• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    帶有量子修正的Zakharov方程的精確非線性波解

    2023-01-17 02:41:14吳沈輝宋明
    關(guān)鍵詞:波解將式分支

    吳沈輝,宋明

    帶有量子修正的Zakharov方程的精確非線性波解

    吳沈輝,宋明*

    (紹興文理學(xué)院 數(shù)理信息學(xué)院, 浙江 紹興 312000)

    利用動(dòng)力系統(tǒng)定性理論和分支方法,研究了帶有量子修正的Zakharov方程的精確非線性波解,給出了不同參數(shù)條件下的相圖,沿相圖中的特殊軌道進(jìn)行了積分,得到量子Zakharov方程的4個(gè)孤立波解、7個(gè)奇異波解和24個(gè)周期波解共3類(lèi)非線性波解。當(dāng)參數(shù)取特殊值時(shí),對(duì)部分周期波解取極限,給出了周期波解演化為相應(yīng)的孤立波解和奇異波解的過(guò)程。

    分支方法;修正Zakharov方程;非線性波解

    0 引言

    1972年,ZAKHAROV[1]提出了可用于描述高頻Langmuir波和低頻等離子波之間非線性相互作用的Zakharov方程,此為等離子體物理中的重要方程組。在一維情況下,經(jīng)典的Zakharov方程為

    近年來(lái),眾多學(xué)者致力于研究經(jīng)典等離子體中的物理現(xiàn)象??紤]量子效應(yīng),用經(jīng)典模型進(jìn)行描述不夠精確,GARCIA等[2]利用量子流體方法得到帶有量子修正的Zakharov方程:

    首先,利用動(dòng)力系統(tǒng)分支方法和定性理論[10-20]研究量子Zakharov方程的非線性波解,討論不同參數(shù)取值范圍內(nèi)行波解的存在性。其次,通過(guò)行波變換將方程轉(zhuǎn)至平面系統(tǒng),確定不同參數(shù)條件下奇點(diǎn)的類(lèi)型,并借助Mathematica軟件得到系統(tǒng)的分支相圖,分別對(duì)相圖中的同宿軌道、異宿軌道和周期軌道進(jìn)行積分,得到對(duì)應(yīng)的孤立波解、奇異波解和周期波解。最后,給出當(dāng)參數(shù)取極限時(shí)周期波解演化為孤立波解和奇異波解的過(guò)程。

    1 相圖

    采用變換:

    將式(2)轉(zhuǎn)化為

    將式(4)的第2式求導(dǎo)后代入第1式,并對(duì)第3式積分2次,得

    設(shè)

    將式(6)代入式(5)的第1式,得

    將式(6)代入式(5)的第2式,得

    對(duì)式(9)積分,得到2個(gè)哈密頓函數(shù):

    根據(jù)動(dòng)力系統(tǒng)定性理論,利用Mathmatica軟件,得到式(9)的相圖(圖1)。

    2 非線性波解

    圖1 在不同參數(shù)下式(9)的相圖

    由式(3),得到2個(gè)孤立波解:

    2個(gè)奇異波解:

    利用式(3),得到2個(gè)周期波解:

    利用式(3),得到2個(gè)周期波解:

    利用式(3),得到8個(gè)周期波解:

    利用式(3),得到3個(gè)奇異波解:

    利用式(3),得到2個(gè)孤立波解:

    2個(gè)奇異波解:

    利用式(3),得到2個(gè)周期波解:

    利用式(3),得到2個(gè)周期波解:

    利用式(3),得到8個(gè)周期波解:

    3 周期波解的演化過(guò)程

    當(dāng)參數(shù)取特殊值時(shí),對(duì)周期波解取極限,得到相應(yīng)的孤立波解和奇異波解。

    圖2 當(dāng)時(shí),周期波解式(27)孤立波解式(16)

    圖3 當(dāng)時(shí),周期波解式(37)孤立波解式(16)

    圖4 當(dāng)時(shí),周期波解式(28)奇異波解式(17)

    圖5 當(dāng)時(shí),周期波解式(38)奇異波解式(17)

    4 結(jié)論

    [1] ZAKHAROV V E. Collapse of Langmuir waves[J]. Soviet Physics JETP, 1972, 35(5): 908-914.

    [2] GARCIA L G, HAAS F, OLIVEIRA L P L, et al. Modified Zakharov equations for plasmas with a quantum correction[J]. Physics of Plasmas, 2005, 12(1): 3842. DOI:10.1063/1.1819935

    [3] 游淑軍,郭柏靈,寧效琦. Langmuir擾動(dòng)方程和Zakharov方程:光滑性與近似[J]. 應(yīng)用數(shù)學(xué)和力學(xué), 2012, 33(8): 1013-1022. DOI:10.3879/j.issn.1000-0887.2012.08.009

    YOU S J, GUO B L, NING X Q. Equations of Langmuir turbulence and Zakharov equations: Smoothness and approximation[J]. Applied Mathematics and Mechanics, 2012, 33(8): 1013-1022. DOI:10.3879/j.issn.1000-0887.2012.08.009

    [4] LI L, FANG S M. The initial boundary value problem for modified Zakharov system[J]. Advances in Pure Mathematics, 2015, 5(5): 278-285. DOI:10.4236/apm.2015.55028

    [5] YANG Q, DAI C Q, WANG Y Y, et al. Quantum soliton solutions of quantum Zakharov equations for plasmas[J]. Journal of the Physical Society of Japan, 2005, 74(9): 2492-2495. DOI:10.1143/JPSJ.74.2492

    [6] 王悅悅,楊琴,戴朝卿,等. 考慮量子效應(yīng)的Zakharov方程組的孤波解[J]. 物理學(xué)報(bào), 2006, 55(3): 1029-1034. DOI:10.3321/j.issn:1000-3290.2006.03.006

    WANG Y Y, YANG Q, DAI C Q, et al. Solitary wave solution of Zakharov equation with quantum effect[J]. Acta Physica Sinica, 2006, 55(3): 1029-1034. DOI:10.3321/j.issn:1000-3290.2006.03.006

    [7] ZHENG X X, SHANG Y D, DI H F. The time-periodic solutions to the modified Zakharov equations with a quantum correction[J]. Mediterranean Journal of Mathematics, 2017, 14(4): 152. DOI:10.1007/s00009-017-0952-4

    [8] FANG S M, GUO C H, GUO B L. Exact traveling wave solutions of modified Zakharov equations for plasmas with a quantum correction[J]. Acta Mathematica Scientia, 2012, 32(3): 1073-1082. DOI:10.1016/s0252-9602(12)60080-0

    [9] HAN L J,KONG Y,XIN L, et al. Exact periodic wave solutions for the modified Zakharov equations with a quantum correction[J]. Applied Mathematics Letters, 2019, 94: 140-148. DOI:10.1016/j.aml. 2019.01.009

    [10]LI J B, LIU Z R. Smooth and non-smooth traveling waves in a nonlinearly dispersive equation[J]. Applied Mathematical Modelling, 2000, 25(1): 41-56. DOI:10.1016/s0307-904x(00)00031-7

    [11]LIU Z R, YANG C X. The application of bifurcation method to a higher-order KDV equation[J]. Journal of Mathematical Analysis and Applications, 2002, 275(1): 1-12. DOI:10.1016/s0022-247x(02)00210-x

    [12]SONG M, LIU Z R, ZERRAD E, et al. Singular soliton solution and bifurcation analysis of Klein-Gordon equation with power law nonlinearity[J]. Frontiers of Mathematics in China, 2013, 8(1): 191-201. DOI:10.1007/S11464-012-0252-Z

    [13]SONG M, LIU Z R. Periodic wave solutions and their limits for the ZK-BBM equation[J]. Applied Mathematics and Computation, 2014, 232(1): 9-26. DOI:10.1016/j.amc.2014.01.048

    [14]SONG M, LIU Z R, YANG C X. Periodic wave solutions and their limits for the modified KDV-KP equations[J]. Acta Mathematica Sinica (English Series), 2015, 31(6): 1043-1056. DOI:10.1007/s10114-015-3362-1

    [15]WEN Z S. The generalized bifurcation method for deriving exact solutions of nonlinear space-time fractional partial differential equations[J]. Applied Mathematics and Computation, 2020, 366(1): 124735. DOI:10.1016/j.amc.2019.124735

    [16]SONG M, WANG B D, CAO J. Bifurcation analysis and exact traveling wave solutions for (2+1)-dimensional generalized modified dispersive water wave equation[J]. Chinese Physics B, 2020, 29(10): 100206. DOI:10.1088/1674-1056/ab9f27

    [17]SHI L J, WEN Z S. Bifurcations and dynamics of traveling wave solutions to a Fujimoto-Watanabe equation[J]. Communications in Theoretical Physics, 2018, 69(6): 631-636. DOI:10.1088/0253-6102/69/6/631

    [18]LIU Q S, ZHANG Z Y, ZHANG R G, et al. Dynamical analysis and exact solutions of a new (2+1)-dimensional generalized Boussinesq model equation for nonlinear Rossby waves[J]. Communications in Theoretical Physics, 2019, 71(9): 1054-1062. DOI:10.1088/0253-6102/71/9/1054

    [19]LI J B, CHEN G R, ZHOU Y. Bifurcations and exact traveling wave solutions of two shallow water two-component systems[J]. International Journal of Bifurcation and Chaos, 2021, 31(1): 2150001. DOI:10.1142/S0218127421500012

    [20]LIANG J L, LI J B, ZHANG Y. Bifurcations and exact solutions of an asymptotic Rotation-Camassa-Holm equation[J]. Nonlinear Dynamics, 2020, 101(4): 2423-2439. DOI:10.1007/s11071-020-05868-0

    Exact nonlinear wave solutions for the modified Zakharov equation with a quantum correction

    WU Shenhui, SONG Ming

    (,,312000,,)

    bifurcation method; the modified Zakharov equation; nonlinear wave solutions

    O 175.29

    A

    1008?9497(2023)01?030?08

    2021?09?23.

    國(guó)家自然科學(xué)基金資助項(xiàng)目(11775146).

    吳沈輝(1997—),ORCID:https://orcid.org/0000-0002-8633-0769,男,碩士研究生,主要從事微分方程非線性波解研究,E-mail:wsh56314@163.com.

    通信作者,ORCID:https://orcid.org/0000-0003-4176-4923,E-mail:songming12_15@163.com.

    猜你喜歡
    波解將式分支
    AKNS方程的三線性型及周期孤立波解
    因子von Neumann代數(shù)上非線性*-Lie導(dǎo)子的刻畫(huà)
    (3+1)維廣義Kadomtsev-Petviashvili方程新的精確周期孤立波解
    單自由度系統(tǒng)
    巧分支與枝
    一類(lèi)擬齊次多項(xiàng)式中心的極限環(huán)分支
    Joseph-Egri方程的單行波解
    阻尼系統(tǒng)的特征
    (2+1)維Boiti-Leon-Pempinelli方程的橢圓函數(shù)周期波解
    一類(lèi)混合KdV方程的精確孤立波解
    临猗县| 宜川县| 延安市| 山阴县| 正定县| 景泰县| 启东市| 南康市| 汉寿县| 育儿| 内黄县| 博湖县| 运城市| 横峰县| 桂林市| 富民县| 米泉市| 南川市| 昭通市| 玉龙| 辽阳县| 武功县| 永仁县| 共和县| 昌黎县| 屯门区| 延川县| 宁津县| 南平市| 辽阳县| 丘北县| 阳江市| 全椒县| 丹阳市| 崇礼县| 横山县| 新丰县| 周宁县| 明星| 江安县| 苏尼特左旗|