• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The structure-sensitive of Cu catalyst for furfural conversion to furfuryl alcohol:A theoretical study

    2023-02-07 08:01:10WANGGuiruZHICuimeiYANGWen
    燃料化學(xué)學(xué)報(bào) 2023年2期

    WANG Gui-ru,ZHI Cui-mei,YANG Wen

    (1.College of Chemical and Biological Engineering, Shanxi Key Laboratory of High Value Utilization of Coal Gangue,Taiyuan University of Science and Technology, Taiyuan 030024, China;2.Shanxi Key Laboratory of Metal Forming Theory and Technology, School of Material Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China)

    Abstract: The structure-sensitive of Cu catalyst for furfural hydrogenation to furfuryl alcohol was explored by employing Cu(111) and Cu(211) model systems.Herein,the adsorption behavior of reactants and intermediates,and the possible reaction mechanism of furfuryl alcohol formation were investigated.For furfuryl alcohol formation,the preferred pathway is F-CHO +2H→F-CH2O+H→F-CH2OH,in which the second H addition is the rate-determining step.Meanwhile,Cu(211) surface exhibits higher activity to furfuryl alcohol formation than that on Cu(111) surface.According to our analysis,the undercoordinated sites on the Cu(211) surface could facilitate H2 dissociation and stabilize the adsorbed furfural,thereby promoting the furfural hydrogenation and the furfuryl alcohol formation.This work provides a feasible approach for regulating the catalytic activity and selectivity in furfural conversion.

    Key words: Cu catalysts;structure-sensitive;furfural hydrogenation;furfuryl alcohol

    The global climate changes and the diminishing reservation of fossil resources have received considerable attention.Biomass are abundant and effective carbon-sustainable sources,and they are also regarded as important alternative energies.Furfural,as one of the promising functionalized biomass-derived molecules,can be obtained from hemicelluloses[1-8].Due to the high reactivity of furfural,it can be used to synthesize a series of chemical intermediates and apply in downstream production[9-10]. Catalytic selective hydrogenation of furfural into furfuryl alcohol has attracted great interest in terms of economics and safety.Conversion of furfural into furfuryl alcohol has generally been performed on metal catalysts,such as noble metal Pd[11],Pt[12],and Ru[13]-based system.Unfortunately,the high cost and poor selectivity of these catalysts preclude them from the industrial application.Cu-Cr catalysts are highly active and selective in industrial furfural hydrogenation,but they can cause environmental pollution because of the toxicity of Cr6+[14,15].To overcome these issues,a great effort has been taken to synthesize environmentally friendly Crfree catalysts for furfuryl alcohol production,involving Cu-Pd,Pt or Ni alloy.It has been found that the catalyst surface structures (terraces,steps,and corners)can impose a key effect on product distribution in Ni[16,17]and Pd[18]systems.For example,Wang et al.[18]believed that the activation of furan ring of furfural and the hydrogenation of C=O group are carried out at terrace and step edge of Pd,respectively.Recently,Zhang’group stated that high coordinated Ni surface is responsible for the formation of tetrahydrofurfuryl alcohol,whereas more 2-methylfuran are generated on low coordinated Ni surface in furfuryl alcohol conversion[17].Up to now,the mechanism for furfuryl alcohol formation from furfural conversion over modifying Cu catalysts is not fully understood.

    This work employs Cu(111) and Cu(211) surfaces to address structure sensitive of Cu catalyst in furfural conversion to furfuryl alcohol.Cu(111) is the most stable surface[19-21],while Cu(211) surface consisting(100)-type step and (111) terrace exhibits higher reactivity[22-26].The adsorption behaviors of reactant of furfural (F-CHO),the main intermediate (F-CH2O,FCHOH) and the goal product of furfuryl alcohol (FCH2OH),and the possible reaction mechanism were systematically investigated by Density Functional Theory (DFT).This study opens up a strategy of modulating the structure of metal surface for the selective hydrogenation of furfural.

    1 Calculation details

    As shown in Figure 1,5 × 5 Cu(111) and 2 × 4 Cu(211) surfaces were constructed to represent the Cu catalysts with different structures.Cu(111) surface consists of four atom layers;the bottom two layers were frozen,whereas the remaining atoms and reacting molecules were allowed to relax.For the stepped Cu(211) surface,eight atom layers were modeled,and the top four layers and the adsorbates were allowed to relax,while the rest atoms were fixed.A vacuum of 15 ? was imposed to avoid the interaction between the adjacent slabs.2 × 2 × 1 Monkhorst-Pack mesh was used for the Brillouin-zone integrations in the calculation.

    Figure 1 Possible adsorption sites on Cu(111) and Cu(211)surface from top and side view

    All periodic DFT calculations were implemented in the Vienna Ab initio Simulation Package (VASP)software[27].The Perdew,Burke,and Ernzerhof (PBE)functional was utilized to compute the exchangecorrelation energy[28].To address the van der Waals(vdW) interactions between the adsorbate and the surface,the semiempirical Grimme’s D3 correction[29,30]was adopted.A plane-wave basis set with a cutoff of 400 eV in combination with the projected augmented wave (PAW) method was used[31,32].The geometry optimization was performed with force threshold of 0.05 eV/? and the energy threshold of 10-5eV.The transition states were searched by the climbing image nudged elastic band (CI-NEB) method[33],and they were further optimized by the dimer method[34,35].Stable reactants,transition states and products configurations were verified by vibrational frequencies.

    The adsorption energyEadsis calculated by eq.(1):

    whereEmol/surfis the total electronic energy of adsorbate adsorbed on the surface,Emol/surfandEmolare the total electronic energies of the pure Cu surface and molecule in the gas phase,respectively.The more negative valueEadsis,the more the stable adsorbate structure is.

    The activation barrier (Ea) is defined as the energy differences between the transition state (TS) and initial state (IS),whereas for the reaction energy (ΔEr),it is the difference between the final state (FS) and initial state (IS) energies,calculating by eq.(2) and (3):

    Thed-band center (εd) is usually used to predict the interaction of adsorbate and metal surface,which is calculated by eq.(4):

    whereEis the energy of Fermi level,and ρdrefers to the projected state density (PDOS) of the atomd-band of catalyst surface.

    2 Results and discussion

    2.1 Adsorption of intermediates

    2.1.1 Cu(111) surface

    The adsorption sites (e.g.top,bridge,fcc,and hcp site)[36]on Cu(111) surface and the stable adsorption configurations of intermediates as well as the key geometric parameters were shown Figures 1 and 2,and Table 1,respectively. Furfural is favorable for adsorption in a flat configuration with the O7atom of CHO group binding with the Cu atom,according to previous reports[36-38].The calculated adsorption energy is -0.70 eV. Besides,the adsorption of the intermediates involving in furfuryl alcohol formation was also taken into account.

    Table 1 Adsorption energies and key geometrical parameters of various intermediates on Cu(111) and Cu(211) surface

    Figure 2 Intermediates involved in furfuryl alcohol formation via furfural hydrogenation on Cu(111) and Cu(211) surface

    Furfuryl alcohol tends to adopt a flat configuration,similar as that of furfural.The O7-Cu distance is 2.344 ? and the corresponding adsorption energy for furfural alcohol is -1.17 eV. The intermediates of F-CH2O and F-CHOH favor adsorbing at the fcc and top site via O7atom and C6atoms,with the adsorption energies of -3.39 and -1.81 eV,respectively.H atom can be adsorbed either hcp(-2.65 eV) or fcc site (-2.66 eV),and the calculated results are in line with previous reported value (-2.54 and -2.55 eV)[36].

    2.1.2 Cu(211) surface

    In order to understand the influence of surface structure on the adsorption,the adsorption behavior of reactant and intermediates was further investigated on Cu(211) surface.On Cu(211) surface,top,bri,hcp and fcc at the step edge,and hollow site at the (100) step were considered.Furfural tends to use O7atom to adsorb at the step edge of the Cu top site,along with the binding of C3,C4and C5atoms of furanic ring with the Cu surface.The O7-Cu,C3-Cu,C4-Cu and C5-Cu bond lengths are 1.997,2.245,2.261 and 2.209 ?,respectively.The O7-Cu distance (dO7-Cu) is obviously decreased from 1.997 ? on Cu(211) surface to 2.105 ? on Cu(111) surface,thereby making the adsorption energy become higher on Cu(211) (-1.43 eV) than on Cu(111) surface (-0.70 eV).

    For F-CH2O,it is adsorbed at the step Cu siteviaO7of CH2O group and the C3,C4and C5atoms of furanic ring,with the distance of O7-Cu,C3-Cu,C4-Cu and C5distances of 1.881,2.300,2.220 and 2.366 ?,respectively.The corresponding adsorption energy is -3.60 eV.The F-CHOH favors to adsorb at the Cu step edge via C6atom of CHO group,and the C2,C3and C5atoms of furanic ring.The C6-Cu bond length and the calculated adsorption energy are 2.247 ? and -1.97 eV,respectively.Furfuryl alcohol (FCH2OH) is adsorbed at the step edge of Cu atom with the adsorption energy of -1.50 eV,which is stronger than that on Cu(111) surface.The adsorption of H atom at hcp and fcc site shows similar energy to that adsorption on Cu(111) surface.

    Based on the above results,it could be found that the intermediates in the formation of furfuryl alcohol are inclined to adsorbing at the step edge of Cu(211)surface.The different adsorption energy and adsorption configurations of these intermediates on Cu(211)surface and Cu(111) surface indicate that geometric and electronic properties of various Cu surfaces can affect the production distribution.Thus,the mechanism for furfural conversion to furfuryl alcohol on Cu(111)and Cu(211) surface was further explored in the following section.

    2.2 H2 dissociation and diffusion

    Since H2activation is indispensable in the process of furfural conversion to furfuryl alcohol,H2dissociation and diffusion were investigated (Figure 3).The adsorption of H2on Cu(111) is weak with the adsorption energy of only -0.10 eV,being in line with the previous reported results ((-0.08)-(-0.07) eV[36,39]).The step edge of Cu(211) surface effectively promotes the adsorption of H2with the adsorption energy increasing to -0.23 eV.Meanwhile,the H-H bond length of adsorbed H2on Cu(211) surface (0.803 ?) is larger than on Cu(111) (0.753 ?),although both of them are higher than that of the gas H2molecule (dH-H=0.750 ?[40]).The activation energy of H2dissociation on Cu(111) surface is 0.54 eV,which is consistent with the theoretical value reported in the previous work[36,39].However,it is decreased to 0.46 eV on Cu(211)surface,with the reaction energy of -0.50 eV.Thus,H2is preferentially dissociated into two H atoms on Cu(211) surface than on Cu(111) surface.After H2dissociation,the diffusion of the generated H atom on Cu(111) and Cu(211) surface was further illustrated.The migration of H atom from the hcp site to the fcc site of Cu(111) surface or of Cu(211) surface requires a low energy barrier of 0.14 and 0.17 eV,respectively,indicating that H atom diffusion is quite facile on both surfaces.As a result,the low dissociation and diffusion energy barrier could promote the subsequent hydrogenation and hydrogenolysis reaction[41].

    Figure 3 Reaction pathway for H2 dissociation and diffusion on Cu(111) surface and Cu(211) surface

    2.3 Mechanism of furfural conversion to furfuryl alcohol

    With the acquisition of the stable adsorption configuration,the possible reaction mechanism of furfuryl alcohol formation over Cu(111) surface and Cu(211) surface was then unraveled. The corresponding activation barriers and reaction energies were displayed in Table 2.

    Table 2 Activation barriers and reaction energies of various elementary reactions involving in furfural alcohol formation on Cu(111) and Cu(211) surface

    2.3.1 Mechanism on Cu(111) surface

    Two possible pathways have been proposed for furfural hydrogenation to furfuryl alcohol,as shown in Figure 4.

    Figure 4 Reaction potential energy profile of furfuryl alcohol formation on Cu(111) surface

    Figure 5 Energy profile of furfural conversion to furfuryl alcohol on Cu(211) surface

    Furfural can be hydrogenated by C6or O7to generate alkoxide intermediate (F-CH2O) or hydroxyalkyl (F-CHOH). The first hydrogenation mode occurs at the C6atom of C=O group,which requires the energy barrier and the reaction energy of 0.54 and -0.54 eV,respectively.In TS3,C6-H distance is decreased to 1.451 ?.For the formation of F-CHOH,the hydrogen atom will firstly attack to O7atom,and this process is endothermic by 0.20 eV,with a barrier of 0.81 eV.In the TS4,H is located at the top site of Cu with the O7-H bond length of 1.353 ?.The calculated results suggest that F-CH2O formation is favorable in both kinetics and thermodynamics,which is consistent with the previous report[36].Except for hydrogenation,the CHO group may also undergo the C-O bond scission (R5).However,this process should be insignificant,as it needs to overcome energy barrier as high as 1.77 eV,with reaction energy of 0.53 eV.In TS5,the C-O bond is increased to 2.105 ?.

    Further hydrogenation of F-CH2O to form FCH2OH requires an energy barrier of 1.12 eV.In addition,the F-CH2OH can be also fabricated through hydrogenation of F-CHOH,with the energy barrier of 0.35 eV.In TS6 and TS7,the O7-H and C6-H bond lengths are decreased to 1.575 and 1.924 ?,respectively.Based on the above calculated results,furfuryl alcohol is more favorable to be produced through the F-CH2O intermediate (black line) via the route of F-CHO+2H→F-CH2O+H→F-CH2OH with the highest energy surface of 0.58 eV,rather than through F-CHOH intermediate (red line).In the favorable pathway,F-CH2O+H→F-CH2OH is the ratelimiting step,requiring the activation energy of 1.12 eV.

    2.3.2 Mechanism on Cu(211) surface

    The energy profiles and the optimized structure for the furfuryl alcohol formation on the Cu(211)surface were provided in Figure 5.

    The F-CHO+H was adopted as the initial state,and the hydrogenation of C6and O7of F-CHO to form F-CH2O and F-CHOH were then considered,respectively.The activation energy barriers and corresponding reaction energies of these two steps are 0.52 and -0.15 eV,and 1.08 and 0.49 eV,respectively.In TS3*,H is adsorbed on the top site of Cu atom,with the H-C6bond length of 1.679 ?.In TS4*,the H-O7bond length is shortened from 3.753 ? of the initial state to 1.372 ? of optimized state.Similar to the results on Cu(111) surface,the detachment of O atom from CHO group of F-CHO is impossible,as the energy barrier reaches 1.75 eV,with reaction energy of 0.98 eV.In TS5*,the C-O bond length is 1.950 ?.When the F-CH2O+H and FCHOH+H were used as the initial states,the formation of furfuryl alcohol requires activation energies of 0.78 and 0.48 eV,with the reaction energies of -0.09 and -0.73 eV,respectively.In TS6*and TS7*,the O7-H and C6-H bond lengths are shortened from the initial 3.663 and 3.346 ? to 1.501 and 1.869 ?,respectively.Therefore,F-CHO +2H→F-CH2O+H→F-CH2OH is also the dominant pathway for furfuryl alcohol formation on Cu(211)surface,and the highest energy surface of the whole reaction is 0.63 eV.Meanwhile,F-CH2O+H→FCH2OH is the rate-limiting step,requiring the activation barrier of 0.78 eV.

    2.3.3 Comparison of mechanism between Cu(111)and Cu(211) surface

    In order to evaluate effect of Cu catalyst structure on the kinetics in furfuryl alcohol formation,the optimal pathway (e.g.F-CHO+2H→F-CH2O +H→F-CH2OH) on these two surfaces were compared,as depicted in Figure 6.On Cu(111) surface,the first and second hydrogenations of F-CHO to form furfuryl alcohol need to overcome energy barriers of 0.54 and 1.12 eV on Cu(111) surface (black line),being higher than those on Cu(211) surface (0.52 and 0.78 eV) (red line).This confirms that Cu(211) surface should have higher reactivity to furfuryl alcohol formation.

    2.4 Effect of Cu catalyst structure for furfuryl alcohol formation

    To get further insight into the effect of electronic structure of Cu(111) and Cu(211) surface,the charge density difference of furfural adsorption was calculated.As shown in Figure 7(a),the charge density accumulation suggests that furfural mainly interacts with Cu(111) surface via O7atom of aldehyde group (CHO),due to low affinity between C and Cu atoms,whereas for Cu(211) surface,the atom of O7of CHO group and the C3,C4and C5atoms of the furanic ring can interact with the step edge of Cu(Figure 7(b)).It is worthy to note that the electron density accumulation and consumption on Cu(211)surface are larger than that on Cu(111) surface.To better understand the charge transfer from F-CHO to Cu(111) surface or Cu(211) surface,the Bader charge population analysis was further carried out and it gave the similar results as that of charge density difference analysis.In addition,thedproject density of states of Cu(111) and Cu(211) surface was calculated,to reveal the interaction between the adsorbates and the surface metald-band[22,42].As shown in Figure 7(c) and 7(d),thed-band centers of Cu(111) and Cu(211) are -2.40 and -2.24 eV,respectively.This also demonstrates the stronger interaction between the adsorbate and the Cu(211)surface,as thed-band center of Cu(211) surface is closer to Fermi level[43,44].On the other hand,the geometric effect may play a key role in furfural adsorption on Cu(111) and Cu(211) surface.The bond length between O7and Cu on Cu(211) surface(dO7-Cu=1.997 ?) is shorter than that on Cu(111)surface (dO7-Cu=2.105 ?).Both the electronic and geometric effects result in the stronger adsorption of F-CHO on Cu(211) (Eads=-1.43 eV) than that on Cu(111) surface (Eads=-0.70 eV). Therefore,introduction of step active sites into Cu catalyst promotes the conversion of furfural to furfuryl alcohol.

    Figure 6 Most favorable pathway for furfuryl alcohol formation on Cu(111) surface and Cu(211) surface

    Figure 7 Differential charge diagram (a) and Bader charge (b) of furfural adsorption on Cu(111) and Cu(211) surface;d-projected density of states (PDOS) of the Cu atoms on Cu(111) (c) and Cu(211) (d) surfaces

    3 Conclusions

    In summary,hydrogenation of furfural into furfuryl alcohol on Cu(111) surface and Cu(211)surface was investigated by DFT calculations,to unravel the structure sensitivity of Cu catalyst for furfural conversion.The calculated results indicate that F-CH2O is the dominant intermediate for furfuryl alcohol formation on Cu(111) and Cu(211) surfaces,along with the F-CH2O+H→F-CH2OH serving as the rate-limiting step.Stepped Cu(211) surface is predicted to have a higher reactivity than Cu(111) surface.This is because of: (i) the promotion of the dissociation of H2;(ii) the enhancement of the adsorption of furfural,which is confirmed by the results of charge density difference andd-band center.Therefore,controlling the catalyst structure can effectively improve the catalytic performance of furfural hydrogenation.The insight shown in this work provides a new horizon for practical catalytic processes involved in the refining of biomass-derived oils.

    免费在线观看完整版高清| 日韩国内少妇激情av| 欧美精品啪啪一区二区三区| 亚洲专区中文字幕在线| 免费少妇av软件| 在线免费观看的www视频| 亚洲av熟女| 亚洲成a人片在线一区二区| 99精品在免费线老司机午夜| 亚洲国产高清在线一区二区三 | 久久国产乱子伦精品免费另类| 久久中文看片网| 制服丝袜大香蕉在线| 日本一区二区免费在线视频| 窝窝影院91人妻| 夜夜看夜夜爽夜夜摸| 午夜a级毛片| 中文字幕另类日韩欧美亚洲嫩草| 夜夜夜夜夜久久久久| 日日爽夜夜爽网站| 午夜精品国产一区二区电影| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲精品久久国产高清桃花| 国产片内射在线| 欧美激情久久久久久爽电影 | 国产精品永久免费网站| 在线观看66精品国产| 免费看a级黄色片| 久久久久久国产a免费观看| 在线观看午夜福利视频| 精品第一国产精品| 精品国产亚洲在线| 国产欧美日韩精品亚洲av| 视频在线观看一区二区三区| 欧美大码av| 一二三四在线观看免费中文在| 中文字幕人成人乱码亚洲影| 母亲3免费完整高清在线观看| 99久久综合精品五月天人人| 99国产精品一区二区三区| 久久人人精品亚洲av| 90打野战视频偷拍视频| 亚洲人成电影观看| 日本撒尿小便嘘嘘汇集6| 国内精品久久久久精免费| 亚洲中文字幕日韩| 亚洲片人在线观看| 亚洲男人天堂网一区| 午夜福利在线观看吧| 国产成人影院久久av| 久久精品国产99精品国产亚洲性色 | 老汉色∧v一级毛片| 国产91精品成人一区二区三区| av超薄肉色丝袜交足视频| 午夜福利成人在线免费观看| 欧美精品亚洲一区二区| 宅男免费午夜| 1024视频免费在线观看| 黄片播放在线免费| 一进一出抽搐gif免费好疼| 91精品三级在线观看| 青草久久国产| 可以在线观看毛片的网站| 不卡一级毛片| 亚洲中文av在线| 一级作爱视频免费观看| 一级黄色大片毛片| 波多野结衣高清无吗| 变态另类丝袜制服| 日韩一卡2卡3卡4卡2021年| 一级毛片高清免费大全| 久久人人97超碰香蕉20202| 啦啦啦 在线观看视频| 制服诱惑二区| 国产成人免费无遮挡视频| 国产欧美日韩一区二区三区在线| 黑丝袜美女国产一区| 免费不卡黄色视频| av电影中文网址| 女人高潮潮喷娇喘18禁视频| 国产成人精品久久二区二区91| 婷婷丁香在线五月| 在线观看免费视频日本深夜| 免费高清视频大片| 性少妇av在线| 一边摸一边抽搐一进一出视频| 一a级毛片在线观看| 狠狠狠狠99中文字幕| 精品欧美一区二区三区在线| 国产精品一区二区精品视频观看| 天堂动漫精品| 国内精品久久久久久久电影| 亚洲va日本ⅴa欧美va伊人久久| 在线视频色国产色| 欧美成人一区二区免费高清观看 | 亚洲熟妇熟女久久| 精品国产一区二区久久| 咕卡用的链子| 久久久国产欧美日韩av| av视频在线观看入口| 精品久久久久久成人av| 激情视频va一区二区三区| 人人妻人人爽人人添夜夜欢视频| 美女 人体艺术 gogo| 久久精品国产综合久久久| 午夜福利18| 国产精品av久久久久免费| 国产精品亚洲av一区麻豆| 成人永久免费在线观看视频| 国产一区在线观看成人免费| 国产精品久久久久久人妻精品电影| 免费久久久久久久精品成人欧美视频| 亚洲电影在线观看av| 日本精品一区二区三区蜜桃| 亚洲欧美激情综合另类| 午夜激情av网站| 在线永久观看黄色视频| 亚洲一卡2卡3卡4卡5卡精品中文| 黄色毛片三级朝国网站| 一级a爱片免费观看的视频| 高清黄色对白视频在线免费看| www.精华液| 亚洲五月色婷婷综合| 免费在线观看完整版高清| 午夜精品久久久久久毛片777| 看片在线看免费视频| 久久久久亚洲av毛片大全| 国产av精品麻豆| 中文字幕色久视频| 久久人人爽av亚洲精品天堂| 最新美女视频免费是黄的| 欧美在线一区亚洲| 欧美人与性动交α欧美精品济南到| 国产亚洲欧美98| 国产精品电影一区二区三区| 亚洲av电影不卡..在线观看| www.熟女人妻精品国产| 亚洲色图综合在线观看| 女人爽到高潮嗷嗷叫在线视频| 国产精品一区二区精品视频观看| 亚洲av成人不卡在线观看播放网| 日本 av在线| 美女高潮到喷水免费观看| 在线观看午夜福利视频| 女人被狂操c到高潮| 人妻丰满熟妇av一区二区三区| 757午夜福利合集在线观看| 老熟妇仑乱视频hdxx| 一区二区日韩欧美中文字幕| 天天添夜夜摸| 国产熟女午夜一区二区三区| 亚洲精品国产一区二区精华液| 精品国产国语对白av| 久久国产精品男人的天堂亚洲| 色精品久久人妻99蜜桃| 一区二区三区国产精品乱码| 婷婷六月久久综合丁香| 成年人黄色毛片网站| 色播在线永久视频| 精品国产美女av久久久久小说| 成人手机av| 成人精品一区二区免费| 免费少妇av软件| 桃红色精品国产亚洲av| 精品高清国产在线一区| 美女免费视频网站| 后天国语完整版免费观看| netflix在线观看网站| 一a级毛片在线观看| 大香蕉久久成人网| 亚洲专区字幕在线| 久久精品国产亚洲av香蕉五月| 真人一进一出gif抽搐免费| 精品国产国语对白av| 一区福利在线观看| 无人区码免费观看不卡| 少妇熟女aⅴ在线视频| 18禁国产床啪视频网站| 国产麻豆成人av免费视频| 老司机深夜福利视频在线观看| 久久天堂一区二区三区四区| 操美女的视频在线观看| 日本黄色视频三级网站网址| 国产伦人伦偷精品视频| 精品国内亚洲2022精品成人| 亚洲国产精品999在线| 18禁裸乳无遮挡免费网站照片 | 欧美国产日韩亚洲一区| 亚洲精品中文字幕在线视频| 男女下面插进去视频免费观看| 九色国产91popny在线| 波多野结衣高清无吗| 啪啪无遮挡十八禁网站| 男男h啪啪无遮挡| 午夜福利欧美成人| 欧美乱妇无乱码| 国产成人精品久久二区二区免费| 午夜a级毛片| 久久香蕉激情| 亚洲五月色婷婷综合| 亚洲无线在线观看| 欧美久久黑人一区二区| 亚洲第一av免费看| 亚洲国产精品成人综合色| 人妻丰满熟妇av一区二区三区| 久久人人精品亚洲av| 十八禁人妻一区二区| 国产成人精品久久二区二区免费| 少妇被粗大的猛进出69影院| 真人一进一出gif抽搐免费| 无限看片的www在线观看| 亚洲第一青青草原| 桃色一区二区三区在线观看| 亚洲熟女毛片儿| 成人亚洲精品一区在线观看| 免费久久久久久久精品成人欧美视频| 每晚都被弄得嗷嗷叫到高潮| 亚洲七黄色美女视频| 欧美久久黑人一区二区| 午夜a级毛片| 一进一出抽搐动态| 色婷婷久久久亚洲欧美| 亚洲av电影在线进入| 国产av一区在线观看免费| 日韩免费av在线播放| 国产成人精品久久二区二区91| 国产99久久九九免费精品| 中文字幕人成人乱码亚洲影| 国产成人av教育| 97人妻天天添夜夜摸| 日韩三级视频一区二区三区| 黄色丝袜av网址大全| 黑人巨大精品欧美一区二区蜜桃| 久久精品91无色码中文字幕| 欧美 亚洲 国产 日韩一| 深夜精品福利| 亚洲欧美精品综合久久99| 免费在线观看影片大全网站| a在线观看视频网站| 亚洲国产日韩欧美精品在线观看 | 亚洲精品久久国产高清桃花| 国产亚洲精品综合一区在线观看 | 亚洲美女黄片视频| 日本一区二区免费在线视频| 999久久久精品免费观看国产| 少妇裸体淫交视频免费看高清 | 在线观看免费日韩欧美大片| 亚洲av五月六月丁香网| 亚洲性夜色夜夜综合| 9色porny在线观看| 国产免费av片在线观看野外av| 热99re8久久精品国产| 在线观看免费视频日本深夜| 久久久久久久精品吃奶| 女人爽到高潮嗷嗷叫在线视频| 午夜福利,免费看| 精品欧美一区二区三区在线| 久久人人97超碰香蕉20202| 亚洲av第一区精品v没综合| 国产精品电影一区二区三区| 亚洲av美国av| 天堂影院成人在线观看| 成人三级黄色视频| 亚洲成a人片在线一区二区| 欧美日韩黄片免| 满18在线观看网站| 国产亚洲精品一区二区www| 亚洲av成人av| 久久影院123| 啦啦啦免费观看视频1| 日本一区二区免费在线视频| 色哟哟哟哟哟哟| 国产精品 国内视频| 黑人操中国人逼视频| 午夜福利,免费看| 熟女少妇亚洲综合色aaa.| 嫩草影视91久久| 国产成人影院久久av| 99国产精品一区二区三区| 啦啦啦 在线观看视频| www.熟女人妻精品国产| 久久精品91蜜桃| 国产高清有码在线观看视频 | 91国产中文字幕| 少妇熟女aⅴ在线视频| 91成年电影在线观看| 国产aⅴ精品一区二区三区波| 97人妻精品一区二区三区麻豆 | 亚洲一区高清亚洲精品| 91字幕亚洲| 亚洲人成电影观看| 又紧又爽又黄一区二区| 色精品久久人妻99蜜桃| 国语自产精品视频在线第100页| 久久中文字幕人妻熟女| 麻豆一二三区av精品| 他把我摸到了高潮在线观看| 色综合欧美亚洲国产小说| 97碰自拍视频| 操出白浆在线播放| 老汉色∧v一级毛片| 18美女黄网站色大片免费观看| 老司机深夜福利视频在线观看| 琪琪午夜伦伦电影理论片6080| xxx96com| 日韩欧美三级三区| 久久久久精品国产欧美久久久| 久久国产乱子伦精品免费另类| 日本一区二区免费在线视频| ponron亚洲| a在线观看视频网站| 成年版毛片免费区| 两个人视频免费观看高清| 波多野结衣巨乳人妻| 亚洲视频免费观看视频| 国产精品 欧美亚洲| 一级a爱片免费观看的视频| 国产成人av教育| 身体一侧抽搐| 波多野结衣一区麻豆| 少妇 在线观看| 欧美成人性av电影在线观看| 欧美精品啪啪一区二区三区| 一个人免费在线观看的高清视频| 欧美成人免费av一区二区三区| 精品少妇一区二区三区视频日本电影| 色综合婷婷激情| 亚洲伊人色综图| 两个人视频免费观看高清| 精品第一国产精品| 亚洲av成人不卡在线观看播放网| 日韩欧美免费精品| 国产成人欧美在线观看| 亚洲欧美精品综合一区二区三区| 国产精品久久久人人做人人爽| 亚洲成av人片免费观看| 一区二区三区国产精品乱码| 国产男靠女视频免费网站| 狠狠狠狠99中文字幕| 国产日韩一区二区三区精品不卡| ponron亚洲| 香蕉丝袜av| 多毛熟女@视频| 黄色 视频免费看| 国产av精品麻豆| 多毛熟女@视频| 亚洲全国av大片| 少妇裸体淫交视频免费看高清 | 亚洲精品在线美女| 亚洲五月婷婷丁香| 亚洲 欧美 日韩 在线 免费| 亚洲成av人片免费观看| 欧美亚洲日本最大视频资源| 69精品国产乱码久久久| 久久久久久人人人人人| 无人区码免费观看不卡| 夜夜夜夜夜久久久久| 97碰自拍视频| 亚洲成a人片在线一区二区| 国产精品久久久久久亚洲av鲁大| 99久久精品国产亚洲精品| 神马国产精品三级电影在线观看 | 久久精品成人免费网站| 国产亚洲av高清不卡| 久久天躁狠狠躁夜夜2o2o| 色老头精品视频在线观看| 免费女性裸体啪啪无遮挡网站| 国产激情欧美一区二区| 国产一区在线观看成人免费| 后天国语完整版免费观看| 夜夜爽天天搞| 亚洲人成伊人成综合网2020| 成年版毛片免费区| 免费高清视频大片| 精品欧美一区二区三区在线| 麻豆久久精品国产亚洲av| 人成视频在线观看免费观看| 国产成人av激情在线播放| 啦啦啦免费观看视频1| 老鸭窝网址在线观看| 淫妇啪啪啪对白视频| 亚洲精品一区av在线观看| 国产精品久久视频播放| 欧美最黄视频在线播放免费| 在线视频色国产色| 最近最新免费中文字幕在线| 可以在线观看毛片的网站| 亚洲自拍偷在线| www.www免费av| 亚洲国产日韩欧美精品在线观看 | 午夜福利影视在线免费观看| 黄片小视频在线播放| 国产精品亚洲av一区麻豆| 久久婷婷成人综合色麻豆| 亚洲国产精品成人综合色| 中文字幕av电影在线播放| 国产黄a三级三级三级人| 精品国内亚洲2022精品成人| 久久精品人人爽人人爽视色| 午夜福利影视在线免费观看| 久久久久久久精品吃奶| 在线观看免费视频日本深夜| 国产欧美日韩一区二区精品| 999久久久国产精品视频| 国产欧美日韩一区二区精品| 一进一出抽搐gif免费好疼| 可以在线观看的亚洲视频| 欧美+亚洲+日韩+国产| 精品国产一区二区久久| 无遮挡黄片免费观看| 亚洲欧美精品综合久久99| 午夜a级毛片| 国产av一区在线观看免费| 国产91精品成人一区二区三区| 9色porny在线观看| 美女高潮到喷水免费观看| 热re99久久国产66热| 嫩草影院精品99| 一本大道久久a久久精品| 亚洲欧美一区二区三区黑人| 精品福利观看| 18禁裸乳无遮挡免费网站照片 | av天堂在线播放| 亚洲一区高清亚洲精品| 国产主播在线观看一区二区| 欧美久久黑人一区二区| 国产一区二区在线av高清观看| 亚洲 欧美一区二区三区| 免费在线观看完整版高清| 多毛熟女@视频| 巨乳人妻的诱惑在线观看| av视频免费观看在线观看| 久久精品91无色码中文字幕| 午夜激情av网站| 久久人妻熟女aⅴ| 咕卡用的链子| 啦啦啦 在线观看视频| 50天的宝宝边吃奶边哭怎么回事| 午夜a级毛片| 91麻豆av在线| 老司机在亚洲福利影院| 九色国产91popny在线| 国产av在哪里看| 男人操女人黄网站| 黄色成人免费大全| 日本a在线网址| 窝窝影院91人妻| 99热只有精品国产| 亚洲avbb在线观看| 亚洲美女黄片视频| 国产成人av教育| 12—13女人毛片做爰片一| 十八禁人妻一区二区| 午夜激情av网站| 亚洲欧美一区二区三区黑人| 久久精品国产综合久久久| 19禁男女啪啪无遮挡网站| 国产人伦9x9x在线观看| av欧美777| 亚洲欧美精品综合久久99| 国产野战对白在线观看| 美女 人体艺术 gogo| 欧美亚洲日本最大视频资源| 日韩高清综合在线| 国产精品国产高清国产av| 久久人妻福利社区极品人妻图片| 波多野结衣巨乳人妻| 亚洲av成人av| 欧美久久黑人一区二区| 国产私拍福利视频在线观看| 国内久久婷婷六月综合欲色啪| www日本在线高清视频| 国产成人系列免费观看| 嫁个100分男人电影在线观看| 老熟妇乱子伦视频在线观看| 欧美日韩亚洲综合一区二区三区_| 美女高潮到喷水免费观看| 欧美一级毛片孕妇| 韩国精品一区二区三区| 久久性视频一级片| 国产精品免费视频内射| 99在线人妻在线中文字幕| 中文字幕另类日韩欧美亚洲嫩草| 人人澡人人妻人| 久久精品国产亚洲av香蕉五月| 亚洲一区高清亚洲精品| 动漫黄色视频在线观看| 视频在线观看一区二区三区| 精品福利观看| cao死你这个sao货| 亚洲va日本ⅴa欧美va伊人久久| 99国产综合亚洲精品| 精品高清国产在线一区| 黄色视频不卡| 一级毛片女人18水好多| 欧美激情 高清一区二区三区| 日韩欧美在线二视频| 国产精品香港三级国产av潘金莲| 亚洲第一欧美日韩一区二区三区| 村上凉子中文字幕在线| 极品人妻少妇av视频| 神马国产精品三级电影在线观看 | 午夜两性在线视频| 麻豆av在线久日| 侵犯人妻中文字幕一二三四区| 1024视频免费在线观看| www.精华液| 999久久久国产精品视频| 亚洲第一欧美日韩一区二区三区| 亚洲成人国产一区在线观看| 看黄色毛片网站| 男女下面插进去视频免费观看| 国产99白浆流出| 国内精品久久久久久久电影| 久久国产精品男人的天堂亚洲| 亚洲情色 制服丝袜| 淫秽高清视频在线观看| 日韩精品中文字幕看吧| tocl精华| 亚洲欧美日韩无卡精品| 中文字幕最新亚洲高清| 91成年电影在线观看| 午夜激情av网站| 欧美日韩一级在线毛片| 天天躁狠狠躁夜夜躁狠狠躁| 日韩欧美国产在线观看| 精品久久久久久久毛片微露脸| 精品福利观看| 在线观看免费午夜福利视频| 99国产极品粉嫩在线观看| 亚洲免费av在线视频| 黄网站色视频无遮挡免费观看| 精品久久久久久,| 国产成人一区二区三区免费视频网站| 999久久久国产精品视频| 在线观看免费午夜福利视频| 在线观看www视频免费| 嫁个100分男人电影在线观看| 成人特级黄色片久久久久久久| 日韩高清综合在线| 国产精品亚洲一级av第二区| www.www免费av| 国产午夜福利久久久久久| 亚洲一卡2卡3卡4卡5卡精品中文| ponron亚洲| 亚洲人成伊人成综合网2020| 日本五十路高清| 成年女人毛片免费观看观看9| 99re在线观看精品视频| 色综合欧美亚洲国产小说| 亚洲精品久久成人aⅴ小说| 亚洲第一电影网av| 精品乱码久久久久久99久播| 欧美一级a爱片免费观看看 | 精品国内亚洲2022精品成人| 国产精品日韩av在线免费观看 | 91成年电影在线观看| netflix在线观看网站| 午夜亚洲福利在线播放| 亚洲午夜精品一区,二区,三区| 久久久精品欧美日韩精品| 大香蕉久久成人网| 亚洲成人免费电影在线观看| 91国产中文字幕| 国产欧美日韩一区二区三区在线| aaaaa片日本免费| 搡老岳熟女国产| 国产成人啪精品午夜网站| 免费av毛片视频| 国产成人av激情在线播放| 变态另类丝袜制服| 精品卡一卡二卡四卡免费| 成在线人永久免费视频| 国产成+人综合+亚洲专区| cao死你这个sao货| 久久香蕉精品热| 一级作爱视频免费观看| 亚洲精品一区av在线观看| 欧美日韩亚洲国产一区二区在线观看| 国产精品久久久人人做人人爽| 我的亚洲天堂| 日韩视频一区二区在线观看| 欧美激情久久久久久爽电影 | 欧美乱码精品一区二区三区| 久久中文字幕人妻熟女| 美国免费a级毛片| 久久中文字幕一级| 又黄又爽又免费观看的视频| 电影成人av| 亚洲精品国产区一区二| 非洲黑人性xxxx精品又粗又长| 91成人精品电影| 日韩欧美在线二视频| 天堂√8在线中文| 黑人操中国人逼视频| 亚洲国产欧美一区二区综合| 国产99白浆流出| 后天国语完整版免费观看| 婷婷精品国产亚洲av在线| 欧美一级毛片孕妇| 久久久国产欧美日韩av| 亚洲男人的天堂狠狠| 18禁观看日本| 丝袜美腿诱惑在线| 国语自产精品视频在线第100页| 黄色视频,在线免费观看| 熟妇人妻久久中文字幕3abv| 国产精品 国内视频| 精品国产超薄肉色丝袜足j| 久99久视频精品免费| 午夜福利18| 一级毛片高清免费大全| 91麻豆精品激情在线观看国产| 久久青草综合色| 亚洲精品久久成人aⅴ小说|