to the central cell and hence improved the axial confinement.The instability was curbed by a minimum-Bmagnetic structure[4-6].The positive results inspired the construction of a large tandem mirror system,MFTF (Mirror Fusion Test Facility) at the Lawrence Livermore National Laboratory[7,8],which was then terminated prematurely due to budget cuts to fusion research in the United States.

    However,experimental and theoretical studies on mirrors have never stopped,though in a limited scope and capability.Recently,a new axisymmetric tandem mirror concept,namely Kinetic Stabilized Tandem Mirror (KSTM),was proposed by Post [3,9,10]and Fowler [11].It greatly reduced the complexity of mirror configuration by returning to the simply and fully axisymmetric magnetic configuration to avoid neoclassical turbulence which may occur in the minimum-Bregion[12-14],while the stabilization relied on the good magnetic curvature in the so-called expander chamber which required the thermal pressure on these good-curvature field lines to be high enough to overpower the curvature-induced instability from the bad curvature region along a flux tube.New mirror experiments,for example,WHAM and BEAT,will adopt such axisymmetric magnetic geometry and rely on the pressure-weighted effect to stabilize the plasma.Though there have been many theoretical[15,16]and experimental studies[17-22]in the past;except for the axisymmetric GDT [21,22],the magnetic configurations were not purely axisymmetric.Hence,we develop an experiment in the KMAX device,a fully axisymmetric mirror,to study this effect,and the results are reported below.

    2.Experimental setup

    Figure 1(a) illustrates the KMAX device and the diagnostics used in this work.The base pressure inside the device is in the range of 10-4Pa and the working pressure for hydrogen is typically (2-5) × 10-2Pa.Plasma parameters in the central cell and side cells arenc=(0 .2-2 ) ×1018m-3,ns=(1 -5 ) ×1018m-3,Tec= 5-10 eV,Tes=5-15 eV,Tic= 1-5 eV,β= 0.1%-0.3%(βis the ratio of the plasma pressure to the magnetic pressure),respectively,with subscripts c denoting the central cell and s the side cell.Ion temperatures are measured by a spectrometer located at the midplane.The magnetic field flux densities in the central cell are 550 G and in the magnetic throats,it can be adjusted from 1500 G to 3200 G.In this experiment,we mainly use four radial movable Langmuir probes to measure the ion saturation currents,and the probes are,respectively,located atz= 3.23 m,0.48 m,-0.75 m,-3.23 m,which are labeled as probes #1,#2,#3,and #4 in that order.Four APDs(Avalanche Photo Diode) are used to measure the light emission from the plasma to assist identification of the flute instability.They are distributed atz= 0.75 m,-0.75 m,0.75 m,and 0.75 m,with angles = -24°,-24°,0°,72°,respectively,as shown in figure 2(a).The magnetic cusp configuration is formed by applying reverse currents to the light blue magnetic coils,which are also called ‘bucking coils’,in figure 1(a),and figure 1(b)and(c)respectively show the magnetic flux density and the resultant cusp configuration.Two washer guns installed at the two ends of the device are used to produce the plasmas.The typical radial density and electron temperature profiles atz= 0.48 m are shown in figure 1(d).The azimuthal mode numbermwas deduced from APD 1,3,and 4 measurements [23].Finally,the parallel wave number is determined using four axially distributed Langmuir probes and confirmed by APD 1 and 2,see figures 2(a) and (b).The mode number of flute instability ism= 1 measured by the azimuthal probe array,which is consistent with the APD measurement result.

    Figure 1.(a)Schematic drawing of the vacuum vessel and selected diagnostics on KMAX,(b)profile of the magnetic flux density on the axis,(c) field lines with cusp configuration,(d) typical plasma density and electronic temperature profiles,(e) an illustration of flute mode.

    Figure 2. (a) Fluctuations measured by APDs at different azimuthal and axial positions,(b) fluctuations measured by Langmuir probes at different axial positions.

    3.Experimental results

    3.1.Identification of the instability

    In a previous paper,we have confirmed them= 1 flute instability by the azimuthal probe array in the KMAX device[24].In this work,we show that it can also be identified by optical measurements.Sincem= 1 was the main mode in the previous experiment,we use three APDs with an angular distribution capable of distinguishingmup to 7.The same as our previous probe measurements,the phase differences of APD 1,3 and 4 suggest the modem= 1,and the phase difference in APD 2 and APD 1 is about zero,as shown in figure 2(a).This is consistent with our previous measurement[25,26]that it is a flute mode with parallel wavelengthk||= 0.Caution should be taken to interpret the optical data as it is a line-integrated measurement,however,here the optical data are only used to confirm our previous conclusion that it is a flute with frequency between 5 and 30 kHz.

    3.2.Cusp stabilization

    Flute instability is also called the magnetic Rayleigh-Taylor instability because the centrifugal force experienced by particles is equivalent to the gravity.The FLR (finite Larmor radius) effect will not be considered here since it plays a negligible role in the stabilization of them= 1 flute mode in the mirror magnetic field unless there is a conducting wall close to the plasma surface [27],which has been confirmed experimentally in GDT [28].

    In the following part,we will introduce the experimental results and theoretical analysis of the stabilized plasma in the cusp magnetic field configuration.As mentioned above,we mainly use four axial Langmuir probes to measure plasma density fluctuations to analyze stabilization.The central cell magnetic field is fixed at 530 G,which is the fundamental resonance magnetic field for the KMAX-ICRH [29],and the field line curvature is varied by changing the magnetic field in the side cell or the throat magnetic field.

    With a fixed magnetic field in the mirror throat,the coil currents in the side cell can be adjusted to vary the contour of magnetic flux.Figure 3 shows the raw data and their frequency spectra for three cases of no cusp,weak cusped field and strong cusped field measured by probes #1-#4 all at axis.In the case of no cusp,plasma is unstable with very large low frequency perturbations.The perturbations can be mitigated even with a weak cusped field.Such a stabilization effect is more significant in the central cell.Further increasing the cusped field can yield a further suppression of this low frequency perturbations.Hence,the data confirms the effect of cusp on the stabilization of the plasma column.Note,because our plasma has to go through the side cell and mirror throats to enter the central cell,a stronger cusp field can divert more plasmas and result in less plasmas into the central cell.

    Figures 4(a) and (b) show how the fluctuations vary with the magnetic fields in the side cell when the magnetic throat fields are 1900 G and 2800 G with probes #1-#4 placed at the central axis.Figure 5 shows the magnetic profiles for different magnetic field strengths at the midplane of the side cell.As the magnetic fields in the side cell are scanned from 100 G to -35 G(a)and from 120 G to-25 G(b),the plasma fluctuations gradually decline.With increasing of cusped field,the fluctuation shows a rapid decline,and the calculated fluctuation value decreases from above 0.70 to ~0.20.Further increasing the cusped field,the fluctuations almost do not change and remain at the level of 0.1-0.2.Note the stronger the cusped field is,the closer to the magnetic axis the null point is.When the distance between the null point and the axis is less than 35 cm,there is a clear stabilizing effect.

    Figure 3.Comparison of plasma with cusp off(shot number 48254,top row),weak cusped magnetic field(shot number 48269,middle row)and strong cusped magnetic field (shot number 48289,bottom row).The magnetic fields in the side cell are 100 G,31 G,-17 G,respectively.The figures in frist column of each quadrant are the ion saturation currents collected by probes atr = 0 cm,with the black dashdotted lines as the average values,and the figures in the second column are fluctuation in frequency domain.

    Figure 4.Measured fluctuations as functions of the magnetic fields in the side cell when(a)the magnetic throat field is 1900 G,and(b)the magnetic throat field is 2800 G.The probes are located at r = 0 cm.

    Figure 5. Magnetic profiles for different magnetic field strengths at the midplane of the side cell.

    Figure 6.The curvature integrations as functions of the magnetic field at the center of the plug cell when the magnetic throat fields are 1900 G,and 2800 G,respectively.

    3.3.Stability criterion

    The pressure-weighted curvature criterion derived by Rosenbluth and Longmire [30]for flute interchange stability is given by

    whereκis the curvature of the magnetic field lines,ris the distance of the magnetic field line from the axis.p‖andp⊥are the parallel and vertical plasma pressures,respectively.For paraxial axisymmetric mirror systems,the stability criterion can be rewritten in a simple form [31]

    In the cusp configuration,the field lines from the central cell may terminate on the wall of the side cell,thus,the plasma column can only be counted from the side cell to the central cell.Therefore,the integration path is chosen from the midplane of the KMAX to the point in the cusp where the curvature radius of the magnetic field line is comparable to the ion Larmor radius so the ideal MHD approximation is satisfied [20].

    The integrations for two different amplitudes of the magnetic throat are plotted in figure 6,where theyaxis is the magnetic field strength in the side cell.With zero reverse current,the integrated value,IM,is negative and it becomes positive if the field in the side cell is large enough.With the enhancement of the cusped field,theIMis larger,or the field line curves are further away from the plasma,making more positive contributions to equation(2),and the plasma shows a trend of stabilization,as evidenced in figure 4.

    Note that in a cusp configuration,see figure 1(c) for reference,the curvature integral in the side cell is usually positive,while the curvature integral in the central cell is usually negative.The plasma in the side cell has a larger radius,acting as an expander plasma.The major difference is that in our case,the medium-sized washer-gun makes the plasma density in the side cell several times that in the central cell [32],suggesting that the integral calculated in this paper is smaller than the actual value if the pressure terms are counted.

    In the case of the same magnetic field in the side cell,a more reversed current is required to make the integralIMpositive,see figure 6 for comparison.This is simply due to the fact that the throat magnetic field can also affect the field line curvature,and theIMdecreases with the magnetic mirror ratio increasing.In other words,a larger magnetic mirror ratio can make central cell plasma more unstable.

    To study how the mirror ratio affects plasma stability,another experiment was conducted with the side cell magnetic field held at 30 G while varying the magnetic throat magnetic field from 1500 to 3200 G,or the corresponding magnetic mirror ratio(Rm)is from 2.8 to 6.When the magnetic mirror ratio is lower than 4,plasma density fluctuation levels are roughly unchanged;however,when the magnetic mirror ratio is greater than 4,the fluctuations start to grow,as shown in figures 6(a)and(b).Figure 8 is a calculation ofIM,which is consistent with that in figure 7.

    Figure 7.The fluctuation as a function of the magnetic mirror ratio for probes at(a)r = 0 cm,(b)r = 10 cm.The magnetic field in the side cell is 30 G.

    Figure 8.The curvature integration varies with the Rm.

    Figure 9. Radial position of the null point versus magnetic mirror ratio.

    Plotted in figure 9 are the radial locations of the null points,which increase almost linearly fromr= 0.29 m tor= 0.47 m with an increasing mirror ratio.Tara tandem mirror [17,19]has demonstrated that the closer of the magnetic null point to the plasma,the more stable the plasma is,which is consistent with our results.When the null point distance is about 40 cm from the magnetic axis,the plasma has an obvious stabilizing effect.

    4.Conclusions

    We have systematically studied the effect of the cusp field on the stability of the plasma column in a fully axisymmetric tandem mirror for the first time.Specifically,we present experimental evidence to confirm that the stronger the cusped field is,the more stable the plasma is.However,when the magnetic field in the side cell is completely reversed,the plasma density decreases significantly.In addition,the plasma density fluctuation is also related to the mirror ratioRm.The higherRmis,the farther the null point is from the magnetic axis,and the more unstable the plasma is.The experimental results are in agreement with the theoretical prediction.In our experiment,when the null point is 35-40 cm away from the magnetic axis,the plasma has good stability and the density is in a suitable range.

    With the fully symmetrical configuration becoming the main feature of modern magnetic mirrors,the stabilization by field line curvature effect is worth new investigation.The stabilizing effect by applying cusp configuration in the side cell is global,so potentially one can apply this method without affecting the magnetic field configuration in the central cell.It is critical to the application of radio frequency heating in linear devices.

    Acknowledgments

    This work is supported by the National Key R&D Program of China(No.2017YFE0301802),and National Natural Science Foundation of China (No.12175226).

    猜你喜歡
    李清光輝
    發(fā)光的招牌
    光輝的學習榜樣
    今日民族(2022年9期)2022-10-09 05:35:26
    海底黏土畫
    童話世界(2020年11期)2020-06-10 02:26:12
    春在飛
    火烈鳥
    童話世界(2019年26期)2019-09-24 10:57:36
    就在家門口
    世界家苑(2018年11期)2018-11-20 10:50:58
    小新筆記
    黨的光輝
    光輝的七月
    中國火炬(2011年7期)2011-07-25 10:38:34
    紙電視
    兒童時代(2009年11期)2009-11-27 05:38:32
    国精品久久久久久国模美| 国产黄色视频一区二区在线观看| av电影中文网址| 久久影院123| 亚洲国产欧美在线一区| 18在线观看网站| 欧美xxⅹ黑人| 欧美+日韩+精品| 国产伦理片在线播放av一区| 两个人免费观看高清视频| 精品一品国产午夜福利视频| 夜夜爽夜夜爽视频| 午夜福利视频在线观看免费| 亚洲精品国产av蜜桃| 免费看av在线观看网站| 另类精品久久| 另类精品久久| 超碰97精品在线观看| 蜜桃国产av成人99| 国产老妇伦熟女老妇高清| 狂野欧美激情性xxxx在线观看| 欧美少妇被猛烈插入视频| 国产国拍精品亚洲av在线观看| 精品久久国产蜜桃| 久久人人爽人人爽人人片va| 午夜激情久久久久久久| 男女国产视频网站| 久久人人爽av亚洲精品天堂| 国产成人av激情在线播放 | av免费在线看不卡| 美女国产视频在线观看| 日韩精品有码人妻一区| 日韩制服骚丝袜av| 成人国产av品久久久| 天堂俺去俺来也www色官网| 亚洲人与动物交配视频| 麻豆乱淫一区二区| 婷婷色av中文字幕| 欧美丝袜亚洲另类| 国产精品蜜桃在线观看| 午夜精品国产一区二区电影| 高清毛片免费看| 97在线人人人人妻| 一个人免费看片子| 午夜影院在线不卡| 黄色欧美视频在线观看| 精品一区二区三卡| av视频免费观看在线观看| 考比视频在线观看| 18+在线观看网站| 蜜桃在线观看..| 黄色一级大片看看| 欧美亚洲 丝袜 人妻 在线| 免费看光身美女| 欧美最新免费一区二区三区| 精品国产露脸久久av麻豆| 亚洲第一区二区三区不卡| 国产女主播在线喷水免费视频网站| 亚洲精品日韩在线中文字幕| 亚洲精品久久久久久婷婷小说| 日产精品乱码卡一卡2卡三| 一区在线观看完整版| 亚洲国产精品专区欧美| 十分钟在线观看高清视频www| 亚洲综合色网址| 欧美国产精品一级二级三级| 人人澡人人妻人| 日本爱情动作片www.在线观看| 亚洲精品av麻豆狂野| 婷婷色综合www| 黄色视频在线播放观看不卡| 国产精品99久久99久久久不卡 | 九色亚洲精品在线播放| 久久精品国产亚洲网站| 女的被弄到高潮叫床怎么办| 乱人伦中国视频| 国产一区有黄有色的免费视频| videos熟女内射| 一级毛片aaaaaa免费看小| 97超碰精品成人国产| 欧美日本中文国产一区发布| 欧美三级亚洲精品| 交换朋友夫妻互换小说| 国产极品天堂在线| 午夜av观看不卡| 亚洲国产精品专区欧美| 亚洲精品乱久久久久久| 精品久久国产蜜桃| 午夜免费鲁丝| 精品国产国语对白av| 国产精品熟女久久久久浪| 狂野欧美白嫩少妇大欣赏| 飞空精品影院首页| 涩涩av久久男人的天堂| 日韩一区二区视频免费看| 伦精品一区二区三区| 99精国产麻豆久久婷婷| 亚洲在久久综合| 精品视频人人做人人爽| 男女无遮挡免费网站观看| av黄色大香蕉| av专区在线播放| 尾随美女入室| 女性生殖器流出的白浆| 国产在线免费精品| 国产在线视频一区二区| 欧美激情极品国产一区二区三区 | 免费看光身美女| 人体艺术视频欧美日本| 边亲边吃奶的免费视频| 精品熟女少妇av免费看| 亚洲精品亚洲一区二区| 精品久久久久久久久亚洲| 少妇人妻 视频| 国产欧美另类精品又又久久亚洲欧美| 国产国拍精品亚洲av在线观看| 亚洲国产精品一区三区| 好男人视频免费观看在线| 精品一区二区三区视频在线| 婷婷色av中文字幕| 又黄又爽又刺激的免费视频.| 少妇的逼水好多| 大香蕉久久网| 美女脱内裤让男人舔精品视频| 伊人亚洲综合成人网| 亚洲美女黄色视频免费看| 最新中文字幕久久久久| 又粗又硬又长又爽又黄的视频| 国产片内射在线| av天堂久久9| 高清毛片免费看| 乱人伦中国视频| 夜夜爽夜夜爽视频| 国产探花极品一区二区| 狠狠婷婷综合久久久久久88av| freevideosex欧美| 国产一区二区在线观看av| 丰满乱子伦码专区| 嫩草影院入口| 亚洲精品日本国产第一区| 免费看av在线观看网站| 欧美一级a爱片免费观看看| 99re6热这里在线精品视频| 你懂的网址亚洲精品在线观看| 亚洲精品日韩在线中文字幕| 九九久久精品国产亚洲av麻豆| 国产亚洲最大av| 99久久综合免费| 国产片特级美女逼逼视频| 青春草国产在线视频| 精品亚洲乱码少妇综合久久| 99久久精品一区二区三区| 成人亚洲精品一区在线观看| 亚洲av国产av综合av卡| 成人国产av品久久久| 丝袜喷水一区| 午夜福利,免费看| 永久网站在线| 一区在线观看完整版| 又粗又硬又长又爽又黄的视频| 免费观看性生交大片5| 久久国内精品自在自线图片| 亚洲精品中文字幕在线视频| 国产精品麻豆人妻色哟哟久久| 国产午夜精品一二区理论片| 亚洲中文av在线| 日产精品乱码卡一卡2卡三| 九九久久精品国产亚洲av麻豆| av天堂久久9| 女性被躁到高潮视频| 美女视频免费永久观看网站| 黄色欧美视频在线观看| 黄色一级大片看看| 亚洲精品视频女| 菩萨蛮人人尽说江南好唐韦庄| 久久综合国产亚洲精品| 一本大道久久a久久精品| 欧美亚洲日本最大视频资源| 中文字幕人妻熟人妻熟丝袜美| 国产毛片在线视频| 欧美三级亚洲精品| 黄片无遮挡物在线观看| 国产欧美另类精品又又久久亚洲欧美| 国精品久久久久久国模美| 一边摸一边做爽爽视频免费| 精品亚洲乱码少妇综合久久| 精品少妇黑人巨大在线播放| 国产精品久久久久久久电影| 人成视频在线观看免费观看| 久久精品久久久久久噜噜老黄| 97在线视频观看| 国产精品久久久久成人av| 久久久精品区二区三区| 欧美一级a爱片免费观看看| 岛国毛片在线播放| 国产黄色免费在线视频| 国产精品人妻久久久影院| 久久99蜜桃精品久久| 寂寞人妻少妇视频99o| 久久精品国产自在天天线| 一级毛片电影观看| 老司机亚洲免费影院| 香蕉精品网在线| 97超碰精品成人国产| 一级毛片黄色毛片免费观看视频| 成人手机av| 国产男人的电影天堂91| 亚洲色图综合在线观看| 国产视频内射| 欧美97在线视频| 国产高清不卡午夜福利| 国产午夜精品久久久久久一区二区三区| 女人精品久久久久毛片| 日日爽夜夜爽网站| 亚洲精品第二区| 夜夜爽夜夜爽视频| 大陆偷拍与自拍| 国产精品成人在线| 国产精品国产三级国产av玫瑰| 成人漫画全彩无遮挡| 男人爽女人下面视频在线观看| 妹子高潮喷水视频| 久久这里有精品视频免费| 全区人妻精品视频| 69精品国产乱码久久久| 中国国产av一级| 亚洲精品日本国产第一区| 丝瓜视频免费看黄片| 中国美白少妇内射xxxbb| 久久99一区二区三区| 婷婷色综合大香蕉| 欧美国产精品一级二级三级| 春色校园在线视频观看| 亚洲美女搞黄在线观看| 国产成人aa在线观看| 香蕉精品网在线| 特大巨黑吊av在线直播| 亚洲久久久国产精品| 日产精品乱码卡一卡2卡三| 国产成人免费观看mmmm| 91精品国产国语对白视频| 嘟嘟电影网在线观看| 蜜桃在线观看..| 天天躁夜夜躁狠狠久久av| 精品久久蜜臀av无| av电影中文网址| 亚洲av在线观看美女高潮| 亚洲中文av在线| 国产精品无大码| 久久综合国产亚洲精品| 国产 精品1| 丝袜喷水一区| 夜夜看夜夜爽夜夜摸| 亚洲国产精品专区欧美| 毛片一级片免费看久久久久| 亚洲精品国产av蜜桃| 亚洲精品美女久久av网站| 母亲3免费完整高清在线观看 | 丰满乱子伦码专区| 久久国内精品自在自线图片| 内地一区二区视频在线| 亚洲中文av在线| 五月伊人婷婷丁香| 国产精品女同一区二区软件| 国产视频内射| 亚洲精品一二三| 如日韩欧美国产精品一区二区三区 | 狠狠精品人妻久久久久久综合| 97超碰精品成人国产| 婷婷色麻豆天堂久久| 一级a做视频免费观看| 国产成人a∨麻豆精品| 丝袜在线中文字幕| 欧美+日韩+精品| 少妇被粗大猛烈的视频| 少妇猛男粗大的猛烈进出视频| 如何舔出高潮| 亚洲中文av在线| 菩萨蛮人人尽说江南好唐韦庄| 丝袜美足系列| 中文字幕亚洲精品专区| 亚洲国产日韩一区二区| 精品久久久久久久久亚洲| 久久97久久精品| 亚洲国产欧美日韩在线播放| 免费看光身美女| 最新的欧美精品一区二区| 国产精品国产三级国产av玫瑰| 啦啦啦视频在线资源免费观看| 亚洲美女搞黄在线观看| 国产成人精品福利久久| 亚洲熟女精品中文字幕| 国产日韩一区二区三区精品不卡 | 另类精品久久| 国产一区二区三区综合在线观看 | av播播在线观看一区| 国产综合精华液| 欧美亚洲日本最大视频资源| 精品少妇黑人巨大在线播放| 五月伊人婷婷丁香| 99久久综合免费| 国产成人精品一,二区| 成人毛片a级毛片在线播放| 亚洲内射少妇av| 亚洲精品成人av观看孕妇| 人人妻人人爽人人添夜夜欢视频| 久9热在线精品视频| 久久 成人 亚洲| www.自偷自拍.com| 国产亚洲av高清不卡| 久热这里只有精品99| 免费人妻精品一区二区三区视频| 久久国产精品人妻蜜桃| 欧美亚洲日本最大视频资源| 国产欧美亚洲国产| 日本一区二区免费在线视频| 丝袜美足系列| 新久久久久国产一级毛片| 久久毛片免费看一区二区三区| 大香蕉久久成人网| 久久精品国产综合久久久| 久热这里只有精品99| 女警被强在线播放| 色婷婷久久久亚洲欧美| 一二三四社区在线视频社区8| 国产极品粉嫩免费观看在线| 午夜日韩欧美国产| 嫩草影视91久久| 51午夜福利影视在线观看| 国产亚洲午夜精品一区二区久久| 一边摸一边做爽爽视频免费| 性高湖久久久久久久久免费观看| 老司机午夜十八禁免费视频| 香蕉久久夜色| av在线播放免费不卡| 99riav亚洲国产免费| 脱女人内裤的视频| 狠狠精品人妻久久久久久综合| 国产在线免费精品| 大码成人一级视频| 成人特级黄色片久久久久久久 | 香蕉国产在线看| 色视频在线一区二区三区| 久久精品国产a三级三级三级| 国产成人精品久久二区二区91| 国产激情久久老熟女| 丰满饥渴人妻一区二区三| 亚洲中文av在线| 一本色道久久久久久精品综合| 又黄又粗又硬又大视频| 久热这里只有精品99| 欧美人与性动交α欧美精品济南到| 精品少妇内射三级| 91成人精品电影| 久久免费观看电影| 一级毛片精品| 国产精品久久久av美女十八| 久久精品成人免费网站| av国产精品久久久久影院| 无遮挡黄片免费观看| 国产精品 国内视频| 高潮久久久久久久久久久不卡| 丝瓜视频免费看黄片| 久久国产精品大桥未久av| 最新在线观看一区二区三区| 国产精品98久久久久久宅男小说| 91精品三级在线观看| 亚洲国产av新网站| 久久久久网色| kizo精华| 国产国语露脸激情在线看| 五月天丁香电影| 老汉色av国产亚洲站长工具| 99久久精品国产亚洲精品| 超碰成人久久| 欧美黑人精品巨大| 国产精品成人在线| 久久国产亚洲av麻豆专区| 少妇精品久久久久久久| 69av精品久久久久久 | 巨乳人妻的诱惑在线观看| 午夜福利在线观看吧| 一级毛片精品| 啦啦啦免费观看视频1| 嫁个100分男人电影在线观看| 在线观看免费高清a一片| 啦啦啦免费观看视频1| 欧美精品一区二区免费开放| 美国免费a级毛片| 人妻 亚洲 视频| 国产av又大| 欧美国产精品va在线观看不卡| 91精品三级在线观看| 最新在线观看一区二区三区| 亚洲五月色婷婷综合| 欧美日韩中文字幕国产精品一区二区三区 | 窝窝影院91人妻| 精品亚洲成a人片在线观看| 国产成人精品无人区| 91老司机精品| 国产在线观看jvid| 亚洲熟女精品中文字幕| 老司机深夜福利视频在线观看| 久久久欧美国产精品| 一进一出抽搐动态| av不卡在线播放| 深夜精品福利| 久久久久久亚洲精品国产蜜桃av| 777久久人妻少妇嫩草av网站| 大香蕉久久网| 亚洲欧洲日产国产| 久久人人97超碰香蕉20202| 一夜夜www| 啦啦啦中文免费视频观看日本| 成年动漫av网址| 精品国产一区二区久久| 亚洲欧美精品综合一区二区三区| 19禁男女啪啪无遮挡网站| 色尼玛亚洲综合影院| 亚洲少妇的诱惑av| 欧美精品一区二区免费开放| 9热在线视频观看99| 午夜福利一区二区在线看| 菩萨蛮人人尽说江南好唐韦庄| 9热在线视频观看99| 午夜福利在线免费观看网站| 亚洲情色 制服丝袜| 巨乳人妻的诱惑在线观看| 人人妻人人澡人人看| 757午夜福利合集在线观看| 91精品三级在线观看| 狂野欧美激情性xxxx| 欧美 日韩 精品 国产| 亚洲精华国产精华精| 一本久久精品| 91精品三级在线观看| 亚洲精品国产一区二区精华液| 久久久久久久大尺度免费视频| 最近最新免费中文字幕在线| 久久精品国产综合久久久| 99国产精品免费福利视频| av网站在线播放免费| 老熟妇仑乱视频hdxx| 1024视频免费在线观看| 午夜91福利影院| 捣出白浆h1v1| 黄色丝袜av网址大全| 日韩视频在线欧美| 国产成人一区二区三区免费视频网站| 悠悠久久av| 日韩成人在线观看一区二区三区| 男女边摸边吃奶| 夜夜骑夜夜射夜夜干| 久久久水蜜桃国产精品网| 免费av中文字幕在线| 极品少妇高潮喷水抽搐| 国产精品成人在线| 超碰成人久久| 国产午夜精品久久久久久| 精品久久久久久久毛片微露脸| 操出白浆在线播放| 黑人巨大精品欧美一区二区mp4| 亚洲性夜色夜夜综合| 亚洲色图综合在线观看| 久久精品国产亚洲av香蕉五月 | e午夜精品久久久久久久| 大型黄色视频在线免费观看| 在线观看免费日韩欧美大片| 日韩免费av在线播放| 午夜福利在线观看吧| 欧美乱码精品一区二区三区| 99re6热这里在线精品视频| 国产男女内射视频| 女人高潮潮喷娇喘18禁视频| 国产黄频视频在线观看| 九色亚洲精品在线播放| 亚洲九九香蕉| 真人做人爱边吃奶动态| 99re6热这里在线精品视频| 正在播放国产对白刺激| 国产精品香港三级国产av潘金莲| 精品一区二区三区四区五区乱码| 婷婷成人精品国产| 日本a在线网址| 精品国产国语对白av| 中文字幕人妻丝袜一区二区| 丰满人妻熟妇乱又伦精品不卡| 亚洲国产看品久久| 日本vs欧美在线观看视频| 美女视频免费永久观看网站| a在线观看视频网站| 九色亚洲精品在线播放| 亚洲一码二码三码区别大吗| 丰满少妇做爰视频| 女性生殖器流出的白浆| 精品少妇久久久久久888优播| 少妇被粗大的猛进出69影院| 一级片'在线观看视频| 巨乳人妻的诱惑在线观看| 国产成人av教育| 天堂俺去俺来也www色官网| 久久久久久久久久久久大奶| 五月天丁香电影| 中文字幕人妻丝袜制服| 亚洲av片天天在线观看| 日韩三级视频一区二区三区| 高潮久久久久久久久久久不卡| 国产欧美日韩一区二区三| 黑人猛操日本美女一级片| 少妇精品久久久久久久| av片东京热男人的天堂| 好男人电影高清在线观看| 久久午夜亚洲精品久久| 亚洲中文字幕日韩| 又大又爽又粗| 欧美日韩av久久| 亚洲av日韩在线播放| 女人爽到高潮嗷嗷叫在线视频| 亚洲精品国产精品久久久不卡| 青青草视频在线视频观看| a级片在线免费高清观看视频| 欧美另类亚洲清纯唯美| 搡老岳熟女国产| 欧美一级毛片孕妇| 亚洲第一av免费看| 一进一出抽搐动态| 每晚都被弄得嗷嗷叫到高潮| 大香蕉久久成人网| 欧美日韩精品网址| 久久精品国产亚洲av高清一级| 一本综合久久免费| 国产精品av久久久久免费| 天天躁日日躁夜夜躁夜夜| 大陆偷拍与自拍| 国产无遮挡羞羞视频在线观看| 大型av网站在线播放| www日本在线高清视频| 亚洲成av片中文字幕在线观看| 久久人妻av系列| 久久久欧美国产精品| 黄色丝袜av网址大全| av视频免费观看在线观看| 色尼玛亚洲综合影院| 他把我摸到了高潮在线观看 | 在线观看人妻少妇| 成人国产av品久久久| 女人久久www免费人成看片| 美女福利国产在线| 国产精品一区二区在线观看99| 男男h啪啪无遮挡| 亚洲性夜色夜夜综合| 搡老熟女国产l中国老女人| 成人亚洲精品一区在线观看| 亚洲午夜理论影院| 午夜福利免费观看在线| 王馨瑶露胸无遮挡在线观看| 国产免费现黄频在线看| 真人做人爱边吃奶动态| 国产在线免费精品| 精品卡一卡二卡四卡免费| 亚洲性夜色夜夜综合| 日韩免费高清中文字幕av| 久久精品国产亚洲av高清一级| av免费在线观看网站| 色精品久久人妻99蜜桃| 亚洲一区中文字幕在线| 一级,二级,三级黄色视频| 一边摸一边抽搐一进一出视频| 亚洲av欧美aⅴ国产| 亚洲欧美日韩另类电影网站| 最近最新免费中文字幕在线| 变态另类成人亚洲欧美熟女 | 一级片'在线观看视频| 久久精品国产亚洲av香蕉五月 | 脱女人内裤的视频| 日韩熟女老妇一区二区性免费视频| 亚洲av片天天在线观看| 国内毛片毛片毛片毛片毛片| 久久精品亚洲精品国产色婷小说| 国产福利在线免费观看视频| 久热爱精品视频在线9| 大香蕉久久成人网| 中文字幕制服av| 最新在线观看一区二区三区| h视频一区二区三区| 丰满迷人的少妇在线观看| 岛国毛片在线播放| 欧美日韩国产mv在线观看视频| 中文字幕另类日韩欧美亚洲嫩草| 国产精品国产高清国产av | 男人操女人黄网站| 天天躁夜夜躁狠狠躁躁| 两人在一起打扑克的视频| 国产真人三级小视频在线观看| 亚洲精品国产色婷婷电影| 精品少妇黑人巨大在线播放| 亚洲av片天天在线观看| 在线观看舔阴道视频| 国产有黄有色有爽视频| 亚洲一区中文字幕在线| 亚洲人成电影观看| 亚洲全国av大片| 亚洲免费av在线视频| 久久狼人影院| 丰满迷人的少妇在线观看| 国产欧美亚洲国产| 精品国产国语对白av| 人成视频在线观看免费观看| 日本黄色视频三级网站网址 | 精品久久蜜臀av无| 考比视频在线观看| 久久青草综合色| 黑丝袜美女国产一区| 亚洲色图av天堂| 欧美成狂野欧美在线观看|