• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Thickness-dependent magnetic properties in Pt/[Co/Ni]n multilayers with perpendicular magnetic anisotropy

    2023-02-20 13:16:08ChunjieYan晏春杰LinaChen陳麗娜KaiyuanZhou周愷元LiupengYang楊留鵬QingweiFu付清為WenqiangWang王文強(qiáng)WenChengYue岳文誠LikeLiang梁力克ZuiTao陶醉JunDu杜軍YongLeiWang王永磊andRonghuaLiu劉榮華
    Chinese Physics B 2023年1期
    關(guān)鍵詞:付清力克

    Chunjie Yan(晏春杰), Lina Chen(陳麗娜),2,?, Kaiyuan Zhou(周愷元), Liupeng Yang(楊留鵬), Qingwei Fu(付清為),Wenqiang Wang(王文強(qiáng)), Wen-Cheng Yue(岳文誠), Like Liang(梁力克), Zui Tao(陶醉), Jun Du(杜軍),Yong-Lei Wang(王永磊), and Ronghua Liu(劉榮華),?

    1National Laboratory of Solid State Microstructures,School of Physics and Collaborative Innovation Center of Advanced Microstructures,Nanjing University,Nanjing 210093,China

    2School of Science,Nanjing University of Posts and Telecommunications,Nanjing 210023,China

    3School of Electronics Science and Engineering,Nanjing University,Nanjing 210093,China

    Keywords: perpendicular magnetic anisotropy,magnetic domain,damping,multiayers

    1. Introduction

    Magnetic multilayers with strong perpendicular magnetic anisotropy (PMA) and low magnetic damping have attracted much attention because of their potential applications in highdensity magnetic random access memories(MRAM)[1–5]and spin torque nano-oscillators.[6–9]Compared to the in-plane magnetized ferromagnets, ferromagnetic films with PMA facilitate the realization of nonvolatile MRAM with lower power and higher density storage because the latter has lower critical switching current and higher thermal stability than the former as the continuous downscaling of the cell size of devices.[10]In addition, PMA can be an effective magnetic field to achieve zero external magnetic field working spintorque nano-oscillators with ferromagnets with strong PMA and low damping as its free layer.[11]Therefore, the controllable tailoring PMA of magnetic films is an essential prerequisite for developing high-performance spintronic devices.The magnetic multilayers,e.g.,[Co/Pd],[Co/Pt],and[Co/Ni],provide an opportunity to tune their magnetic properties by changing the thickness ratio controllably and the number of bilayer repeats thanks to the interface-induced PMA due to interfacial spin–orbit coupling and interfacial strain relevant magnetoelastic effects.[12–17]Among these PMA multilayers, the PMA [Co/Ni] multilayer also exhibits low damping constant,[14]which gets much attention, especially for the fields of current-driven auto-oscillation of magnetization and excitation and manipulation of spin-waves.[18,19]Furthermore,the PMA[Co/Ni]multilayer is also useful for spin–orbit torque devices.[20–22]Therefore,[Co/Ni]multilayers are considered one of the most promising PMA ferromagnets in various spintronic devices.Although there are a few studies on the magnetic anisotropy, magnetotransport, and magnetic damping of Pt/[Co/Ni] multilayers,[6,14,23]the systematically studied evolution of magnetostatic properties,including the topography of magnetic domains and magnetic dynamics with the thickness ratio of Co and Ni layers for this multilayer film still needs to make a thorough investigation for facilitating it better used in further spintronics.

    Here, we systematically investigate how to control the magnetic film PMA by tailoring the interfacial effect by varying the thickness of the Ni layer and its impact on magnetic domain structure and dynamical damping in two serial Co/Ni multilayers withtCo=0.2 nm and 0.3 nm. The highest PMA coefficientKU~3×106erg·cm-3and coercivityHC~250 Oe are found at the optimum Ni thicknesstNi=0.6 nm for the studied two serials.The nucleation of the magnetic domain occurs at only a few nucleation sites and gradually expands with magnetic fields for the multilayers with the optimum Ni thicknesses 0.4 nm–0.6 nm. Finally, the intrinsic Gilbert damping constantαis not sensitive to thickness-dependentKUand domain structures even though the linewidth of ferromagnetic resonance is inversely proportional toKUandHC, which is dominated by inhomogeneous magnetic properties.

    2. Experiment

    Two serial multilayers of Pt(5)/[Co(0.2)/Ni(tNi)]5/Pt(1)and Pt(5)/[Co(0.3)/Ni(tNi)]5/Pt(1),named as Pt/[Co(0.2)/Ni(tNi)]and Pt/[Co(0.3)/Ni(tNi)], respectively, were deposited on Si/SiO2substrates at room temperature by dc-magnetron sputtering with Ar pressure 3×10-3torr. The unit in parentheses is the thickness in nm. The base pressure of the sputtering deposition chamber is below 2×10-8torr. The deposition rate was monitored by the quartz crystal monitorin situand calibrated by spectroscopic ellipsometry(SE).The static magnetic properties were characterized by the vibrating sample magnetometer (VSM), the anomalous Hall resistivity (AHR)measurement,and the magneto-optic Kerr effect(MOKE)microscopy respectively. The films’ ferromagnetic resonance(FMR) spectra, obtained by combining coplanar waveguide(CPW) and lock-in techniques, were also adopted to characterize their dynamic magnetic properties. All these magnetic characterizations were performed at room temperature.

    3. Results and discussion

    3.1. Quasi-static magnetic properties

    To directly obtain the thickness dependence of PMA properties in the Co/Ni films, we first performed the magnetic hysteresis loops of samples with different thicknesses using VSM. Figure 1 shows the magnetization hysteresis loops with the out-of-plane and in-plane field geometries for the two serial multilayers of Pt/[Co(0.2)/Ni(tNi)] and Pt/[Co(0.3)/Ni(tNi)] samples. The well-defined squareM–Hloops under out-of-plane field [Figs. 1(a) and 1(c)] indicate that two studied serial Pt/[Co/Ni] multilayers exhibit a perpendicular magnetic anisotropy. Additionally, the saturation magnetizationMSof the multilayers decreases with increasing the thickness of the Ni layertNi, from 673 emu·cm-3to 495 emu·cm-3for Pt/[Co(0.2)/Ni(tNi)]and 723 emu·cm-3to 639 emu·cm-3for Pt/[Co(0.3)/Ni(tNi)], which agrees with the much lowerMS~484 emu·cm-3of the metal nickel compared to that of the cobalt layerMS~1422 emu·cm-3.Based on the out-of-plane and in-plane magnetization hysteresis loops, the perpendicular anisotropy fieldHKwas determined by using the defined formula for the PMA:[12,24]HK=(2/MS)(H⊥dM-H‖dM)+4πMS. The calculatedHK,MSand the coercivityHC, obtained from theM–Hloops,were summarized below in Fig.5.

    Fig.1.(a)–(b)Magnetization loops of the films Pt(5)/[Co(0.2)/Ni(tNi)]5/Pt(1)with out-of-plane(a)and in-plane(b)magnetic field.(c)–(d)Same as(a)–(b),for Pt(5)/[Co(0.3)/Ni(tNi)]5/Pt(1).

    These static magnetic properties of the metal Pt/[Co/Ni]multilayer films also can be determined by the electric transports in magnetic field,e.g.,anomalous Hall resistivity(AHR)and magnetoresistive effect. Compared to the standard magnetometer above,the electric transports in magnetic field measurements provide an alternative approach and, especially,more useful for spintronic nano-devices because they can easily access the magnetic properties of the microscale and nanoscale samples.[25,26]Therefore, we also perform the outof-plane and in-plane AHR loops as a function of the applied magnetic fields for the studied two serial multilayers,as shown in Fig.2. The coercivityHCdetermined from the outof-plane AHR loops are well consistent with the values obtained by theM–Hloops, and are also summarized in Fig.5.Meanwhile, we can calculateHKof the studied films from the in-plane AHR loops by using the following relation:[27]HK=H‖·tanarcsin(ρxy(H)/ρxy(0))+4πMS,whereρxy(0)is the AHR value at zero in-plane field. The evolution ofHKwith the thickness of the Ni layer is overall consistent with the results determined by the VSM measurement. Furthermore,the AHR measurements also provide us the additional information, which can not be easily accessed by VSM,about the studied two serial Pt/[Co/Ni] multilayers. For example, we find that the in-plane AHR near-zero magnetic field is much smaller than the out-of-plane AHR for the samples with certain Ni thickness,indicating that these samples form the multidomain structures at the low in-plane magnetic fields. Therefore,the value of the difference between out-of-plane and inplane AHR at near-zero fields hints that the different Ni thickness films may exhibit distinct magnetic domain structures.[28]

    Fig.2. (a)–(b) Anomalous Hall resistivity as a function of out-of-plane(a) and in-plane magnetic field with 5° tilt angle from the file plane(b) for the samples Pt(5)/[Co(0.2)/Ni(tNi)]5/Pt(1). The inset shows the geometric relationship between magnetic field, magnetization and effective anisotropic field = HK-4πMS. (c)–(d) Same as (a)–(b), for Pt(5)/[Co(0.3)/Ni(tNi)]5/Pt(1). All AHR were measured by using the films patterned into a 0.3×10 mm Hall cross.

    3.2. Magnetic domain structures

    Fig.3.(a)–(h)Magneto-optic Kerr hysteresis loops and magnetic domain images of the films Pt(5)/[Co(0.2)/Ni(tNi)]5/Pt(1) with labeled thickness tNi =0.2 nm(a),0.3 nm(b),0.4 nm(c),0.5 nm(d),0.6 nm(e),0.7 nm(f),0.8 nm(g), 0.9 nm (h), respectively. The corresponding magnetic domain images with the size of 100 μm×150 μm were obtained at the labeled out-of-plane magnetic fields(also marked as the red dots on loops).

    3.3. Magnetization dynamics

    To further investigate the Ni thickness-dependent magnetization dynamics of Co/Ni multilayers,we perform the broadband FMR measurement with the external field perpendicular to the film plane. All FMR measurements were carried out with a home-made differential FMR measurement system combining lock-in technique at room temperature. A continuous-wave Oersted field with a selected radio frequency is generated via connecting coplane waveguide (CPW) with an RF generator, which produces a microwave signal to excite FMR of ferromagnetic film, which with film surface was adhered on the CPW. The RF power used in the experiments is 15 dBm. To improve the signal-to-noise ratio (SNR), a lock-in detection technique is employed through the modulation of signals. The modulation of a direct current(DC)magnetic fieldHis provided by a pair of secondary Helmholtz coils powered by an alternating current (AC) source with 129.9 Hz[see Fig.4(a)].[16,30]The differential absorption signal is measured by sweeping the magnetic field with a fixed microwave frequency. The representative FMR spectrum of Pt(5)/[Co(0.2)/Ni(0.3)]5/Pt(1) obtained at 9 GHz is shown in the inset of Fig. 4(b). The differential FMR spectrum can be well fitted by using a combination of symmetric and antisymmetric Lorentzian function,as follows:

    whereVSandVArepresent the symmetric and antisymmetric factors,His the external magnetic field,Hresis the resonance field,and ΔHis the linewidth of FMR correspondingtimes of the peak-to-dip width in the FMR spectrum. The relationship between the frequencyfand the resonance fieldHresof the two series of Pt/[Co(0.2)/Ni(tNi)]and Pt/[Co(0.3)/Ni(tNi)]samples [Figs. 4(b) and 4(d)] can be well fitted by the Kittel equation[31]

    where(γ/2π)=2.8 MHz·Oe-1is the gyromagnetic ratio,Heffis the effective demagnetization[32]Heff=HK-4πMS.Therefore,the magnetic anisotropy fieldHKalso can be directly determined from the dispersion relation offversusHresby using a parameterMSobtained by VSM.In addition,we can obtain the intrinsic Gilbert dampingαby fitting the experimental data of linewidth ΔHversus resonance frequency [Figs. 4(c) and 4(e)] with the formula ΔH=ΔH0+(4πα f/γ), where ΔH0is an inhomogeneous linewidth independent of the frequency,and the second term is the intrinsic linewidth linearly proportional to the frequency. The inhomogeneous linewidth of samples is derived from roughness, defects and inhomogeneous PMA and magnetization.[33]

    Fig.4.(a)Differential FMR spectra experimental setup.(b)Dependence of the resonance field Hres on the frequency f with the out-of-plane field for the films Pt(5)/[Co(0.2)/Ni(tNi)]5/Pt(1).Solid lines indicate the Kittel fitting curves.The inset is the representative FMR spectrum obtained at 9 GHz,which can be well fitted by Eq. (1) (solid red line). (c) The linewidth versus frequency (symbols) for the samples Pt(5)/[Co(0.2)/Ni(tNi)]5/Pt(1).The solid line is a linear fitting, which can extract the corresponding damping constant α based on Eq.(2). (d)–(e) Same as (b)–(c), for the films Pt(5)/[Co(0.3)/Ni(tNi)]5/Pt(1).

    Fig.5. (a)–(e) Dependence of the saturation magnetization MS (a), the coercivity HC (b), the anisotropy field HK (c), the inhomogeneous linewidth ΔH0 (d)and the magnetic damping constant α (e)on the Ni thickness tNi in the films Pt(5)/[Co(0.2)/Ni(tNi)]5/Pt(1). (f)–(j)Same as(a)–(e)for the samples Pt(5)/[Co(0.3)/Ni(tNi)]5/Pt(1). MS, HC, and HK were determined from the previous magnetization loops, AHR loops, MOKE loops, and the ferromagnet resonance spectra. The linewidth was determined by fitting the experimental FMR spectrum with a Lorentzian function based on Eq.(1). The magnetic damping constant was obtained by a linear fitting of ΔH versus f curves based on Eq.(2).

    Figure 5 summarizes the dependence of the determined material parameters: the saturation magnetizationMS, the coercivityHC, the anisotropy fieldHK, the inhomogeneous linewidth ΔH0and the magnetic damping constantαon Ni thicknesstNifor the studied two series of Pt/[Co(0.2)/Ni(tNi)]and Pt/[Co(0.3)/Ni(tNi)]samples. The determinedHKby three independent methods shows an overall consistent behavior.TheHKbegins to increase with increasingtNi, and reaches the maximum attNi~0.6 nm, whereafter reduces again with continuing to increasetNi. Several reasons account for this phenomenon. First, the magnetic anisotropy of the studied multilayer is mainly contributed from the interfacial magnetic anisotropy of the Co/Ni and Pt/Co interfaces.[34]Second, the Co/Ni multilayers’interface quality depends highly on the Ni layer’s thickness. In other words, too thin nickel layer may not get a good Co/Ni interface due to inevitable elements diffusion during sputtering deposition. However, theHKwill drop due to reducing the ratio of the interfacial anisotropy to the volume anisotropy energy if the Ni layer is too thick.LikeHK, theHCshows a similar trend with varying thickness of the Ni layer. As we well know that the coercivity depends on PMA,as well as defects-induced pinning effects.But, in our case, the results show that the combination of PMA and magnetization-relevant demagnetization field dominate the coercivity,which can be well explained by the Brown formula:[35]HC=(2KU/MS)-NMS,whereKU=(MSHK)/2 andNare the magnetic anisotropy constant and the demagnetization factor of the film,respectively.

    Figures 5(d) and 5(i) show the inhomogeneous linewidth (ΔH0) of FMR spectra as a function oftNifor Pt/[Co(0.2)/Ni(tNi)] and Pt/[Co(0.3)/Ni(tNi)], respectively.For thin thickness Ni samples, island structures are most likely formed. This results in a broadening of the resonance linewidth due to a distribution of effective internal anisotropy and demagnetization fields.[37]One can see that the minimum linewidth of two serial samples corresponds to the maximum PMA fieldHK, suggesting the inhomogeneous magnetic anisotropy-induced linear broadening is the minimum at the optimum PMA condition.[36]Although the intrinsic damping constant is almost independent of the Ni thickness for the studied two serials, but the Pt/[Co(0.2)/Ni(tNi)] films have a lower damping constantα~0.04 thanα~0.07 of Pt/[Co(0.3)/Ni(tNi)]. The obvious difference in damping constant between the two serial multilayer systems indicates that the former has better magnetic dynamic properties.

    4. Conclusion

    The Ni thickness effect on the static magnetic properties and magnetic dynamics of Pt(5 nm)/[Co(0.2 nm and 0.3 nm)/Ni(tNi)]5/Pt(1 nm) multilayers demonstrate that the two studied serial multilayer systems exhibit the optimum PMA coefficientKUwell as the highest coercivityHCat the Ni thicknesstNi=0.6 nm.The MOKE images further confirm that the maximumKUcorresponds to the magnetic domain structure with the shortest length of domain wall through minimizing the total energy,which consists of magnetic anisotropy energy, exchange energy, and demagnetization energy. Furthermore, the frequency-dependent FMR spectra show that the damping constant remains almost constant with the different Ni thicknesses for both serials,but the Pt/[Co(0.2)/Ni(tNi)]multilayer serial has a lower damping constantα~0.04 than 0.07 of the Pt/[Co(0.3)/Ni(tNi)] serial. According to the obtained results, we find that the optimum PMA coefficientKU=3.3×106erg·cm-3,the highest coercivityHC=250 Oe,and as well as the lowest damping constantα=0.04 can be achieved at Pt(5)/[Co(0.2)/Ni(0.6)]5/Pt(1). Our results of optimizing magnetic properties of the Pt/[Co/Ni] multilayer by tuning the ratio of Co/Ni layers is helpful to facilitate its applications in various spintronic devices.

    Acknowledgments

    Project supported by the National Natural Science Foundation of China(Grant Nos.11774150,12074178,12004171,12074189, and 51971109), the Applied Basic Research Programs of Science and Technology Commission Foundation of Jiangsu Province, China (Grant No. BK20170627), the National Key Research and Development Program of China(Grant No. 2018YFA0209002), the Open Research Fund of Jiangsu Provincial Key Laboratory for Nanotechnology, and the Scientific Foundation of Nanjing University of Posts and Telecommunications(NUPTSF)(Grant No.NY220164).

    猜你喜歡
    付清力克
    Enhancement of spin–orbit torque efficiency by tailoring interfacial spin–orbit coupling in Pt-based magnetic multilayers
    離婚時房子判歸女方所有,經(jīng)濟(jì)補(bǔ)償付清前男方能否享有居住權(quán)
    伴侶(2021年5期)2021-06-08 10:56:24
    王力克風(fēng)景油畫作品
    齊魯藝苑(2021年2期)2021-05-10 02:03:36
    我就是要越線
    王力克《2020 年初春》
    齊魯藝苑(2020年2期)2020-05-18 02:18:02
    和布克賽爾蒙古自治縣幾個地名之探討
    找零難題
    淺談數(shù)列在經(jīng)濟(jì)生活中的應(yīng)用
    新課程(下)(2016年3期)2016-08-08 10:02:27
    淺談數(shù)列在經(jīng)濟(jì)生活中的應(yīng)用
    力克推出Modaris?V8解決方案 加快時裝產(chǎn)品開發(fā)速度
    国产大屁股一区二区在线视频| 波野结衣二区三区在线| 男女边摸边吃奶| 亚洲第一区二区三区不卡| 国产永久视频网站| 久久99精品国语久久久| 日日撸夜夜添| 女人十人毛片免费观看3o分钟| a 毛片基地| 成年免费大片在线观看| 国产av一区二区精品久久 | 午夜免费观看性视频| 欧美+日韩+精品| 亚洲国产高清在线一区二区三| 欧美日韩在线观看h| 久久久久视频综合| 最近中文字幕高清免费大全6| av不卡在线播放| 成人二区视频| 国产色爽女视频免费观看| 欧美人与善性xxx| 寂寞人妻少妇视频99o| 亚洲精品久久久久久婷婷小说| 只有这里有精品99| 国产一区亚洲一区在线观看| 能在线免费看毛片的网站| 成年免费大片在线观看| 人妻 亚洲 视频| 国产av精品麻豆| 一区二区三区精品91| 国产精品国产三级国产av玫瑰| 日本av手机在线免费观看| 久久久久精品性色| 老女人水多毛片| 亚洲人成网站高清观看| 十八禁网站网址无遮挡 | 成人亚洲欧美一区二区av| av在线观看视频网站免费| 黑人高潮一二区| 国产av国产精品国产| 久久久久国产精品人妻一区二区| 一级爰片在线观看| 精品国产一区二区三区久久久樱花 | 精品国产一区二区三区久久久樱花 | 97超视频在线观看视频| av一本久久久久| 校园人妻丝袜中文字幕| 精品一区二区三区视频在线| 人妻系列 视频| 亚洲av成人精品一区久久| 岛国毛片在线播放| 少妇人妻一区二区三区视频| 国产一区亚洲一区在线观看| av卡一久久| 国产69精品久久久久777片| 久久这里有精品视频免费| 国产有黄有色有爽视频| 久久久成人免费电影| 综合色丁香网| 蜜桃亚洲精品一区二区三区| 91精品一卡2卡3卡4卡| 精品少妇黑人巨大在线播放| 欧美日韩在线观看h| 亚洲精品国产成人久久av| 插阴视频在线观看视频| 国产精品一区www在线观看| 欧美3d第一页| 欧美3d第一页| 中文字幕亚洲精品专区| 亚洲精品中文字幕在线视频 | 亚洲色图av天堂| av天堂中文字幕网| 日本免费在线观看一区| 永久网站在线| 在线观看av片永久免费下载| 在线观看三级黄色| 一本色道久久久久久精品综合| 午夜免费鲁丝| a 毛片基地| 国产无遮挡羞羞视频在线观看| 联通29元200g的流量卡| 久久久久久九九精品二区国产| 七月丁香在线播放| 国产亚洲精品久久久com| 99久久人妻综合| 日韩,欧美,国产一区二区三区| 国产极品天堂在线| 亚洲av男天堂| 美女内射精品一级片tv| 久久久久久人妻| 日韩成人伦理影院| 日产精品乱码卡一卡2卡三| xxx大片免费视频| av卡一久久| 免费看日本二区| 在线亚洲精品国产二区图片欧美 | 国产免费视频播放在线视频| 中文字幕制服av| 伦精品一区二区三区| 日韩av在线免费看完整版不卡| av免费观看日本| 免费av中文字幕在线| 毛片女人毛片| 免费少妇av软件| 成人亚洲欧美一区二区av| 亚洲欧洲国产日韩| 国精品久久久久久国模美| 啦啦啦啦在线视频资源| 在线精品无人区一区二区三 | 国产精品一区www在线观看| 日本欧美视频一区| 国产乱人视频| av一本久久久久| 最近2019中文字幕mv第一页| 搡女人真爽免费视频火全软件| 国产欧美另类精品又又久久亚洲欧美| 国产精品熟女久久久久浪| 久久精品国产a三级三级三级| 亚洲色图av天堂| 久久精品久久久久久噜噜老黄| 黑人高潮一二区| 精品久久久精品久久久| 精品久久久噜噜| 久久久久久久久久人人人人人人| 色吧在线观看| 一级毛片我不卡| 直男gayav资源| 日韩欧美一区视频在线观看 | 精品少妇黑人巨大在线播放| 一区二区三区精品91| 日韩强制内射视频| 国产精品伦人一区二区| av视频免费观看在线观看| 欧美三级亚洲精品| 一边亲一边摸免费视频| 中文字幕精品免费在线观看视频 | 日韩av不卡免费在线播放| 午夜激情久久久久久久| 中文乱码字字幕精品一区二区三区| 亚洲精品一区蜜桃| 夜夜看夜夜爽夜夜摸| av在线蜜桃| 少妇的逼好多水| 国内精品宾馆在线| 国产又色又爽无遮挡免| 午夜福利高清视频| 中国国产av一级| 国产精品一二三区在线看| 高清视频免费观看一区二区| 国产精品国产三级专区第一集| 男女边吃奶边做爰视频| 下体分泌物呈黄色| 看十八女毛片水多多多| 亚洲欧洲日产国产| 老熟女久久久| 国产精品国产三级专区第一集| 一二三四中文在线观看免费高清| 黄色欧美视频在线观看| 亚洲成人中文字幕在线播放| 免费观看性生交大片5| 国产成人精品一,二区| 欧美人与善性xxx| 国产av码专区亚洲av| 精品久久久久久电影网| 日日摸夜夜添夜夜爱| 久久精品国产a三级三级三级| 国产精品一区二区在线观看99| 3wmmmm亚洲av在线观看| 国模一区二区三区四区视频| 新久久久久国产一级毛片| 熟女电影av网| 午夜激情久久久久久久| 色视频www国产| 尾随美女入室| 少妇被粗大猛烈的视频| 一区二区三区四区激情视频| 高清在线视频一区二区三区| 身体一侧抽搐| 搡老乐熟女国产| 美女高潮的动态| 精品人妻一区二区三区麻豆| 欧美xxⅹ黑人| 国产视频首页在线观看| 久热久热在线精品观看| 精品国产露脸久久av麻豆| 亚洲av.av天堂| 18禁裸乳无遮挡免费网站照片| 国产一区有黄有色的免费视频| 亚洲欧美精品自产自拍| 午夜激情久久久久久久| 国产精品久久久久成人av| 99热这里只有是精品50| 男的添女的下面高潮视频| 国产精品一区二区在线不卡| 麻豆乱淫一区二区| 亚洲色图av天堂| 久久久久久伊人网av| 国产精品欧美亚洲77777| 亚洲欧美日韩另类电影网站 | 国产极品天堂在线| 在线观看美女被高潮喷水网站| 欧美日韩亚洲高清精品| 亚洲国产高清在线一区二区三| 国产亚洲欧美精品永久| 久久精品国产亚洲网站| 日韩国内少妇激情av| 街头女战士在线观看网站| 女人十人毛片免费观看3o分钟| av线在线观看网站| av在线蜜桃| 我要看日韩黄色一级片| 在线亚洲精品国产二区图片欧美 | 黄色欧美视频在线观看| 成人黄色视频免费在线看| a级毛色黄片| 久久久久久久大尺度免费视频| 久久女婷五月综合色啪小说| 精品午夜福利在线看| 亚洲欧美中文字幕日韩二区| 欧美激情国产日韩精品一区| 亚州av有码| 国产黄色视频一区二区在线观看| 中文资源天堂在线| 99热网站在线观看| 国产亚洲午夜精品一区二区久久| 深爱激情五月婷婷| 欧美 日韩 精品 国产| 国产在线免费精品| 大码成人一级视频| 国产亚洲一区二区精品| h日本视频在线播放| 一本—道久久a久久精品蜜桃钙片| 国产淫片久久久久久久久| 99久久精品一区二区三区| 在线观看免费日韩欧美大片 | 欧美极品一区二区三区四区| 国产高清不卡午夜福利| 啦啦啦在线观看免费高清www| 六月丁香七月| 成人综合一区亚洲| 亚洲精品乱码久久久久久按摩| 美女xxoo啪啪120秒动态图| 啦啦啦啦在线视频资源| 高清午夜精品一区二区三区| 免费av中文字幕在线| 成人二区视频| 大陆偷拍与自拍| 2018国产大陆天天弄谢| 国产v大片淫在线免费观看| 网址你懂的国产日韩在线| 十分钟在线观看高清视频www | 91久久精品国产一区二区三区| 日本黄色片子视频| 欧美xxⅹ黑人| 免费观看性生交大片5| tube8黄色片| 亚洲av中文av极速乱| 欧美zozozo另类| 国产一区有黄有色的免费视频| 汤姆久久久久久久影院中文字幕| 性色avwww在线观看| 成人午夜精彩视频在线观看| 最黄视频免费看| 日韩免费高清中文字幕av| 午夜免费观看性视频| 最黄视频免费看| 中文乱码字字幕精品一区二区三区| 国产精品99久久久久久久久| 爱豆传媒免费全集在线观看| 国产精品伦人一区二区| 欧美日韩一区二区视频在线观看视频在线| 免费不卡的大黄色大毛片视频在线观看| 狂野欧美白嫩少妇大欣赏| 久久av网站| 99热网站在线观看| 如何舔出高潮| 国产精品无大码| 在线免费十八禁| 欧美最新免费一区二区三区| 一二三四中文在线观看免费高清| 亚洲精品一二三| 亚洲自偷自拍三级| 亚洲国产毛片av蜜桃av| 亚洲美女视频黄频| 中文字幕免费在线视频6| 久久久午夜欧美精品| 99久国产av精品国产电影| 精品酒店卫生间| 欧美性感艳星| 国产精品国产av在线观看| 一本色道久久久久久精品综合| 狠狠精品人妻久久久久久综合| 国产黄色免费在线视频| 亚洲精品第二区| 日本黄大片高清| 成人无遮挡网站| 十八禁网站网址无遮挡 | 国产美女午夜福利| 成人毛片60女人毛片免费| 一区二区三区免费毛片| h日本视频在线播放| 亚洲精品久久午夜乱码| 在线精品无人区一区二区三 | 三级经典国产精品| 一二三四中文在线观看免费高清| 在线精品无人区一区二区三 | 黄色日韩在线| 啦啦啦中文免费视频观看日本| 人妻 亚洲 视频| videos熟女内射| 一区二区三区精品91| 国产黄色视频一区二区在线观看| 日韩人妻高清精品专区| 99久久综合免费| 又黄又爽又刺激的免费视频.| 少妇被粗大猛烈的视频| 一级黄片播放器| 国产精品一区二区三区四区免费观看| 欧美性感艳星| 伦精品一区二区三区| 久久ye,这里只有精品| 99久久精品一区二区三区| 777米奇影视久久| 国产大屁股一区二区在线视频| 亚洲欧美成人综合另类久久久| 香蕉精品网在线| 黄片无遮挡物在线观看| 免费看日本二区| 国产精品福利在线免费观看| 色视频www国产| 日日啪夜夜撸| 国产精品一二三区在线看| 午夜日本视频在线| 建设人人有责人人尽责人人享有的 | 九色成人免费人妻av| 精品亚洲成国产av| 18禁裸乳无遮挡动漫免费视频| av线在线观看网站| av免费在线看不卡| 在线观看一区二区三区激情| 亚洲精品色激情综合| 极品少妇高潮喷水抽搐| 18禁裸乳无遮挡动漫免费视频| av黄色大香蕉| 黑人高潮一二区| 新久久久久国产一级毛片| 亚洲美女视频黄频| 国产日韩欧美亚洲二区| 日韩大片免费观看网站| 久久久久久久亚洲中文字幕| 亚洲av男天堂| 一级爰片在线观看| 国产男女内射视频| 国产欧美日韩精品一区二区| 亚洲精品国产色婷婷电影| 人妻 亚洲 视频| 免费av中文字幕在线| a级一级毛片免费在线观看| 久久久国产一区二区| 国产色爽女视频免费观看| 一本—道久久a久久精品蜜桃钙片| 老师上课跳d突然被开到最大视频| 99久久精品热视频| 精品人妻一区二区三区麻豆| 97超视频在线观看视频| 夜夜爽夜夜爽视频| 精品久久久久久电影网| av在线老鸭窝| 国产一区亚洲一区在线观看| 久久婷婷青草| 九色成人免费人妻av| 秋霞伦理黄片| 一级毛片电影观看| 91狼人影院| 欧美一区二区亚洲| 国产毛片在线视频| 国产av国产精品国产| 国产毛片在线视频| 高清不卡的av网站| 99精国产麻豆久久婷婷| 我要看黄色一级片免费的| 亚洲国产高清在线一区二区三| 99久久精品国产国产毛片| 免费观看av网站的网址| 女性被躁到高潮视频| 三级国产精品欧美在线观看| 最近的中文字幕免费完整| 91午夜精品亚洲一区二区三区| 国产精品99久久99久久久不卡 | 欧美xxⅹ黑人| 国产美女午夜福利| 黄片无遮挡物在线观看| 一级av片app| av免费观看日本| 精品99又大又爽又粗少妇毛片| 国产一区二区在线观看日韩| 国产在线一区二区三区精| av免费在线看不卡| 免费人成在线观看视频色| 日本猛色少妇xxxxx猛交久久| 久久精品熟女亚洲av麻豆精品| 有码 亚洲区| 小蜜桃在线观看免费完整版高清| 丰满迷人的少妇在线观看| 中国美白少妇内射xxxbb| 免费大片18禁| 黄色一级大片看看| 性色avwww在线观看| 一级毛片黄色毛片免费观看视频| 丝袜脚勾引网站| 男的添女的下面高潮视频| 久久久久国产精品人妻一区二区| 精品人妻视频免费看| 妹子高潮喷水视频| av国产免费在线观看| 九九爱精品视频在线观看| 日本vs欧美在线观看视频 | 亚洲成人av在线免费| 六月丁香七月| 午夜福利在线观看免费完整高清在| 亚洲综合精品二区| 成人毛片a级毛片在线播放| 日韩 亚洲 欧美在线| 亚洲精品乱码久久久久久按摩| 性色av一级| 久久国产乱子免费精品| 亚洲不卡免费看| 高清日韩中文字幕在线| 久久婷婷青草| 人人妻人人添人人爽欧美一区卜 | 亚洲国产精品一区三区| 国产精品.久久久| 亚洲国产最新在线播放| 午夜福利网站1000一区二区三区| 少妇熟女欧美另类| 哪个播放器可以免费观看大片| 内地一区二区视频在线| 日韩中文字幕视频在线看片 | av国产精品久久久久影院| 伦理电影大哥的女人| 亚洲va在线va天堂va国产| 国产免费一级a男人的天堂| 亚洲人与动物交配视频| 五月伊人婷婷丁香| 又爽又黄a免费视频| 五月玫瑰六月丁香| 欧美高清成人免费视频www| 校园人妻丝袜中文字幕| 精品国产一区二区三区久久久樱花 | 欧美一级a爱片免费观看看| 一级毛片电影观看| 国产欧美亚洲国产| 大香蕉97超碰在线| 久久久午夜欧美精品| 18禁动态无遮挡网站| www.色视频.com| 精品久久久噜噜| 舔av片在线| 亚洲中文av在线| 国产精品久久久久成人av| 男女边摸边吃奶| 蜜桃亚洲精品一区二区三区| 最近最新中文字幕免费大全7| 免费人成在线观看视频色| 国产精品女同一区二区软件| 久久久久久久久久人人人人人人| 黄色视频在线播放观看不卡| 少妇人妻一区二区三区视频| 免费黄频网站在线观看国产| 成人影院久久| 亚洲av二区三区四区| 日本欧美国产在线视频| 久久久午夜欧美精品| 中文字幕制服av| 日韩三级伦理在线观看| 91精品一卡2卡3卡4卡| 久久韩国三级中文字幕| 亚洲欧美一区二区三区黑人 | 高清视频免费观看一区二区| 亚洲va在线va天堂va国产| 免费观看在线日韩| 免费黄色在线免费观看| 亚洲一区二区三区欧美精品| 国产淫片久久久久久久久| 男女啪啪激烈高潮av片| 久久久久久久国产电影| 国内揄拍国产精品人妻在线| 亚洲成人一二三区av| 成人国产麻豆网| 成人美女网站在线观看视频| 麻豆国产97在线/欧美| 欧美激情国产日韩精品一区| 春色校园在线视频观看| 一区二区三区精品91| 国产在线一区二区三区精| 麻豆国产97在线/欧美| 日韩,欧美,国产一区二区三区| 免费观看的影片在线观看| 亚洲av国产av综合av卡| 99久久人妻综合| 亚洲欧洲日产国产| 五月开心婷婷网| 一本一本综合久久| 亚洲欧美精品专区久久| av在线app专区| 欧美少妇被猛烈插入视频| 国产在线免费精品| 简卡轻食公司| 男女下面进入的视频免费午夜| 中文字幕久久专区| 日本爱情动作片www.在线观看| 欧美日韩一区二区视频在线观看视频在线| 青春草国产在线视频| 日本vs欧美在线观看视频 | 一区二区三区精品91| 国产乱人偷精品视频| 97在线视频观看| 伦理电影大哥的女人| 久久久久精品性色| 日韩精品有码人妻一区| 人妻 亚洲 视频| 91久久精品国产一区二区成人| 身体一侧抽搐| 18禁动态无遮挡网站| 又粗又硬又长又爽又黄的视频| 人妻一区二区av| 日本一二三区视频观看| 亚洲欧美日韩无卡精品| 日本欧美视频一区| 国产高清有码在线观看视频| 亚洲精品aⅴ在线观看| 香蕉精品网在线| 啦啦啦在线观看免费高清www| 国产一区二区三区综合在线观看 | 91aial.com中文字幕在线观看| 伊人久久国产一区二区| 久久影院123| 全区人妻精品视频| 国产亚洲一区二区精品| 亚州av有码| 久久精品国产亚洲av涩爱| 亚洲四区av| 欧美日韩在线观看h| 亚洲第一av免费看| 女人十人毛片免费观看3o分钟| 交换朋友夫妻互换小说| 九九爱精品视频在线观看| 91久久精品电影网| 精品99又大又爽又粗少妇毛片| 国产精品欧美亚洲77777| 一个人看的www免费观看视频| 少妇 在线观看| 美女国产视频在线观看| 人妻一区二区av| 一本一本综合久久| 少妇丰满av| 欧美变态另类bdsm刘玥| 亚洲高清免费不卡视频| 男人舔奶头视频| 最近最新中文字幕大全电影3| 观看美女的网站| 午夜福利网站1000一区二区三区| 免费黄网站久久成人精品| 亚洲精品国产成人久久av| 99视频精品全部免费 在线| 干丝袜人妻中文字幕| 国产亚洲91精品色在线| 九草在线视频观看| 日韩亚洲欧美综合| 精品久久久久久久久亚洲| 99久久精品一区二区三区| 好男人视频免费观看在线| 久久99精品国语久久久| 欧美一级a爱片免费观看看| 啦啦啦视频在线资源免费观看| 日韩人妻高清精品专区| 中文字幕人妻熟人妻熟丝袜美| 美女xxoo啪啪120秒动态图| 国产免费福利视频在线观看| 狠狠精品人妻久久久久久综合| 伦理电影免费视频| 亚洲电影在线观看av| 久久久久久久大尺度免费视频| 欧美少妇被猛烈插入视频| 美女脱内裤让男人舔精品视频| 国产精品伦人一区二区| 夫妻午夜视频| 日本黄色日本黄色录像| 简卡轻食公司| 美女国产视频在线观看| 久久精品国产亚洲av涩爱| 乱系列少妇在线播放| 国产成人免费观看mmmm| 99国产精品免费福利视频| 熟女人妻精品中文字幕| 99久久中文字幕三级久久日本| 伦精品一区二区三区| 丝袜脚勾引网站| 七月丁香在线播放| 成人高潮视频无遮挡免费网站| 97精品久久久久久久久久精品| 十分钟在线观看高清视频www | 亚洲欧美精品自产自拍| 99热这里只有精品一区| 亚洲精品国产成人久久av| 天堂中文最新版在线下载| 久久久久久人妻| 免费大片18禁| 久久热精品热| 少妇精品久久久久久久| 久久97久久精品| 婷婷色麻豆天堂久久| 国产色婷婷99| av国产久精品久网站免费入址| 街头女战士在线观看网站|