魏歡歡,雷天奇,鄭東東,關(guān)曉迪,李濤,萬(wàn)亮婷
重大工程裝備
銹蝕鋼結(jié)構(gòu)連接節(jié)點(diǎn)抗震性能研究進(jìn)展
魏歡歡1,2,雷天奇3,鄭東東2,關(guān)曉迪2,李濤4,萬(wàn)亮婷1
(1.楊凌職業(yè)技術(shù)學(xué)院 建筑工程學(xué)院,陜西 咸陽(yáng) 712100;2.西安理工大學(xué) 西北旱區(qū)生態(tài)水利國(guó)家重點(diǎn)實(shí)驗(yàn)室,西安 710048;3.陜西鐵路工程職業(yè)技術(shù)學(xué)院 道橋與建筑學(xué)院,陜西 渭南 714099;4.商洛市人民防空辦公室,商洛 726000)
基于材料與連接構(gòu)件層面,總結(jié)了近年來(lái)國(guó)內(nèi)外既有試驗(yàn)研究及理論分析成果,主要包括腐蝕后的標(biāo)準(zhǔn)試件的單調(diào)拉伸、滯回性能退化分析,以及梁柱節(jié)點(diǎn)、框架結(jié)構(gòu)的抗震性能研究,并給出了相應(yīng)的力學(xué)性能退化模型,通過(guò)進(jìn)行總結(jié)及對(duì)比分析后,為復(fù)雜環(huán)境下工程鋼結(jié)構(gòu)給出研究方向,同時(shí)也對(duì)我國(guó)工程結(jié)構(gòu)的設(shè)計(jì)方法提供理論指導(dǎo)和參考依據(jù)。
鋼結(jié)構(gòu);腐蝕;連接節(jié)點(diǎn);單調(diào)拉伸;抗震性能;退化模型
隨著社會(huì)經(jīng)濟(jì)的快速發(fā)展,人們對(duì)結(jié)構(gòu)的功能使用要求明顯提高,鋼材憑借其自身優(yōu)勢(shì),在水利水電工程、橋梁工程、港口航道和海岸工程等領(lǐng)域取得廣泛應(yīng)用[1-2]。迄今為止,針對(duì)工程用鋼的安全可靠性,學(xué)者們已經(jīng)展開(kāi)了大量的研究工作。由于在役承重構(gòu)件不僅要承擔(dān)外部荷載作用,還要遭受環(huán)境腐蝕性介質(zhì)的影響,導(dǎo)致有效截面尺寸削減,腐蝕坑處產(chǎn)生應(yīng)力集中,材料屈服平臺(tái)減小,力學(xué)性能及疲勞壽命降低,最終呈脆性破壞現(xiàn)象[3-5]。從20世紀(jì)初期,相關(guān)領(lǐng)域的學(xué)者對(duì)腐蝕環(huán)境下的工程鋼結(jié)構(gòu)開(kāi)展了試驗(yàn)研究和理論分析[6]。我國(guó)學(xué)者通過(guò)模擬不同環(huán)境下鋼材的失效行為,建立了腐蝕損傷演化模型,給出了失效機(jī)理及變化規(guī)律[7-9]。此外,除了基于極限承載性能失效外,還可能是由于載荷與環(huán)境耦合引起的失效[10-11],諸如海洋采油平臺(tái)傾覆[12]、飛機(jī)運(yùn)行墜落[13]、橋梁連接節(jié)點(diǎn)傳荷能力喪失[14]、輸送管道破裂等[15],腐蝕介質(zhì)能夠降低構(gòu)件的力學(xué)性能,加快裂紋的擴(kuò)展速率,縮短結(jié)構(gòu)的使用壽命,失效過(guò)程具有普遍性和瞬時(shí)性[16]。
根據(jù)上述存在不足[17],在實(shí)際工程中進(jìn)行了涂層防腐保護(hù)措施。現(xiàn)行GB 50017[18]、AISC 360[19]等規(guī)范已給出鋼結(jié)構(gòu)設(shè)計(jì)準(zhǔn)則,若擬建工程選址在復(fù)雜惡劣環(huán)境下,此時(shí)不再適用。因此,銹蝕鋼結(jié)構(gòu)耐久性分析備受各國(guó)學(xué)者關(guān)注,目前為研究領(lǐng)域內(nèi)亟需解決的工程難題,也是完善結(jié)構(gòu)設(shè)計(jì)方法的重要選題方向。本文通過(guò)介紹相關(guān)研究成果,進(jìn)行梳理、對(duì)比及分析后,評(píng)估了銹蝕鋼結(jié)構(gòu)連接節(jié)點(diǎn)的抗震性能,為國(guó)產(chǎn)鋼材應(yīng)用及研究提供科學(xué)依據(jù)。
腐蝕損傷現(xiàn)象涉及土木工程各領(lǐng)域、各方向,在復(fù)雜惡劣的環(huán)境下,材料表面容易生成不均勻銹坑,形貌發(fā)生變化,構(gòu)件的力學(xué)性能退化[20]。一般腐蝕損傷較為嚴(yán)重的主要有海洋環(huán)境、工業(yè)大氣環(huán)境及酸雨環(huán)境下的在役結(jié)構(gòu)。以海洋環(huán)境為例[21],根據(jù)腐蝕速率不同,將其劃分為5類,分別為大氣區(qū)、浪濺區(qū)、潮差區(qū)、全浸區(qū)、泥土區(qū)。研究結(jié)果表明,海洋浪濺區(qū)材料的損傷速率最大,為0.3~0.5 mm/a。其中,海洋環(huán)境下鋼材的腐蝕微觀機(jī)理如圖1所示,腐蝕速率匯總見(jiàn)表1,相關(guān)研究成果匯總見(jiàn)表2。
圖1 腐蝕機(jī)理示意
表1 海洋環(huán)境下的鋼材腐蝕速率[21]
Tab.1 Corrosion rate of steel in marine environment[21]
表2 腐蝕試驗(yàn)研究匯總
Tab.2 Summary of corrosion test research
鋼結(jié)構(gòu)具有良好的承載性能,在復(fù)雜環(huán)境下的耐久性較差,目前除了基于材料宏觀腐蝕形貌的分析外,更多將借助形貌掃描儀對(duì)微觀機(jī)理進(jìn)行研究。其中,微面形貌測(cè)試方法經(jīng)過(guò)長(zhǎng)期發(fā)展,由初始的定性測(cè)量逐步上升到現(xiàn)階段的高精度定量測(cè)定[28],通過(guò)提取材料表面的蝕坑尺寸和分布范圍,對(duì)腐蝕損傷展開(kāi)討論分析,建立腐蝕周期與粗糙度參數(shù)的定量關(guān)系,為腐蝕機(jī)理研究提供依據(jù)。
Kacimi等[29]通過(guò)SEM掃描結(jié)果,得到了鍍鋅鋼材腐蝕損傷的影響因素。Zhang等[30]模擬了海洋環(huán)境下EH47高強(qiáng)鋼的磨損與腐蝕損傷行為,當(dāng)溶液含砂量為0.3%(質(zhì)量分?jǐn)?shù))時(shí),腐蝕速率受環(huán)境的影響最大。劉鵬洋等[31]和張建兵等[32]通過(guò)鹽霧加速腐蝕試驗(yàn),模擬了海洋環(huán)境下B340LA、WHT1300HF鋼材的腐蝕損傷行為,基于XRD儀掃描結(jié)果,得到了基體表面微觀形貌分布范圍、腐蝕速率變化規(guī)律與產(chǎn)物化學(xué)成分。關(guān)于碳鋼、低合金鋼及高強(qiáng)鋼材的腐蝕形貌分析取得了較多成果,但是未能建立各自的腐蝕損傷模型,缺乏可靠的理論指導(dǎo)及科學(xué)依據(jù)。
國(guó)內(nèi)外學(xué)者對(duì)腐蝕試件進(jìn)行了單調(diào)拉伸試驗(yàn)研究,得到了力學(xué)性能退化規(guī)律,主要研究?jī)?nèi)容見(jiàn)表3。結(jié)果表明:隨著腐蝕周期的增加,力學(xué)性能快速退化;腐蝕損傷導(dǎo)致試件實(shí)測(cè)數(shù)據(jù)偏于離散,同一周期各參數(shù)存在差異性;不同加速腐蝕方案對(duì)鋼材力學(xué)性能的影響極為明顯。
通過(guò)對(duì)不同強(qiáng)度等級(jí)、連接方式和幾何參數(shù)的研究與對(duì)比分析(見(jiàn)表4),得出結(jié)論:循環(huán)荷載與腐蝕耦合的影響作用大于兩者單一行為的損傷累積;隨著應(yīng)力幅值的增加,材料力學(xué)性能的退化速率加快;當(dāng)試件循環(huán)受壓時(shí),不同腐蝕周期的骨架曲線差異較小,失效行為與腐蝕損傷累積量、分布范圍及作用方式等因素相關(guān)。
在工程鋼結(jié)構(gòu)承重骨架中,梁柱節(jié)點(diǎn)作為體系受力和傳荷關(guān)鍵區(qū)域,通過(guò)進(jìn)行節(jié)點(diǎn)梁翼緣削弱,以及局部采用蓋板加強(qiáng)的方式,對(duì)其抗震性能展開(kāi)了研究工作[46-47]。但是在役結(jié)構(gòu)體系均與外界腐蝕介質(zhì)發(fā)生接觸,節(jié)點(diǎn)區(qū)域腐蝕剝離損傷相比梁柱構(gòu)件更為嚴(yán)重,在強(qiáng)震作用時(shí),極易發(fā)生整體坍塌。基于上述問(wèn)題,西安建筑科技大學(xué)的研究者們[48-54]對(duì)鋼材牌號(hào)為Q235的銹蝕鋼結(jié)構(gòu)梁柱節(jié)點(diǎn)的力學(xué)性能進(jìn)行了分析,部分成果見(jiàn)表5。根據(jù)研究結(jié)果表明:隨著節(jié)點(diǎn)區(qū)域暴露周期增加,滯回曲線逐漸趨于捏縮,抗震性能變?nèi)?;若選取不同循環(huán)加載方式,對(duì)同一腐蝕周期下梁柱節(jié)點(diǎn)耗能能力的影響存在較大差異;由于銹蝕率提高,延性退化速率逐漸增大。因此,在研究銹蝕鋼結(jié)構(gòu)力學(xué)性能的退化規(guī)律時(shí),需綜合考慮外界環(huán)境多因素耦合作用的影響,選擇更為適應(yīng)梁柱連接節(jié)點(diǎn)的損傷演化模型。
表3 單調(diào)拉伸試驗(yàn)研究匯總
Tab.3 Summary of monotonic tensile test research
表4 循環(huán)加載試驗(yàn)研究匯總
Tab.4 Summary of cyclic loading test research
表5 梁柱節(jié)點(diǎn)抗震性能試驗(yàn)研究匯總
Tab.5 Summary of experimental research on seismic performance of beam-column joints
在銹蝕梁柱節(jié)點(diǎn)抗震性能研究的基礎(chǔ)上,研究者們對(duì)框架結(jié)構(gòu)展開(kāi)了試驗(yàn)及理論分析[6,55-57],并給出了剛度退化規(guī)律,為實(shí)際工程應(yīng)用提供了設(shè)計(jì)依據(jù)。目前主要以碳鋼結(jié)構(gòu)分析為主,考慮材料類別可知,針對(duì)高強(qiáng)度鋼材、低合金鋼材梁柱節(jié)點(diǎn)的研究較少。此外,國(guó)內(nèi)學(xué)者對(duì)全焊剛性節(jié)點(diǎn)進(jìn)行了大量的試驗(yàn)研究及理論分析,而關(guān)于栓焊連接、全螺栓連接節(jié)點(diǎn)滯回性能的研究成果尚處空白,后續(xù)應(yīng)當(dāng)開(kāi)展更多類型節(jié)點(diǎn)(材料、連接方式、環(huán)境介質(zhì)等)的抗震性能研究,分析其失效機(jī)理。
1)根據(jù)鋼結(jié)構(gòu)耐久性研究成果可知,在試驗(yàn)研究分析時(shí),考慮腐蝕因素偏少,加之材料本身存在初始缺陷,對(duì)構(gòu)件及連接節(jié)點(diǎn)機(jī)理研究的可靠性欠缺,有待更多數(shù)據(jù)作為支撐保證。
2)隨著腐蝕損傷的加劇,材料的力學(xué)性能逐漸衰減,后期逐漸趨于平緩。同一周期下,試件實(shí)測(cè)數(shù)據(jù)的離散性較大,腐蝕損傷行為存在隨機(jī)性與不確定性。
3)目前對(duì)梁柱全焊節(jié)點(diǎn)抗震性能的研究較多,在既有研究基礎(chǔ)上,應(yīng)開(kāi)展更多連接類型的腐蝕鋼結(jié)構(gòu)節(jié)點(diǎn)抗震性能分析,為復(fù)雜環(huán)境工程應(yīng)用提供理論依據(jù)。
4)國(guó)內(nèi)外對(duì)各類金屬材料、連接構(gòu)件仍然處于基礎(chǔ)研究階段,尚未取得完備的損傷分析理論。其次,大多主要分析材料層面上力學(xué)性能的退化規(guī)律,關(guān)于鋼結(jié)構(gòu)連接節(jié)點(diǎn)的成果較少。鑒于目前存在的局限性與不足,通過(guò)后續(xù)研究工作,給出更為可靠的計(jì)算方法。
[1] 史徐行. 高強(qiáng)鋼材應(yīng)用前景研究[J]. 建筑技術(shù)開(kāi)發(fā), 2016, 43(12): 163-164.
SHI Xu-xing. Study on Application Prospect of High Strength Steel[J]. Building Technology Development, 2016, 43(12): 163-164.
[2] 王朝玉. 高強(qiáng)度鋼材的發(fā)展與應(yīng)用[J]. 中國(guó)金屬通報(bào), 2020(10): 9-10.
WANG Chao-yu. Development and Application of High Strength Steel[J]. China Metal Bulletin, 2020(10): 9-10.
[3] GUO Hong-chao, WEI Huan-huan, LI Guo-qiang, et al. Experimental Research on Fatigue Performance of Butt Welds of Corroded Q690 High Strength Steel[J]. Journal of Constructional Steel Research, 2021, 184: 106801.
[4] GUO Hong-chao, WEI Huan-huan, LI Guo-qiang, et al. Experimental Research on Fatigue Performance of Corroded Q690 High-Strength Steel[J]. Journal of Materials in Civil Engineering, 2021, 33(11): 1-10.
[5] 魏歡歡. 濕熱周浸環(huán)境下銹蝕Q690高強(qiáng)鋼對(duì)接焊縫疲勞性能研究[D]. 西安: 西安理工大學(xué), 2021.
WEI Huan-huan. Research on Fatigue Performance of Butt Welds of Corroded Q690 High Strength Steel in Humid and Hot Immersion Environment[D]. Xi'an: Xi'an University of Technology, 2021.
[6] 曹琛, 鄭山鎖, 胡衛(wèi)兵, 等. 大氣環(huán)境腐蝕下鋼結(jié)構(gòu)力學(xué)性能研究綜述[J]. 材料導(dǎo)報(bào), 2020, 34(11): 11162- 11170.
CAO Chen, ZHENG Shan-suo, HU Wei-bing, et al. Review of Research on Mechanical Properties of Steel Structure under Atmospheric Environment Corrosion[J]. Materials Reports, 2020, 34(11): 11162-11170.
[7] 范林, 丁康康, 郭為民, 等. 靜水壓力和預(yù)應(yīng)力對(duì)新型Ni-Cr-Mo-V高強(qiáng)鋼腐蝕行為的影響[J]. 金屬學(xué)報(bào), 2016, 52(6): 679-688.
FAN Lin, DING Kang-kang, GUO Wei-min, et al. Effect of Hydrostatic Pressure and Prestress on Corrosion Behavior of a New Type Ni-Cr-Mo-V High Strength Steel[J]. Acta Metallurgica Sinica, 2016, 52(6): 679-688.
[8] 萬(wàn)金劍. 高強(qiáng)鋼A517Gr.Q在模擬海水中的腐蝕行為及機(jī)理研究[D]. 西安: 西安理工大學(xué), 2017.
WAN Jin-jian. Research on the Corrosion Behaviors and Mechanism of A517Gr.Q Steel in Simulated Seawater[D]. Xi'an: Xi'an University of Technology, 2017.
[9] 潘興隆, 張魯君, 賀國(guó), 等. 艦船內(nèi)腐蝕海水管路剩余強(qiáng)度預(yù)測(cè)模型及試驗(yàn)驗(yàn)證[J]. 船舶力學(xué), 2021, 25(2): 202-209.
PAN Xing-long, ZHANG Lu-jun, HE Guo, et al. Prediction Model for Residual Strength of Warship Seawater Pipelines with Internal Corrosion and Test Verification[J]. Journal of Ship Mechanics, 2021, 25(2): 202-209.
[10] 李展. 海水中S690鋼腐蝕疲勞裂紋擴(kuò)展行為及拘束效應(yīng)研究[D]. 天津: 天津大學(xué), 2018.
LI Zhan. Corrosion Fatigue Crack Growth Behavior in Seawater and Constraint Effect of S690 Steel[D]. Tianjin: Tianjin University, 2018.
[11] CHEN Gang, FU Yuan-jie, CUI Yun, et al. Effect of Surface Mechanical Attrition Treatment on Corrosion Fatigue Behavior of AZ31B Magnesium Alloy[J]. International Journal of Fatigue, 2019, 127: 461-469.
[12] 佚名. 海洋鉆井史上最慘重的九大事故[J]. 石油知識(shí), 2018(5): 30-31.
Nameless. Nine Worst Accidents in the History of Offshore Drilling[J]. Petroleum Knowledge, 2018(5): 30-31.
[13] 李智. 鋁合金點(diǎn)蝕坑特征識(shí)別及其疲勞壽命預(yù)測(cè)[D]. 廈門: 廈門大學(xué), 2014.
LI Zhi. Feature Recognition of Corrosion Pits and Fatigue Life Prediction for Pre-Corroded Aluminum Alloy[D]. Xiamen: Xiamen University, 2014.
[14] 李英華. 基于長(zhǎng)期健康監(jiān)測(cè)的連續(xù)剛構(gòu)梁橋的性能分析與演化規(guī)律研究[D]. 廣州: 華南理工大學(xué), 2012.
LI Ying-hua. Performance Analysis and Evolution of Continuous Rigid Frame Bridge Based on Long-Term Health Monitoring Health Monitoring[D]. Guangzhou: South China University of Technology, 2012.
[15] 侯保榮, 張盾, 王鵬. 海洋腐蝕防護(hù)的現(xiàn)狀與未來(lái)[J]. 中國(guó)科學(xué)院院刊, 2016, 31(12): 1326-1331.
HOU Bao-rong, ZHANG Dun, WANG Peng. Marine Corrosion and Protection: Current Status and Prospect[J]. Bulletin of Chinese Academy of Sciences, 2016, 31(12): 1326-1331.
[16] ADEDIPE O, BRENNAN F, KOLIOS A. Review of Corrosion Fatigue in Offshore Structures: Present Status and Challenges in the Offshore Wind Sector[J]. Renewable and Sustainable Energy Reviews, 2016, 61: 141-154.
[17] 王從友, 王進(jìn)東. 巖灘水力發(fā)電廠金屬結(jié)構(gòu)防腐蝕措施與效果[J]. 人民珠江, 2009, 30(5): 51-53.
WANG Cong-you, WANG Jin-dong. Anti-Corrosion Measures and Effect of Metal Structure in Yantan Hydropower Plant[J]. Pearl River, 2009, 30(5): 51-53.
[18] GB 50017—2017, 鋼結(jié)構(gòu)設(shè)計(jì)標(biāo)準(zhǔn)[S].
GB 50017—2017, Code for Design of Steel Structure[S].
[19] ANSI/AISC 360-16, Specification for Structural Steel Buildings[S].
[20] JIA Zi-yue, YANG Yang, HE Zheng, et al. Mechanical Test Study on Corroded Marine High Performance Steel under Cyclic Loading[J]. Applied Ocean Research, 2019, 93: 101942.
[21] 侯保榮. 鋼鐵設(shè)施在海洋浪花飛濺區(qū)的腐蝕行為及其新型包覆防護(hù)技術(shù)[J]. 腐蝕與防護(hù), 2007, 28(4): 174-175.
HOU Bao-rong. Corrosion Behavior of Iron and Steel Facilities in the Splash Zone of Ocean Waves and Its New Coating Protection Technology[J]. Corrosion & Protection, 2007, 28(4): 174-175.
[22] 劉薇, 王佳. 海洋浪濺區(qū)環(huán)境對(duì)材料腐蝕行為影響的研究進(jìn)展[J]. 中國(guó)腐蝕與防護(hù)學(xué)報(bào), 2010, 30(6): 504-512.
LIU Wei, WANG Jia. Environmental Impact of Material Corrosion Research Progress in Marine Splash Zone[J]. Journal of Chinese Society for Corrosion and Protection, 2010, 30(6): 504-512.
[23] 李麗, 蘇霄. 1050A鋁合金模擬海洋大氣環(huán)境腐蝕行為的中性鹽霧試驗(yàn)[J]. 腐蝕與防護(hù), 2014, 35(4): 367-370.
LI Li, SU Xiao. Corrosion Behavior of Aluminum Alloy 1050A during Cyclic Wet-Dry Immersion Test in Simulated Marine Atmospheric Environment[J]. Corrosion & Protection, 2014, 35(4): 367-370.
[24] GONG Ke, WU Ming, LIU Guang-xin. Comparative Study on Corrosion Behaviour of Rusted X100 Steel in Dry/Wet Cycle and Immersion Environments[J]. Construction and Building Materials, 2020, 235: 117440.
[25] NEVSHUPA R, MARTINEZ I, RAMOS S, et al. The Effect of Environmental Variables on Early Corrosion of High-Strength Low-Alloy Mooring Steel Immersed in Seawater[J]. Marine Structures, 2018, 60: 226-240.
[26] ELSAADY M A, KHALIFA W, NABIL M A, et al. Effect of Prolonged Temperature Exposure on Pitting Corrosion of Duplex Stainless Steel Weld Joints[J]. Ain Shams Engineering Journal, 2018, 9(4): 1407-1415.
[27] XU Wen-hua, HAN En-hou, WANG Zhen-yu. Effect of Tannic Acid on Corrosion Behavior of Carbon Steel in NaCl Solution[J]. Journal of Materials Science & Technology, 2019, 35(1): 64-75.
[28] 何寶鳳, 丁思源, 魏翠娥, 等. 三維表面粗糙度測(cè)量方法綜述[J]. 光學(xué)精密工程, 2019, 27(1): 78-93.
HE Bao-feng, DING Si-yuan, WEI Cui-e, et al. Review of Measurement Methods for Areal Surface Roughness[J]. Optics and Precision Engineering, 2019, 27(1): 78-93.
[29] KACIMI Y E, GALAI M, ALAOUI K. et al. Surface Morphology Studies and Kinetic Thermodynamic Characterization of Steels Treated in 5.0 M HCl Medium: Hot-dip Galvanizing Application[J]. Anti-Corrosion Methods and Materials, 2018, 65(2): 176-189.
[30] ZHANG Hong-mei, LI Yan, YAN Ling, et al. Effect of Large Load on the Wear and Corrosion Behavior of High-Strength EH47 Hull Steel in 3.5wt% NaCl Solution with Sand[J]. International Journal of Minerals, Metallurgy and Materials, 2020, 27(11): 1525-1535.
[31] 劉鵬洋, 周和榮, 但佳永, 等. 中性鹽霧腐蝕環(huán)境中B340LA鋼板的腐蝕周期性研究[J]. 材料保護(hù), 2018, 51(12): 28-32.
LIU Peng-yang, ZHOU He-rong, DAN Jia-yong, et al. Corrosion Periodicity Research of B340LA Steel Plate in Neutral Salt Spray Corrosion Environment[J]. Materials Protection, 2018, 51(12): 28-32.
[32] 張建斌, 楊小娟. WHT1300HF高強(qiáng)鋼在中性鹽霧中的腐蝕行為[J]. 蘭州理工大學(xué)學(xué)報(bào), 2016, 42(5): 10-13.
ZHANG Jian-bin, YANG Xiao-juan. Corrosion Behavior of High-Strength Steel WHT1300HF in Neutral Salt-Mist Environment[J]. Journal of Lanzhou University of Technology, 2016, 42(5): 10-13.
[33] WANG You-de, XU Shan-hua, WANG Hao, et al. Predicting the Residual Strength and Deformability of Corroded Steel Plate Based on the Corrosion Morphology[J]. Construction and Building Materials, 2017, 152: 777-793.
[34] GARBATOV Y, GUEDES SOARES C, PARUNOV J, et al. Tensile Strength Assessment of Corroded Small Scale Specimens[J]. Corrosion Science, 2014, 85: 296-303.
[35] APPUHAMY J S, KAITA T, OHGA M, et al. Prediction of Residual Strength of Corroded Tensile Steel Plates[J]. International Journal of Steel Structures, 2011, 11(1): 65-79.
[36] 龔帆, 齊盛珂, 鄒易清, 等. 銹蝕高強(qiáng)鋼絲力學(xué)性能退化的試驗(yàn)研究[J]. 工程力學(xué), 2020, 37(10): 105-115.
GONG Fan, QI Sheng-ke, ZOU Yi-qing, et al. Experimental Study on Degradation of Mechanical Properties of Corroded High Strength Steel Wire[J]. Engineering Mechanics, 2020, 37(10): 105-115.
[37] 劉洋陽(yáng). 基于腐蝕形貌Q690E鋼板及焊接接頭力學(xué)性能研究[D]. 哈爾濱: 哈爾濱工業(yè)大學(xué), 2019.
LIU Yang-yang. Research on Mechanical Properties of Q690E Steel Plate and Welded Joint Based on Corroded Morphology[D]. Harbin: Harbin Institute of Technology, 2019.
[38] 葉繼紅, 申會(huì)謙, 薛素鐸. 點(diǎn)蝕孔腐蝕鋼構(gòu)件力學(xué)性能劣化簡(jiǎn)化分析方法[J]. 哈爾濱工業(yè)大學(xué)學(xué)報(bào), 2016, 48(12): 70-75.
YE Ji-hong, SHEN Hui-qian, XUE Su-duo. Simplified Analytical Method of Mechanical Property Degradation for Steel Members with Pitting Corrosion[J]. Journal of Harbin Institute of Technology, 2016, 48(12): 70-75.
[39] PIDAPARTI R M, PATEL R R. Correlation between Corrosion Pits and Stresses in Al Alloys[J]. Materials Letters, 2008, 62(30): 4497-4499.
[40] GUO Hong-chao, WEI Huan-huan, KOU Jia-liang, et al. Mechanical Properties Test of Butt Welds of Corroded Q690 High Strength Steel under the Coupling of Damp-Heat Cycle Dipping[J]. Applied Ocean Research, 2021, 111: 102677.
[41] 張春濤, 李正良, 王汝恒. 腐蝕和疲勞耦合作用下Q345角鋼擬靜力試驗(yàn)研究[J]. 上海交通大學(xué)學(xué)報(bào), 2018, 52(2): 152-162.
ZHANG Chun-tao, LI Zheng-liang, WANG Ru-heng. Quasi-Static Test of Q345 Equal Angles under the Coupling Action of Corrosion and Fatigue Vibration[J]. Journal of Shanghai Jiao Tong University, 2018, 52(2): 152-162.
[42] SINGH V, PANDEY V, KUMAR S, et al. Effect of Ultrasonic Shot Peening on Surface Microstructure and Fatigue Behavior of Structural Alloys[J]. Transactions of the Indian Institute of Metals, 2016, 69(2): 295-301.
[43] ILYIN A V, FILIN V Y. On the Problem of Quantitative Service Life Assessment for High-Strength Steel Welded Structures under the Effect of Corrosion Medium[J]. Procedia Structural Integrity, 2019, 14: 964-977.
[44] YAO guo-wen, ZHONG Li, JIANG dong-xia. Experimental Method of Corrosion Fatigue Behaviors for Steel Strand under Corrosive Environment and Cycle Loading[J]. Applied Mechanics and Materials, 2014, 578-579: 1424-1429.
[45] WANG Hong. Hysteresis Properties of Corroded High Strength Steel[J]. E3S Web of Conferences, 2021, 248: 01024.
[46] GUO Hong-chao, MAO Kuan-hong, YU Jin-guang, et al. Experimental and Numerical Study on Seismic Performance Plate-Reinforced and Tapered-Reduced Composite Joints[J]. Structures, 2021, 31: 686-707.
[47] 郭宏超, 周熙哲, 李炎隆, 等. Q690高強(qiáng)鋼板式加強(qiáng)型節(jié)點(diǎn)抗震性能研究[J]. 建筑結(jié)構(gòu)學(xué)報(bào), 2021, 42(6): 128-138.
GUO Hong-chao, ZHOU Xi-zhe, LI Yan-long, et al. Study on Seismic Behavior of Q690 High Strength Steel Plate Reinforced Joints[J]. Journal of Building Structures, 2021, 42(6): 128-138.
[48] WANG Hao, WANG You-de, ZHANG Zong-xing, et al. Cyclic Behavior and Hysteresis Model of Beam-Column Joint under Salt Spray Corrosion Environment[J]. Journal of Constructional Steel Research, 2021, 183: 106737.
[49] 鄭山鎖, 王曉飛, 孫龍飛, 等. 酸性大氣環(huán)境下多齡期鋼框架節(jié)點(diǎn)抗震性能試驗(yàn)研究[J]. 建筑結(jié)構(gòu)學(xué)報(bào), 2015, 36(10): 20-28.
ZHENG Shan-suo, WANG Xiao-fei, SUN Long-fei, et al. Experimental Research on Seismic Behavior of Multi-Aged Steel Frame Joint under Acidic Atmospheric Environment[J]. Journal of Building Structures, 2015, 36(10): 20-28.
[50] 鄭山鎖, 石磊, 張曉輝, 等. 酸性大氣環(huán)境下銹蝕鋼框架結(jié)構(gòu)振動(dòng)臺(tái)試驗(yàn)研究[J]. 工程力學(xué), 2017, 34(11): 77-88.
ZHENG Shan-suo, SHI Lei, ZHANG Xiao-hui, et al. Shaking Table Test of Corroded Steel Frame Structure under Acidic Atmosphere Environment[J]. Engineering Mechanics, 2017, 34(11): 77-88.
[51] 李善利. 一般大氣環(huán)境下腐蝕鋼節(jié)點(diǎn)滯回性能試驗(yàn)研究[D]. 西安: 西安建筑科技大學(xué), 2016.
LI Shan-li. Experimental Study on Hysteretic Behavior of Corroded Steel Joint under General Atmosphere[D]. Xi'an: Xi'an University of Architecture and Technology, 2016.
[52] 焦蘭超. 中性鹽霧銹損境下銹損鋼結(jié)構(gòu)梁柱節(jié)點(diǎn)抗震性能研究[D]. 西安: 西安建筑科技大學(xué), 2017.
JIAO Lan-chao. The Study on Earthquake Resistance of Corroded Steel Beam-to-Column Connections under Neutral Salt Spray Corrosion Environment[D]. Xi'an: Xi'an University of Architecture and Technology, 2017.
[53] 余冬冬. 酸性大氣環(huán)境銹損鋼框架節(jié)點(diǎn)抗震性能試驗(yàn)及理論研究[D]. 西安: 西安建筑科技大學(xué), 2017.
YU Dong-dong. Experimental and Theoretical Analysis on Seismic Behavior of Corroded Steel Frame Joints in Acidic Atmosphere[D]. Xi'an: Xi'an University of Architecture and Technology, 2017.
[54] 徐強(qiáng), 鄭山鎖, 商?,r. 近海大氣環(huán)境作用下鋼框架節(jié)點(diǎn)時(shí)變地震損傷研究[J]. 工程力學(xué), 2019, 36(1): 61-69.
XU Qiang, ZHENG Shan-suo, SHANG Xiao-yu. time-Varying Seismic Damage of Steel Frame Joints Considering Atmospheric Environment[J]. Engineering Mechanics, 2019, 36(1): 61-69.
[55] 高超, 劉建軍, 鄭逸川, 等. 銹蝕對(duì)輸電塔角鋼力學(xué)性能的影響[J]. 腐蝕與防護(hù), 2020, 41(8): 32-38.
GAO Chao, LIU Jian-jun, ZHENG Yi-chuan, et al. Effects of Corrosion on Mechanical Properties of Transmission Tower Angle Steel[J]. Corrosion & Protection, 2020, 41(8): 32-38.
[56] 徐善華, 張宗星, 李柔, 等. 銹蝕鋼框架地震易損性評(píng)定方法[J]. 工程力學(xué), 2018, 35(12): 107-115.
XU Shan-hua, ZHANG Zong-xing, LI Rou, et al. A Method for the Seismic Vulnerability Assessment of Corroded Steel Structures[J]. Engineering Mechanics, 2018, 35(12): 107-115.
[57] 管昌生, 胡國(guó)平. 基于ABAQUS的銹蝕平面鋼框架數(shù)值模擬方法[J]. 武漢理工大學(xué)學(xué)報(bào)(交通科學(xué)與工程版), 2019, 43(5): 800-804.
GUAN Chang-sheng, HU Guo-ping. Numerical Simulation Method for Corroded Plane Steel Frames Based on ABAQUS[J]. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2019, 43(5): 800-804.
Research Progress on Seismic Performance of Corroded Steel Structure Connection Joints
WEI Huan-huan1,2, LEI Tian-qi3, ZHENG Dong-dong2, GUAN Xiao-di2, Li Tao4, WAN Liang-ting1
(1. School of Architectural Engineering, Yangling Vocational & Technical College, Shaanxi Xianyang 712100, China; 2. State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, China; 3. School of Road, Bridge & Architecture, Shaanxi Railway Institute, Shaanxi Weinan, 714099, China; 4. Shangluo Civil Air Defense Office, Shaanxi Shangluo 726000, China)
Based on the level of materials and connecting components, the results of existing experimental research and theoretical analysis at home and abroad in recent years were summarized. It mainly included the monotonic tensile and hysteretic performance degradation analysis of corroded standard specimen, as well as the seismic performance research of beam-column structural joints and frame structure, and the corresponding mechanical performance degradation model was given. After summarizing and comparative analysis, it gives the research direction for engineering steel structure in complex environment, and at the same time, it also provides theoretical guidance and reference basis for the design method of domestic engineering structure.
steel structure; corrosion; connection joint; monotonic extension; seismic performance; degradation model
TU391;TU511.3
A
1672-9242(2023)01-0097-07
10.7643/ issn.1672-9242.2023.01.014
2021–09–14;
2021-09-14;
2021–11–08
2021-11-08
國(guó)家自然科學(xué)基金項(xiàng)目(51978571);楊凌職業(yè)技術(shù)學(xué)院2021年自然科學(xué)基金項(xiàng)目(ZK21-28)
The National Natural Science Foundation of China (51978571); Yangling Vocational & Technical College 2021 Natural Science Foundation Project (ZK21-28)
魏歡歡(1996—),男,碩士,主要研究方向?yàn)楦邚?qiáng)度鋼材鋼結(jié)構(gòu)、金屬材料疲勞與斷裂、耐久性、鋼結(jié)構(gòu)高等分析及設(shè)計(jì)理論。
WEI Huan-huan (1996-), Male, Master, Research focus: high strength steel structure, metal materials fatigue and fracture, durability, steel structure advanced analysis and design theory.
鄭東東(1995—),男,博士研究生,主要研究方向?yàn)殇摻Y(jié)構(gòu)穩(wěn)定與疲勞、組合結(jié)構(gòu)、工程結(jié)構(gòu)抗震與加固。
ZHENG Dong-dong (1995-), Male, Doctoral candidate, Research focus: steel structure stability and fatigue, combined structure, engineering structures seismic resistance and reinforcement.
魏歡歡, 雷天奇, 鄭東東, 等. 銹蝕鋼結(jié)構(gòu)連接節(jié)點(diǎn)抗震性能研究進(jìn)展[J]. 裝備環(huán)境工程, 2023, 20(1): 097-103.
WEI Huan-huan, LEI Tian-qi, ZHENG Dong-dong, et al. Research Progress on Seismic Performance of Corroded Steel Structure Connection Joints[J]. Equipment Environmental Engineering, 2023, 20(1): 097-103.
責(zé)任編輯:劉世忠