王 然,鐘玉珍,張麗紅
茶多酚對(duì)淀粉酯納米顆粒及其穩(wěn)定的Pickering乳液性質(zhì)的影響
王 然1,2,鐘玉珍1,張麗紅1
(1. 長(zhǎng)春職業(yè)技術(shù)學(xué)院食品與生物學(xué)院,長(zhǎng)春 130033;2. 吉林大學(xué)生物與農(nóng)業(yè)工程學(xué)院,長(zhǎng)春 130022)
為探究茶多酚(Tea Polyphenols, TPs)對(duì)辛烯基琥珀酸酐(Octenyl Succinic Anhydride, OSA)酯化淀粉納米顆粒(Starch Nanoparticles,SNPs)及其穩(wěn)定的Pickering乳液性質(zhì)的影響,該研究在制備OSA-SNPs的過(guò)程中添加TPs,研究TPs對(duì)OSA-SNPs的理化性質(zhì)和乳化性能的影響。結(jié)果發(fā)現(xiàn),添加TPs使OSA-SNPs的平均粒徑增加、表面Zeta電位絕對(duì)值下降、接觸角減小(<0.05)。通過(guò)傅立葉紅外光譜掃描發(fā)現(xiàn),TPs與OSA-SNPs之間存在氫鍵和疏水相互作用。在TP-OSA-SNPs穩(wěn)定的乳液中,增加TP-OSA-SNPs的質(zhì)量濃度(從0.5 g/mL至2.0 g/mL),乳滴平均直徑明顯減?。?0.05);當(dāng)TP-OSA-SNPs的質(zhì)量濃度增加至2 g/mL時(shí),乳液形成了油滴緊密堆積的界面結(jié)構(gòu),能夠抑制油滴遷移。通過(guò)加速氧化試驗(yàn)發(fā)現(xiàn),與OSA-SNPs相比,TP-OSA-SNPs穩(wěn)定的乳液中氫過(guò)氧化物值(Peroxide Value, POV)相對(duì)較低(<0.05),說(shuō)明TP-OSA-SNPs具有延緩乳液中油脂氧化的作用。結(jié)果表明,這種新型具有抗氧化功能的食品級(jí)顆粒乳化劑,對(duì)構(gòu)筑淀粉基Pickering乳液載體具有潛在價(jià)值。
淀粉;納米顆粒;茶多酚;食品級(jí)Pickering乳液;氧化穩(wěn)定性;辛烯基琥珀酸酐酯化淀粉
Pickering乳液是一類(lèi)由固體顆粒作為乳化劑穩(wěn)定的乳液[1-2]。相比于傳統(tǒng)以分子乳化劑穩(wěn)定的乳液,Pickering乳液具有顆粒用量少,穩(wěn)定性好,無(wú)污染、無(wú)毒,環(huán)境友好等優(yōu)勢(shì)[3],因此,近年來(lái),研究者們積極開(kāi)發(fā)新型顆粒乳化劑,以期實(shí)現(xiàn)Pickering乳液在不同領(lǐng)域的應(yīng)用。
淀粉是糧食初加工產(chǎn)物,其價(jià)格低廉、種類(lèi)豐富,具有良好的加工適應(yīng)性[4]。作為食品加工不可或缺的原料或加工助劑,淀粉的多種改性產(chǎn)品已經(jīng)得到普遍應(yīng)用[5-6]。在化學(xué)結(jié)構(gòu)上,淀粉屬于多羥基糖類(lèi)聚合物,具有較強(qiáng)的親水性[7-8]。為拓寬淀粉在食品中的應(yīng)用,研究者在淀粉分子上接枝親油基團(tuán),以提高其乳化性[9-10]。辛烯基琥珀酸酐(Octenyl Succinic Anhydride,OSA)是美國(guó)食品藥品監(jiān)督管理局(Food and Drug Administration, FDA)允許使用的酯化試劑[11],中國(guó)政府于1997年批準(zhǔn)其作為乳化劑和增稠劑在食品加工中使用。許多文獻(xiàn)報(bào)道了采用OSA改性天然淀粉球制備顆粒乳化劑并將其用于穩(wěn)定Pickering乳液[12-13]。然而,不同生物源的天然淀粉顆粒的粒徑一般為微米級(jí),研究表明,采用微米級(jí)的顆粒作為乳化劑,其穩(wěn)定乳液的乳滴直徑會(huì)呈指數(shù)倍增長(zhǎng),甚至?xí)纬珊烂准?jí)的乳液[14],這限制了Pickering乳液在食品加工中的應(yīng)用。因此,采用OSA酯化淀粉顆粒作為乳化劑穩(wěn)定Pickering乳液,一般要減小淀粉顆粒的粒徑。目前,研究者主要采用三種方式降低淀粉顆粒的粒徑:研磨、酸或酶水解以及納米沉淀[15]。由研磨得到的淀粉微粒,其粒度分布相對(duì)不均勻,因此,常采用研磨和酸水解相結(jié)合的方式來(lái)降低淀粉顆粒的粒徑。此外,采用乙醇沉淀法制得的淀粉納米顆粒(Starch Nanoparticles, SNPs),由于沒(méi)有有毒試劑殘留,是較理想的食品級(jí)納米顆粒。OSA酯化淀粉微粒因其具有良好的乳化性,被廣泛用于穩(wěn)定食品級(jí)Pickering乳液[16-17]。
脂質(zhì)氧化是導(dǎo)致食品乳液品質(zhì)劣變、脂溶性生物活性物質(zhì)降解甚至功效喪失的主要因素。與純油脂相比,乳液中油脂更容易發(fā)生氧化反應(yīng),這主要是因?yàn)殍F、銅、錳等金屬離子助氧化劑分散在水相中,其能夠向油水界面?zhèn)鬟f氧,進(jìn)而促進(jìn)乳液中油脂的氧化。顆粒乳化劑通過(guò)在油水界面形成物理屏障,阻礙助氧化劑參與油脂氧化反應(yīng),因此能延緩乳液中油脂的氧化[18]。目前,已有大量研究報(bào)道了利用生物源顆粒制備食品級(jí)顆粒乳化劑[19],然而關(guān)于具有抗氧化功能的食品級(jí)顆粒乳化劑的研究還相對(duì)較少。
茶多酚(Tea Polyphenols, TPs)是從茶葉中提取的一類(lèi)多羥基酚類(lèi)化合物,具有多種生理活性,屬于天然強(qiáng)抗氧化劑[20]。已有研究表明,TPs與淀粉等多糖類(lèi)物質(zhì)可以通過(guò)氫鍵、范德華力、疏水相互作用等非共價(jià)作用方式結(jié)合,增進(jìn)多糖類(lèi)物質(zhì)的氧化穩(wěn)定性[21-23],然而,將TPs用于制備淀粉基顆粒乳化劑以及其對(duì)Pickering乳液物理穩(wěn)定性和氧化穩(wěn)定性影響的研究還鮮見(jiàn)報(bào)道。本研究采用乙醇沉淀法制備OSA-SNPs,分析添加TPs對(duì)OSA-SNPs理化性質(zhì)和乳化性能的影響;采用傅立葉紅外光譜(Fourier Transform Infrared Spectroscopy, FT-IR)分析TP-OSA-SNPs的結(jié)構(gòu)性質(zhì);采用掃描電子顯微鏡(Scanning Electron Microscope,SEM)觀察顆粒的形貌;采用接觸角測(cè)量?jī)x檢測(cè)顆粒的乳化性質(zhì);采用激光粒度儀分析由不同顆粒濃度的OSA-SNPs和TP-OSA-SNPs穩(wěn)定的Pickering乳液的粒徑分布和乳滴平均直徑;采用共聚焦激光掃描顯微鏡(Confocal Laser Scanning Microscopy, CLSM)觀察Pickering乳液的微觀結(jié)構(gòu);采用加速氧化試驗(yàn)檢測(cè)乳液中初級(jí)氧化產(chǎn)物氫過(guò)氧化物值(Peroxide Value, POV)。通過(guò)研究TPs與淀粉的相互作用及其對(duì)Pickering乳液性質(zhì)的影響,有助于拓寬淀粉、茶葉等農(nóng)產(chǎn)品的應(yīng)用領(lǐng)域,促進(jìn)茶梗、茶末、滯銷(xiāo)茶等茶葉廢棄物的再利用,為淀粉基Pickering乳液的開(kāi)發(fā)和TPs等生物活性物質(zhì)的利用提供新思路。
辛烯基琥珀酸酐(Octenyl Succinic Anhydride, OSA)酯化淀粉,宜瑞安食品配料有限公司;茶多酚(Tea Polyphenols,TPs),杭州禾田生物技術(shù)有限公司;尼羅藍(lán),美國(guó)西格瑪奧德里奇貿(mào)易有限公司;尼羅紅,上海阿拉丁生化科技股份有限公司;油茶籽油,玉山縣大成倉(cāng)食品有限公司;試驗(yàn)所用試劑均為分析純。
Zetasizer Nano ZSE激光納米粒度儀,英國(guó)馬爾文儀器有限公司;FA25高剪切分散乳化機(jī),上海弗魯克科技發(fā)展有限公司;Nexus670傅立葉變換紅外光譜儀,美國(guó)熱電集團(tuán)尼高力儀器公司;JSM-6700冷場(chǎng)發(fā)射掃描電子顯微鏡,日本電子株式會(huì)社;UVmini-1240紫外可見(jiàn)分光光度計(jì),島津儀器(蘇州)有限公司;FV3000共聚焦激光掃描顯微鏡,奧林巴斯(中國(guó))有限公司;Mastersizer3000激光粒度儀,英國(guó)馬爾文儀器有限公司;SL200KS光學(xué)法接觸角儀,美國(guó)科諾工業(yè)有限公司。
1.3.1 茶多酚-OSA酯化淀粉納米顆粒的制備
參考Peng等[24]和王然[25]方法,將OSA酯化淀粉與去離子水配置成質(zhì)量濃度為2%的懸浮液,并置于100 ℃恒溫水浴中連續(xù)攪拌加熱40 min;然后加入基于淀粉質(zhì)量10%的TPs,并置于95 ℃恒溫水浴中連續(xù)攪拌加熱20 min。加熱結(jié)束后,將混合液冷卻至25 ℃,然后以體積比1:5的比例逐滴滴入無(wú)水乙醇中進(jìn)行沉淀;再將混合液于3 500 r/min離心15 min,回收上清液,將沉淀物用無(wú)水乙醇洗兩遍,然后于?70 ℃進(jìn)行真空干燥,制得含有TPs的OSA酯化淀粉納米顆粒(TP-OSA-SNPs)。
采用相同方法制備OSA酯化淀粉納米顆粒(OSA-SNPs)作為對(duì)照組,淀粉懸浮液在100 ℃恒溫水浴中連續(xù)攪拌加熱60 min,不添加TPs,制備過(guò)程同上,其中,OSA-SNPs的OSA基團(tuán)取代度為0.018 3[26]。
1.3.2 茶多酚保留率的測(cè)定
TP-OSA-SNPs中TPs保留率的測(cè)定參考劉蕾等[27]方法,略有修改。在制備TP-OSA-SNPs過(guò)程中,將TP-OSA-SNPs經(jīng)醇沉和醇洗處理后離心得到的上清液進(jìn)行混合,并記錄上清液體積。根據(jù)TPs濃度-吸光度標(biāo)準(zhǔn)曲線(xiàn),采用紫外分光光度計(jì)在274 nm波長(zhǎng)下,檢測(cè)上清液的吸光度。TP-OSA-SNPs中TPs的保留率(,%)按下式計(jì)算:
式中M為T(mén)Ps最初添加量,mg;為上清液中TPs的濃度,mg/mL;為上清液的體積,mL。
1.3.3 接觸角的測(cè)定
利用接觸角測(cè)定儀檢測(cè)OSA-SNPs和TP-OSA-SNPs樣品的界面接觸角。首先利用壓片機(jī)將樣品壓成平整、致密的圓片(直徑20 mm,厚度為2 mm),然后使用接觸角測(cè)量?jī)x測(cè)定淀粉樣品的水相靜態(tài)接觸角,測(cè)量范圍為0°~180°。由儀器控制帶有毛細(xì)針頭的微量進(jìn)樣器,將2L超純水滴在樣品圓片表面,待水滴在圓片表面平衡后進(jìn)行拍攝,通過(guò)儀器自帶軟件分析接觸角[28]。每個(gè)樣品至少在圓片表面取5個(gè)點(diǎn)進(jìn)行檢測(cè),測(cè)量結(jié)果取5個(gè)數(shù)值的平均值。
1.3.4 傅立葉紅外光譜的測(cè)定
將OSA-SNPs、TP-OSA-SNPs樣品在真空條件下干燥至恒量,然后將其與KBr(光譜純)以質(zhì)量比1∶75混合并壓制成直徑5 mm、厚度1 mm的圓片,使用紅外光譜儀在波長(zhǎng)4 000~400 cm-1范圍內(nèi)進(jìn)行光譜掃描,設(shè)置光譜分辨率4 cm-1,經(jīng)32次掃描獲得樣品紅外譜圖。
1.3.5 掃描電鏡觀察
將無(wú)水乙醇沉淀后得到的濕基OSA-SNPs、TP-OSA-SNPs樣品滴加到硅片上,進(jìn)行凍干處理。將樣品固定在樣品臺(tái)上,經(jīng)過(guò)噴金處理后,置于掃描電子顯微鏡樣品室中,然后進(jìn)行抽真空,當(dāng)真空度達(dá)到5×10-3時(shí),對(duì)樣品的表面形態(tài)和尺寸進(jìn)行觀察并拍照。
1.3.6 淀粉納米顆粒粒度分布和Zeta電位的測(cè)定
將濕基OSA-SNPs、TP-OSA-SNPs樣品與去離子水配置成5∶10 000 (g/mL)的懸浮液,然后超聲處理15 min,再將其置于激光納米粒度儀中進(jìn)行粒度分布和Zeta電位檢測(cè),設(shè)置分散劑為水,顆粒折光率為1.530,檢測(cè)溫度20 ℃,檢測(cè)重復(fù)3次,結(jié)果取平均值[29]。
1.3.7 水包油Pickering乳液的制備
參考Xie等[30]方法,略有修改。將OSA-SNPs和TP-OSA-SNPs樣品分別以不同的比例置于超純水中,然后將油茶籽油以體積比1∶5的比例加入超純水中,采用高速剪切乳化機(jī)在19 000 r/min下剪切乳化3 min,制得淀粉納米顆粒質(zhì)量濃度分別為0.5、1.0、1.5、2.0 g/mL的水包油Pickering乳液。將制備完成的Pickering乳液置于4 mL透明樣品瓶中,放置15 d,并利用數(shù)碼相機(jī)記錄乳液樣品貯藏前后的表觀。
1.3.8 Pickering乳液粒度分布
利用激光粒度儀分別對(duì)不同質(zhì)量濃度的OSA-SNPs和TP-OSA-SNPs樣品制備的Pickering乳液進(jìn)行粒度分布檢測(cè),油相的折射指數(shù)和吸收指數(shù)分別設(shè)置為1.449和0.010,水相的折射指數(shù)設(shè)置為1.330。每個(gè)樣品檢測(cè)3次,結(jié)果取平均值。
1.3.9 激光共聚焦熒光顯微鏡觀察
參考Zhu等[31]方法,略有修改。將10L濃度為0.01 mg/mL的尼羅藍(lán)和尼羅紅依次加入1 mL乳液樣品中,其中采用尼羅藍(lán)對(duì)OSA-SNPs和TP-OSA-SNPs進(jìn)行染色,采用尼羅紅對(duì)油相進(jìn)行染色。在避光下對(duì)乳液進(jìn)行染色處理2 min,然后將乳液樣品注入玻底平皿;設(shè)置尼羅藍(lán)的發(fā)射波長(zhǎng)為488 nm,激發(fā)波長(zhǎng)為513 nm,尼羅紅的發(fā)射波長(zhǎng)為633 nm,激發(fā)波長(zhǎng)為660 nm,然后對(duì)乳液進(jìn)行觀察并拍照。
1.3.10 Pickering乳液氧化穩(wěn)定性的測(cè)定
將新制的Pickering乳液樣品密閉存放于45 ℃恒溫箱中15 d,測(cè)定乳液的POV值,測(cè)量方法參考Liu等[32],略有修改。在1.5 mL異辛烷和異丙醇(體積比3∶1)混合溶液中,加入不同貯藏時(shí)間的Pickering乳液0.3 mL,并以10 000 r/min離心5 min。然后取0.2 mL上清液加入2.8 mL甲醇和正丁醇(體積比2∶1)的混合溶液中,再依次加入3.94 mol/L硫氰酸銨溶液15L與0.072 mol/L亞鐵離子溶液15L(0.132 mol/L BaCl2和0.144 mol/L FeSO4混合離心后的上清液),于避光處?kù)o置20 min后,于510 nm處測(cè)量吸光度值,利用過(guò)氧化氫異丙苯標(biāo)準(zhǔn)曲線(xiàn)計(jì)算Pickering乳液氫過(guò)氧化物的濃度,其中氫過(guò)氧化物值(Peroxide Value)以POV表示。
1.3.11 試驗(yàn)數(shù)據(jù)分析
全部試驗(yàn)重復(fù)測(cè)定3次,結(jié)果表示為平均值±標(biāo)準(zhǔn)差。采用軟件Origin 8.5繪圖,并用SPSS21.0對(duì)試驗(yàn)數(shù)據(jù)的顯著性差異(<0.05)進(jìn)行單因素方差分析。
2.1.1 紅外光譜分析
圖1為T(mén)Ps、OSA-SNPs和TP-OSA-SNPs的FT-IR譜圖。從圖1a呈現(xiàn)的TPs的紅外光譜可以看出,在3 600~3 200 cm-1處形成了較寬的紅外光譜特征峰,這是源于羥基(—OH)的伸縮振動(dòng),表明分子間或分子內(nèi)形成了氫鍵[33];在1 700 cm?1處是羰基C=O的伸縮振動(dòng)的吸收峰。從圖1b可以看出,OSA-SNPs于1 720 cm-1和1 569 cm-1的位置分別出現(xiàn)了C=O酯鍵基團(tuán)和-COO-的伸縮振動(dòng)吸收峰,證明OSA-SNP上存在OSA酯化基團(tuán)[24, 34-35]。與OSA-SNPs的紅外譜圖相比,TP-OSA-SNPs的譜帶發(fā)生了明顯的變化,其在3 600~3 200 cm-1處的—OH吸收峰向波數(shù)減小的方向發(fā)生了移動(dòng);與TPs的紅外圖譜相對(duì)照,TP-OSA-SNPs在1 700 cm?1處同樣出現(xiàn)了C=O吸收峰,說(shuō)明TPs與OSA-SNPs的羥基發(fā)生了交互作用,形成了氫鍵。此外,與OSA-SNPs的紅外譜帶相比,TP-OSA-SNPs在1 720 cm-1和1 569 cm-1兩處形成的吸收峰的強(qiáng)度明顯下降,說(shuō)明TPs與OSA-SNPs之間可能存在疏水相互作用。Lv等[36]將TPs與土豆淀粉進(jìn)行混合濕磨處理,發(fā)現(xiàn)茶多酚在1 695 cm?1處出現(xiàn)的C=O吸收峰也同樣出現(xiàn)在土豆淀粉的紅外譜帶中,并發(fā)生了輕微的移動(dòng),說(shuō)明TPs和土豆淀粉之間的羥基通過(guò)氫鍵發(fā)生了相互作用。Wang等[34]研究了添加TPs對(duì)OSA-蠟質(zhì)玉米淀粉分子結(jié)構(gòu)的影響,發(fā)現(xiàn)TPs能夠與OSA-蠟質(zhì)玉米淀粉的親脂基團(tuán)產(chǎn)生疏水相互作用,進(jìn)而改變OSA-淀粉分子結(jié)構(gòu),這均與本研究結(jié)果相符。
圖1 TPs、OSA-SNPs和TP-OSA-SNPs的紅外光譜圖
2.1.2 茶多酚對(duì)OSA-淀粉納米顆粒微觀結(jié)構(gòu)及顆粒性質(zhì)的影響
圖2給出了OSA-SNPs和TP-OSA-SNPs的微觀形態(tài)。如圖2所示,兩種納米顆粒的表面形態(tài)十分相似,均為不規(guī)則的球形,表面凹凸不平,然而,與OSA-SNPs相比(圖2a),TP-OSA-SNPs中存在較多粒徑相對(duì)較大的顆粒(圖2b),說(shuō)明添加TPs導(dǎo)致OSA-SNPs的粒徑增大。Wang等[34]研究了添加不同濃度的TPs對(duì)OSA-蠟質(zhì)玉米淀粉分子結(jié)構(gòu)的影響,發(fā)現(xiàn)隨著TPs添加量的增加,OSA-淀粉的水力學(xué)直徑也明顯增加。
圖3呈現(xiàn)了OSA-SNPs和TP-OSA-SNPs的平均粒徑、粒度分布、Zeta電位以及接觸角。如圖3所示,TP-OSA-SNPs平均粒徑(222.00±1.40)nm顯著大于(<0.05)OSA-SNPs(173.20±0.57)nm;從粒度分布曲線(xiàn)也可以看出,與OSA-SNPs相比,TP-OSA-SNPs粒度分布峰的峰形較窄,峰強(qiáng)度較高,并且向粒徑增大的方向發(fā)生了平移,說(shuō)明雖然TP-OSA-SNPs的粒徑較大,但粒徑分布相對(duì)均勻,較小的多分散性指數(shù)(Polydispersity Index,PDI)說(shuō)明了其粒度分布的均勻性(PDI為0.159)。此外,從圖3中還可以看出,添加TPs導(dǎo)致OSA-SNPs的接觸角由83.20°±1.02°減小至78.60°±0.84°(<0.05),Zeta電位絕對(duì)值由|24.20| mV減小至|19.10| mV(<0.05)。OSA-SNPs表面所帶負(fù)電荷主要來(lái)源于OSA分子的烯基長(zhǎng)鏈,添加TPs導(dǎo)致OSA-SNPs表面所帶負(fù)電荷減少,這會(huì)減弱TP-OSA-SNPs之間的靜電斥力[37]。同時(shí),OSA分子的烯基長(zhǎng)鏈也是賦予淀粉納米顆粒疏水性的主要原因,OSA改性使淀粉納米顆粒具有油水潤(rùn)濕性,研究表明,具有良好油水潤(rùn)濕性的顆粒,其接觸角接近90°[38]。本研究發(fā)現(xiàn),添加TPs導(dǎo)致OSA-SNPs接觸角有所降低,表明與OSA-SNPs相比,TP-OSA-SNPs的疏水性減弱;這是因?yàn)門(mén)Ps中含有大量的親脂性成分[39],其與OSA分子的疏水性成分之間可能存在疏水相互作用,阻礙了OSA分子的烯基長(zhǎng)鏈接觸油相,因此導(dǎo)致TP-OSA-SNPs的疏水性下降。Peng等[24]和Wang等[34]相繼報(bào)道了添加TPs導(dǎo)致OSA-蠟質(zhì)玉米淀粉乳化性減弱,這與本研究結(jié)果相符。
圖2 OSA-SNPs和TP-OSA-SNPs的掃描電鏡圖
注:小寫(xiě)字母上標(biāo)表示在0.05水平差異顯著,PDI為多分散性指數(shù)。
2.2.1 乳液的粒度分布
圖4給出了不同質(zhì)量濃度OSA-SNPs和TP-OSA-SNPs穩(wěn)定的Pickering乳液在15 d貯藏前后的乳液表觀、乳滴平均直徑和粒徑分布曲線(xiàn)。如圖4a所示,當(dāng)OSA-SNPs的質(zhì)量濃度從0.5 g/mL增加至2.0 g/mL時(shí),其穩(wěn)定乳液的乳滴粒徑分布曲線(xiàn)峰向粒徑增大的方向發(fā)生了輕微的平移,并且2.0 g/mL OSA-SNPs穩(wěn)定的乳液其乳滴粒徑分布曲線(xiàn)在主峰旁粒徑增加的方向出現(xiàn)了一個(gè)小峰,表明乳液樣品中形成許多粒徑較大的油滴。從OSA-SNPs穩(wěn)定的乳液的平均粒徑[4,3]和(90)也可以看出,乳液的平均粒徑隨著OSA-SNPs質(zhì)量濃度的增加而增加。這主要是因?yàn)镺SA-SNPs的平均粒徑較小,根據(jù)布朗運(yùn)動(dòng)原理,粒徑較小的顆粒與較大顆粒相比,其運(yùn)動(dòng)速度更快,在穩(wěn)定乳液時(shí)其會(huì)先到達(dá)油水界面;此外,根據(jù)顆粒粒徑和乳滴的曲率關(guān)系[40],粒徑較小的顆粒易于形成直徑較小的乳滴,因此,當(dāng)OSA-SNPs質(zhì)量濃度增加至2.0 g/mL時(shí),乳液中形成了大量直徑小于1m的乳滴,這些直徑較小的乳滴通過(guò)布朗運(yùn)動(dòng)吸附在直徑較大的乳滴表面,導(dǎo)致乳滴的平均粒徑增加。如圖4b所示,由不同質(zhì)量濃度OSA-SNPs穩(wěn)定的乳液放置15 d后沒(méi)有發(fā)生明顯的油相析出,乳液的[4,3]和(90)有增加的趨勢(shì),其中OSA-SNPs質(zhì)量濃度為2.0 g/mL的乳液樣品,在15 d貯藏中其(90)的增加幅度較小。
注:D[4,3]為體積平均直徑,D(90)表示小于此粒徑的乳滴體積含量占全部乳滴的90%。
如圖4c所示,隨著TP-OSA-SNPs的質(zhì)量濃度從0.5 g/mL增加至2.0 g/mL,其穩(wěn)定乳液的乳滴粒徑分布曲線(xiàn)峰從雙峰分布變?yōu)閱畏宸植迹⑶胰榈瘟6确植挤逑蛄綔p小的方向發(fā)生了平移,乳液的[4,3]和(90)均表現(xiàn)出下降的趨勢(shì),這表明隨著TP-OSA-SNPs質(zhì)量濃度的增加,其穩(wěn)定乳液的乳滴平均直徑明顯減小,說(shuō)明TP-OSA-SNPs能夠吸附在油水界面上,發(fā)揮穩(wěn)定乳液的作用;當(dāng)TP-OSA-SNPs的質(zhì)量濃度較低時(shí),其在乳液油水界面的覆蓋程度較低,乳滴易發(fā)生聚集導(dǎo)致直徑增加;隨著TP-OSA-SNPs質(zhì)量濃度的增加,其能夠在油水界面形成穩(wěn)定的物理屏障,阻礙乳滴聚集,因此乳滴的平均直徑降低。如圖4d所示,由TP-OSA-SNPs穩(wěn)定的乳液放置15 d后沒(méi)有發(fā)生明顯的油相析出。當(dāng)乳液中TP-OSA-SNPs的質(zhì)量濃度為0.5 g/mL和1.0 g/mL時(shí),隨著在貯藏時(shí)間的延長(zhǎng),乳液的(90)明顯增加;當(dāng)乳液中TP-OSA-SNPs的質(zhì)量濃度為1.5 g/mL時(shí),在貯藏15 d后,乳液中乳滴粒徑分布主峰旁粒徑增加的方向出現(xiàn)一個(gè)小峰,表明乳滴粒徑增加;而乳液中TP-OSA-SNPs的質(zhì)量濃度為2.0 g/mL時(shí),其乳滴粒徑增加幅度較小,說(shuō)明乳液在15 d貯藏期具有良好的穩(wěn)定性。
2.2.2 乳液微觀結(jié)構(gòu)觀察
Pickering乳液的微觀結(jié)構(gòu)以及不同質(zhì)量濃度OSA-SNPs和TP-OSA-SNPs在油水界面的吸附情況如圖5所示。在圖5中,上圖呈現(xiàn)為乳液的油滴,其由尼羅紅染色,在激發(fā)波長(zhǎng)488 nm下標(biāo)記為綠色;下圖呈現(xiàn)為乳液中的OSA-SNPs或TP-OSA-SNPs,由尼羅藍(lán)染色,在激發(fā)波長(zhǎng)633 nm下標(biāo)記為紅色。由不同質(zhì)量濃度OSA-SNPs和TP-OSA-SNPs穩(wěn)定的Pickering乳液,其微觀結(jié)構(gòu)形態(tài)呈現(xiàn)出明顯的差異。從圖5a可以看出,1.0 g/mL OSA-SNPs穩(wěn)定的Pickering乳液,其油滴表現(xiàn)出良好的分散性,OSA-SNPs緊密的吸附在油滴表面,形成阻隔層,抑制油滴聚結(jié),然而OSA-SNPs穩(wěn)定的乳液也表現(xiàn)出油滴尺寸不均勻的現(xiàn)象,乳液中存在大量直徑小于1m油滴,同時(shí),也存在許多直徑超過(guò)20m油滴。如圖5b所示,當(dāng)乳液中OSA-SNPs的質(zhì)量濃度增加至2.0 g/mL時(shí),乳液中的小油滴增多了,并且一些小油滴傾向于吸附在大油滴的表面,但是OSA-SNPs在油滴之間形成了物理屏障,因此,抑制了油滴的聚結(jié)。圖5c和d呈現(xiàn)了不同質(zhì)量濃度的TP-OSA-SNPs所穩(wěn)定的Pickering乳液的微觀形態(tài)。如圖5c所示,1.0 g/mL TP-OSA-SNPs穩(wěn)定的乳液中油滴的分散性良好,但是,與1.0 g/mL OSA-SNPs穩(wěn)定的乳液相比,TP-OSA-SNPs在油水界面上的吸附量明顯減少,這是因?yàn)榕cOSA-SNPs相比,TP-OSA-SNPs的接觸角較?。▓D3),疏水性較弱,其在油水界面的吸附能力也有所減弱。此外,TP-OSA-SNPs表面所帶負(fù)電荷相對(duì)較少,顆粒之間的靜電斥力較弱,所以顆粒易于發(fā)生聚集。從圖5d中可以看出2.0 g/mL TP-OSA-SNPs穩(wěn)定的乳液,形成了油滴堆積的界面結(jié)構(gòu),TP-OSA-SNPs填充在油水界面之間,抑制油滴的遷移,乳液中的油滴仍然保持圓形,說(shuō)明乳液具有良好的穩(wěn)定性。
圖5 不同濃度的OSA-SNPs和TP-OSA-SNPs穩(wěn)定的Pickering乳液的共聚焦激光掃描顯微鏡圖
圖6呈現(xiàn)了在貯藏過(guò)程中不同質(zhì)量濃度OSA-SNPs和TP-OSA-SNPs穩(wěn)定的Pickering乳液中POV值。如圖所示,隨著貯藏時(shí)間的延長(zhǎng),不同質(zhì)量濃度的OSA-SNPs和TP-OSA-SNPs穩(wěn)定的Pickering乳液的POV值均逐漸增加,但是增加的程度不同。從圖6a可以看出,當(dāng)OSA-SNPs質(zhì)量濃度從0.5 g/mL增加至2.0 g/mL時(shí),其穩(wěn)定的乳液的POV值明顯降低,這可能是由于OSA-SNPs質(zhì)量濃度增加,其在油水界面形成的吸附層的厚度增加,能起到延緩油脂氧化的作用。如圖6b所示,與OSA-SNPs相比,TP-OSA-SNPs穩(wěn)定的Pickering乳液的POV值明顯降低(<0.05),并且隨著TP-OSA-SNPs質(zhì)量濃度的增加,乳液中POV值逐漸下降,這主要與顆粒乳化劑在油水界面形成的阻隔層以及TPs賦予TP-OSA-SNPs的抗氧化活性(TP-OSA-SNPs中TPs保留率為14.49%±2.13%)有關(guān)。Miao等[21]利用TPs復(fù)合多孔淀粉制備食品級(jí)的包裝膜,研究發(fā)現(xiàn)復(fù)合膜具有優(yōu)異的抗氧化性能。Yuan等[22]在海藻酸鈣凝膠中添加TPs制成可食用的生物活性膜,研究發(fā)現(xiàn)茶多酚的添加提升了復(fù)合膜的抗氧化活性。Zhang等[23]利用TPs與蠟質(zhì)玉米淀粉復(fù)合制成納米纖維復(fù)合膜,研究表明隨著TPs濃度的增加,復(fù)合膜的抗氧化性增強(qiáng)。上述文獻(xiàn)均與本研究結(jié)論相符。
圖6 不同顆粒濃度的OSA-SNPs和TP-OSA-SNPs穩(wěn)定的Pickering乳液貯藏15 d的氫過(guò)氧化物值
1)茶多酚(Tea Polyphenols,TPs)與辛烯基琥珀酸酐(Octenyl Succinic Anhydride, OSA)酯化淀粉納米顆粒(Starch Nanoparticles,SNPs)能夠通過(guò)氫鍵和疏水相互作用結(jié)合,并采用醇沉法制成納米顆粒,其多分散性指數(shù)(Polydispersity Index,PDI)為0.159,說(shuō)明其粒度分布較均勻。
2)添加TPs能使OSA-SNPs的粒徑從(173.20± 0.57)nm增加至(222.00±1.40)nm,表面負(fù)電荷數(shù)從(?24.20±3.18)mV減少至(?19.10±1.30)mV,接觸角從83.20°±1.02°減小至78.60°±0.84°,表明添加TPs導(dǎo)致OSA-SNPs的疏水性下降。
3)由OSA-SNPs穩(wěn)定的Pickering乳液,隨著OSA-SNPs的質(zhì)量濃度從0.5 g/mL增加至2.0 g/mL,乳液的體積平均直徑從24.2m增加至43.2m;由質(zhì)量濃度為2 g/mL的OSA-SNPs穩(wěn)定的乳液,形成了大量的小乳滴,一些小乳滴會(huì)吸附在較大乳滴的表面,但是乳液沒(méi)有發(fā)生聚結(jié)現(xiàn)象。由TP-OSA-SNPs穩(wěn)定的Pickering乳液,隨著TP-OSA-SNPs的質(zhì)量濃度從0.5 g/mL增加至2.0 g/mL,乳液的體積平均直徑從51.1m降低至25.2m;由質(zhì)量濃度為2 g/mL的TP-OSA-SNPs穩(wěn)定的乳液,大量的TP-OSA-SNPs填充在油滴緊密堆積的油水界面,并形成有效的物理屏障,維持乳液的穩(wěn)定。
4)隨著TP-OSA-SNPs質(zhì)量濃度的增加,乳液的POV值明顯降低,并且質(zhì)量濃度為2 g/mL的TP-OSA-SNPs穩(wěn)定的乳液,在貯藏中其氫過(guò)氧化物值(Peroxide Value, POV)最小,說(shuō)明TP-OSA-SNPs在油水界面上,既能形成物理屏障以抑制油滴聚結(jié),又能發(fā)揮抗氧化劑效果,提高乳液的氧化穩(wěn)定性。
通過(guò)研究TPs對(duì)OSA-SNPs及其穩(wěn)定的乳液性質(zhì)的影響,可為開(kāi)發(fā)新型具有抗氧化功能的顆粒乳化劑,為構(gòu)筑食品級(jí)淀粉基Pickering乳液運(yùn)載體系提供借鑒。
[1] 李松南. 淀粉基Pickering乳液穩(wěn)定機(jī)理及在葉黃素遞送中的應(yīng)用研究[D]. 廣州:華南理工大學(xué),2020.
Li Songnan. Starch-based Pickering Emulsion: Stabilizing Mechanism and Application in Lutein Delivery[D]. Guangzhou: South China University of Technology, 2020. (in Chinese with English abstract)
[2] Xia T, Xue C, Wei Z. Physicochemical characteristics, applications and research trends of edible Pickering emulsions[J]. Trends in Food Science & Technology, 2021, 107: 1-15.
[3] Low L E, Siva S P, Ho Y K, et al. Recent advances of characterization techniques for the formation, physical properties and stability of Pickering emulsion[J]. Advances in Colloid and Interface Science, 2020, 277: 102117.
[4] Yan X, Diao M, Li C, et al. Formation and properties of starch-palmitic acid complex nanoparticles and their influence on Pickering emulsions[J]. International Journal of Biological Macromolecules, 2022, 204: 685-691.
[5] 趙思琪,張華娟,羅曜,等. 紅外輻射制備檸檬酸糯米淀粉酯工藝優(yōu)化及功能特性[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(10): 261-268.
Zhao Siqi, Zhang Huajuan, Luo Yao, et al. Optimization processes and functionality of citric acid esterified glutinous rice starch synthesized via infrared radiation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(10): 261-268. (in Chinese with English abstract)
[6] Song X, Gong H, Zhu W, et al. Pickering emulsion stabilized by composite-modified waxy corn starch particles[J]. International Journal of Biological Macromolecules, 2022, 205: 66-75.
[7] Chen X, Hu Z, Chen D, et al. Preparation and physiochemical properties of enzymatically modified octenyl succinate starch[J]. Journal of Food Science, 2022, 87: 2112-2120.
[8] Li Y, Peng Z, Wu D, et al. Improving hydrophilicity of wheat starch via sodium dodecyl sulfate treatment[J]. Starch-St?rke, 2022, 74(4): 1-6.
[9] Wu Z, Li H, Zhao X, et al. Hydrophobically modified polysaccharides and their self-assembled systems: A review on structures and food applications[J]. Carbohydrate Polymers, 2022, 284: 119182.
[10] Mirzaaghaei M, Nasirpour A, Keramat J, et al. Chemical modification of waxy maize starch by esterification with saturated fatty acid chlorides: Synthesis, physicochemical and emulsifying properties[J]. Food Chemistry, 2022, 393: 133293.
[11] Gharaghani M, Mousavi M, Khodaiyan F, et al. Octenyl succinylation of kefiran: Preparation, characterization and functional properties[J]. International Journal of Biological Macromolecules, 2021, 166: 1197-1209.
[12] 余振宇. OSA改性芋頭淀粉基Pickering乳液運(yùn)載體系穩(wěn)定機(jī)制及其特性研究[D]. 合肥:合肥工業(yè)大學(xué),2020.
Yu Zhenyu. Stabilization Mechanism and Characteristics of Pickering Emulsion Delivery System Based on OSA Modified Taro Starch[D]. Hefei: Hefei University of Technology, 2020. (in Chinese with English abstract)
[13] 劉微. OSA淀粉的結(jié)構(gòu)特征與乳化性質(zhì)的相關(guān)性分析[D]. 無(wú)錫:江南大學(xué),2019.
Liu Wei. Correlation Analysis Between Structural Characteristics and Emulsification Capacity of OSA Starch[D]. Wuxi: Jiangnan University, 2019. (in Chinese with English abstract)
[14] Binks B P, Lumsdon S O. Pickering emulsions stabilized by monodisperse latex particles: Effects of particle size[J]. Langmuir, 2001, 17: 4540-4547.
[15] Lu H, Tian Y. Nanostarch: Preparation, modification, and application in Pickering emulsions[J]. Journal of agricultural and food chemistry, 2021, 69(25): 6929-6942.
[16] Li W, Yu Y, Peng J, et al. Effects of the degree of substitution of OSA on the properties of starch microparticle-stabilized emulsions[J]. Carbohydrate Polymers, 2021, 255: 117546.
[17] Zhu F. Starch based Pickering emulsions: Fabrication, properties, and applications[J]. Trends in Food Science & Technology, 2019, 85: 129-137.
[18] Keramat M, Kheynoor N, Golmakani M-T. Oxidative stability of Pickering emulsions[J]. Food Chemistry: X, 2022, 14: 100279.
[19] Li W, Jiao B, Li S, et al. Recent advances on Pickering emulsions stabilized by diverse edible particles: Stability mechanism and applications[J]. Frontiers in Nutrition, 2022, 9: 864943.
[20] Yin Z, Zheng T, Ho C-T, et al. Improving the stability and bioavailability of tea polyphenols by encapsulations: A review[J]. Food Science and Human Wellness, 2022, 11: 537-556.
[21] Miao Z, Zhang Y, Lu P. Novel active starch films incorporating tea polyphenols-loaded porous starch as food packaging materials[J]. International Journal of Biological Macromolecules, 2021, 192: 1123-1133.
[22] Yuan B, Cao Y, Tang Q, et al. Enhanced performance and functionality of active edible films by incorporating tea polyphenols into thin calcium alginate hydrogels[J]. Food Hydrocolloids, 2019, 97: 105197.
[23] Zhang D, Chen L, Cai J, et al. Starch/tea polyphenols nanofibrous films for food packaging application: From facile construction to enhance mechanical, antioxidant and hydrophobic properties[J]. Food Chemistry, 2021, 360: 129922.
[24] Peng S, Xue L, Leng X, et al. Slow digestion property of octenyl succinic anhydride modified waxy maize starch in the presence of tea polyphenols[J]. Journal of Agricultural and Food Chemistry, 2015, 63(10): 2820-2829.
[25] 王然. 辛烯基琥珀酸納米淀粉酯顆粒的制備及其食品級(jí)Pickering乳液的特性[J]. 食品科學(xué),2019,40(20):94-99.
Wang Ran. Preparation and characterization of a food-grade pickering emulsion stabilized by octenyl succinic anhydride-modified starch nanoparticles[J]. Food Science, 2019, 40(20): 94-99. (in Chinese with English abstract)
[26] Wu X, Liu P, Ren L, et al. Optimization of corn starch succinylation using response surface methodology[J]. Starch, 2014, 66: 508-514.
[27] 劉蕾,袁芳,高彥祥.-乳白蛋白提高-胡蘿卜素乳液穩(wěn)定性[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(增刊2):423-429.
Liu Lei, Yuan Fang, Gao Yanxiang.-lactalbumin enhancing emulsion stability of-carotene[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(Supp.2): 423-429. (in Chinese with English abstract)
[28] Shao P, Zhang H, Niu B, et al. Physical stabilities of taro starch nanoparticles stabilized Pickering emulsions and the potential application of encapsulated tea polyphenols[J]. International Journal of Biological Macromolecules, 2018, 118: 2032-2039.
[29] 李書(shū)紅,周軍君,陳桂蕓,等. 玉米醇溶蛋白-殼聚糖納米營(yíng)養(yǎng)遞送粒子的制備及性質(zhì)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(16):279-286.
Li Shuhong, Zhou Junjun, Chen Guiyun, et al. Preparation and properties of zein-chitosan nano-nutrient delivery particles[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(16): 279-286. (in Chinese with English abstract)
[30] Xie Y, Liu H, Li Y, et al. Characterization of Pickering emulsions stabilized by OSA-modified sweet potato residue cellulose: Effect of degree of substitute and concentration[J]. Food Hydrocolloids, 2020, 108: 105915.
[31] Zhu W, Zheng F, Song X, et al. Influence of formulation parameters on lipid oxidative stability of Pickering emulsion stabilized by hydrophobically modified starch particles[J]. Carbohydrate Polymers, 2020, 246: 116649.
[32] Liu Y, Zhang C, Cui B. Carotenoid-enriched oil preparation and stability analysis during storage: Influence of oils’ chain length and fatty acid saturation[J]. LWT-Food Science and Technology, 2021, 151: 112163.
[33] Li X, Sun C, Luo L, et al. Determination of tea polyphenols content by infrared spectroscopy coupled with iPLS and random frog techniques[J]. Computers and Electronics in Agriculture, 2015, 112: 28-35.
[34] Wang X, Leng X, Zhang G. The loosening effect of tea polyphenol on the structure of octenyl succinic anhydride modified waxy maize starch[J]. Food Hydrocolloids, 2020, 99: 105367.
[35] Bai Y, Kaufman R C, Wilson J D, et al. Position of modifying groups on starch chains of octenylsuccinic anhydride-modified waxy maize starch[J]. Food Chemistry, 2014, 153: 193-199.
[36] Lv Y, Zhang L, Li M, et al. Physicochemical properties and digestibility of potato starch treated by ball milling with tea polyphenols[J]. International Journal of Biological Macromolecules, 2019, 129: 207-213.
[37] Nilsson L, Bergenst?hl B. Adsorption of hydrophobically modified anionic starch at oppositely charged oil/water interfaces[J]. Journal of Colloid and Interface Science, 2007, 308: 508-513.
[38] Hunter T N, Pugh R J, Franks G V, et al. The role of particles in stabilising foams and emulsions[J]. Advances in Colloid and Interface Science, 2008, 137: 57-81.
[39] He Q, Lv Y, Yao K. Effects of tea polyphenols on the activities of α-amylase, pepsin, trypsin and lipase[J]. Food Chemistry, 2006, 101: 1178-1182.
[40] Kim I, Worthen A, Johnston K, et al. Size-dependent properties of silica nanoparticles for Pickering stabilization of emulsions and foams[J]. Journal of Nanoparticle Research, 2016, 18: 1-12.
Effects of tea polyphenols on the properties of starch ester nanoparticles and their stabilized Pickering emulsions
Wang Ran1,2, Zhong Yuzhen1, Zhang Lihong1
(1.,,130033,;2.,,130022,)
Pickering emulsions can be expected to serve as a promising method against coalescence during storage in the food industry. Food-grade oil-in-water Pickering emulsions are stabilized by the solid particles on the oil-water interface, where a dense film can be formed against the aggregation of droplets. In this study, the food-grade oil-in-water Pickering emulsion was prepared using Octenyl Succinic Anhydride (OSA) modified waxy maize Starch Nanoparticles (SNPs) in the presence of Tea Polyphenols (TPs). An investigation was also made to clarify the effects of TPs on physicochemical properties and emulsifying capacity of OSA-starch nanoparticles (OSA-SNPs). The potential of TP-OSA-SNPs was examined after the combination of OSA-starches with TPs. The ethanol precipitation was then selected as a kind of particle emulsifier. An analysis was also conducted for the properties of Pickering emulsions that stabilized by OSA-SNPs and TP-OSA-SNPs at different concentrations. The mean particle size of OSA-SNPs and TP-OSA-SNPs was measured by the laser diffraction particle size analyzer and Scanning Electron Microscope (SEM). The results showed that the mean particle size of TP-OSA-SNPs (222.00±1.40) nm was larger than that of OSA-SNPs (173.20±0.57) nm. The absolute value of Zeta potential for the TP-OSA-SNPs (|-19.10±1.30| mV) was less than that of OSA-SNPs (|-24.20±3.18| mV). The contact angle of TP-OSA-SNPs (78.60°±0.84°) was also smaller than that of OSA-SNPs (83.20°±1.02°). It infers that there was a weaker hydrophobicity of TP-OSA-SNPs, compared with the OSA-SNPs. Furthermore, the structural properties of OSA-SNPs and TP-OSA-SNPs were analyzed by Fourier Transform Infrared spectroscopy (FT-IR). Specifically, the characteristic absorbance peak at 3 600-3 200 cm-1of TP-OSA-SNPs was shifted towards the lower wavenumber, compared with the OSA-SNPs. Moreover, the FT-IR spectra of TP-OSA-SNPs appeared a peak at the same wavenumber, indicating that the hydrogen bonds were formed in the interactions of TPs with OSA-SNPs, compared with the absorbance peak at 1 700 cm-1of TPs. There were the decreased intensities of peaks for the TP-OSA-SNPs at 1 720 and 1 569 cm-1, indicating the hydrophobic association between TPs and OSA-SNPs. There was an outstanding change in the Pickering emulsions that stabilized by OSA-SNPs and TP-OSA-SNPs at different concentrations. The mean droplet size of the OSA-SNPs emulsions increased slightly, as the concentration of OSA-SNPs increased from 0.5 g/mL to 2.0 g/mL. By contrast, the mean droplet size of the TP-OSA-SNPs emulsions decreased with the increasing TP-OSA-SNPs additions from 0.5 g/mL to 2.0 g/mL. The droplet size distributions of the TP-OSA-SNPs emulsions at different concentrations were changed from the bimodal to the unimodal distribution. The trend was attributed to the various compositions of interfacial structure with the different particle emulsifiers. The morphologies of Pickering emulsions were visualized by Laser Confocal Fluorescence Microscopy (CLSM). Specifically, a large quantity of OSA-SNPs was absorbed closely on the surface of oil droplets, inhibiting the droplets from gathering. There was a weaker absorbing capacity of TP-OSA-SNPs, compared with the OSA-SNPs. The reason was the smaller quantities of absorbed TP-OSA-SNPs on the oil-water interface.Additionally, an interfacial droplet-compacted structure was formed in the TP-OSA-SNPs emulsion with a concentration of 2 g/mL, which was in favor of inhibiting oil droplets migration. A rapid oxidation test was carried out to determine the oxidative stabilities of OSA-SNPs and TP-OSA-SNPs emulsions. The Peroxide Value (POV) was also selected to evaluate the formation of primary oxidative products in the emulsions. There was an increase in the POV of the OSA-SNPs and TP-OSA-SNPs emulsions during storage. However, the POV descended with the increasing concentration of OSA-SNPs or TP-OSA-SNPs in the emulsion. Furthermore, the POV values in the TP-OSA-SNPs emulsions were smaller after 15 days of storage, compared with the OSA-SNPs emulsions. It infers that the oxidation stabilities of the TP-OSA-SNPs emulsions were better than that of the OSA-SNPs emulsions. Consequently, the interactions between TPs and starch-based nanoparticles emulsifier can greatly contribute to developing the better carrier for the bioactive substances. The finding can also provide a potential application to fabricate the delivery system of food-grade starch-based Pickering emulsion.
starch; nanoparticles; tea polyphenols; food-grade Pickering emulsion; oxidative stability; octenyl succinic anhydride modified starch
10.11975/j.issn.1002-6819.2022.17.033
TS235.1
A
1002-6819(2022)-17-0303-08
王然,鐘玉珍,張麗紅. 茶多酚對(duì)淀粉酯納米顆粒及其穩(wěn)定的Pickering乳液性質(zhì)的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2022,38(17):303-310.doi:10.11975/j.issn.1002-6819.2022.17.033 http://www.tcsae.org
Wang Ran, Zhong Yuzhen, Zhang Lihong. Effects of tea polyphenols on the properties of starch ester nanoparticles and their stabilized Pickering emulsions[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(17): 303-310. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2022.17.033 http://www.tcsae.org
2022-04-21
2022-08-04
長(zhǎng)春職業(yè)技術(shù)學(xué)院應(yīng)用技術(shù)研究與開(kāi)發(fā)項(xiàng)目(YY-2019B25)
王然,博士生,講師,研究方向?yàn)檗r(nóng)產(chǎn)品加工及貯藏工程、食品級(jí)淀粉基乳液遞送體系。Email:ranwang13@mails.glu.edu.cn