• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Bottom-up design and assembly with superatomic building blocks

    2022-12-28 09:55:16FaminYu于法民ZhonghuaLiu劉中華JiaruiLi李佳芮WanrongHuang黃婉蓉XinruiYang楊欣瑞andZhigangWang王志剛
    Chinese Physics B 2022年12期
    關(guān)鍵詞:王志剛中華

    Famin Yu(于法民) Zhonghua Liu(劉中華) Jiarui Li(李佳芮) Wanrong Huang(黃婉蓉)Xinrui Yang(楊欣瑞) and Zhigang Wang(王志剛)

    1Institute of Atomic and Molecular Physics,Jilin University,Changchun 130012,China

    2College of Physics,Jilin University,Changchun 130012,China

    3Institute of Theoretical Chemistry,College of Chemistry,Jilin University,Changchun 130023,China

    Keywords: superatom,bottom-up,assembly,atomic level

    1. Introduction

    Designing specific atomically precise materials has attracted much attention in recent years,[1–4]including the organic,[5,6]metallic,[7,8]alloyed,[9]rare-earth,[10]and metalorganic frameworks,[11]etc.[12]However, the traditional topdown approaches (e.g., physical mechanical exfoliation and etching) suffer from the limitations that it is difficult to control microscopic morphology and may destroy the original properties of units.[13–15]In 1960,Feynman proposed that the quantum confinement effect of electrons enabled nanoparticles to exhibit uncommon properties.[16]It can be concluded that there is plenty of room at the bottom to synthesize novel materials,and the bottom-up design approach is currently attracting a lot of attention.[17,18]Not only that,since the structures that can be used as the bottom units of material science far exceed the types of elements in the periodic table,the development of the bottom-up atomic-level approach that directly targets specific needs will also promote a new paradigm,[19–21]which is of great significance for the future.

    Superatoms originate from cluster structures composed of atoms, and they have discrete superatomic molecular orbitals(SAMOs) that exhibit symmetries like atomic orbitals.[22–27]Consequently,superatoms are ideal atomic-level bottom units that meet Feynman’s expectations, and bottom-up assembly based on superatoms has become an important research direction.[9,28–30]Among the superatoms,it was found that the light actinide(An)elements Ac, Th, Pa, U and Pu embedded in fullerene C28can form a series of stable endohedral metallofullerene(EMF)superatomic structures with gradual electron arrangement.[31–35]In particular,the two unpaired electrons on the C28cage facilitate bonding with neighboring units by spinpolarized magnetic coupling.[36]Thus, actinide-based EMF superatoms have the potential to serve as artificial units for the bottom-up design of desirable structures with known bonding properties. Recently, a planar single-crystal fullerene was reported in which C60cages are covalently bonded with each other.[37]Evidently,artificial fullerenes are potential units for building unique planar topology structures. Despite the above understanding, assembly as a specific requirement generally faces complex intra-and inter-molecular interactions and still requires a clearer understanding of the path from the unit design to assembly.

    In this work,we took a series of actinide-based EMF superatoms An@C28(An=Ac,Pa,U,Np and Pu)as the units,on the Au(111)surface,to realize a complex assembly system including a rich variety of one, two, three and four chemical bonding, as well as including the intermolecular dispersion adsorption between different parts. The distinction in this study is that,unlike previous large-scale structural searches for possible building blocks, we first conceived a complex system containing rich intra- and inter-molecular interactions as a specific requirement. Then,based on the different electronic structures of EMF superatoms obtained at the atomic level, a complex structure with different bonding properties was constructed on the Au(111)surface.Therefore,this study not only develops a bottom-up assembly strategy based on the superatomic artificial units but also contributes to the establishment of a new research paradigm.

    2. Methods

    To carry out this research,the third-generation dispersioncorrected density functional theory (DFT-D3)[38]of firstprinciples was used in optimizing the structures of An@C28(An=Ac,Pa,U,Np and Pu). Specifically,the functional used was Perdew–Burke–Ernzerhof(PBE),[39]which has proved to have an advantage in the calculation of actinide-based EMF superatoms.[33,35]The double-ζbasis set was used for C.[40]In terms of the relativistic effect, Stuttgart–Dresden (SDD)pseudopotential and basis set were used for actinide atoms(ECP60MWB for Ac,Pa,U,Np and Pu).[41]

    The Au(111) surface was selected as the substrate because the fullerene can be physically adsorbed on the Au surface.[42]Moreover, the charge transfer between them is negligible, and it is more likely to detach than adsorbed on Ag and Cu surfaces.[43,44]Further, to study the bulk complex located on the Au substrate, quantum mechanics/molecular mechanics (QM/MM) simulations were performed,[45]using the ONIOM (our Own N-layer Integrated molecular Orbital molecular Mechanics)method.[46]It has been applied in many important chemical, biological, and material systems.[47]In this work, the QM region for the complex was treated at the PBE-D3 level with SDD pseudopotential and basis set(ECP60MWB for Ac, Pa, U, Np and Pu) for actinide atoms while the double-ζbasis set for C.The MM region was frozen and was described using the universal force field(UFF),which was developed to provide a reliable description for bonded and nonbonded interactions systems containing all the periodic table elements.[48]No symmetry restriction was imposed on the optimization calculation. The Gaussian 16 package[49]was used to optimize the geometric structures while the Multiwfn 3.8 package[50]was used to analyse the electronic structures.

    3. Results and discussion

    By embedding actinide atoms (including Ac, Pa, U, Np and Pu) into the C28cage, a series of EMF superatoms Ac@C28, Pa@C28, U@C28, Np@C28and Pu@C28superatoms were formed (Fig. 1(a)). Different from the atomembedded C60structure that loses the symmetry due to the off-center position of the embedded atom, the embedded atoms of An@C28are located at the center and maintain high symmetry.[51,52]The high symmetry,similar size and structure of An@C28help to assemble each other. The electronic structure of these EMF superatoms also follows the same rules.The valence electrons of actinide atoms(3 for Ac,5 for Pa,6 for U,7 for Np,and 8 for Pu)add the 28 valence electrons of C28up to 31,33,34,35,and 36,respectively. Their valence electrons first adopt the 32-electronic rule, and the remaining unpaired electrons are used to form chemical bonds (Fig. 1(b)). The An@C28following the 32-electronic rule is more stable than hollow C28.[35]Among them,Ac@C28and Pa@C28with one unpaired electron can form one covalent bond by sharing an electron. U@C28,Np@C28and Pu@C28have two,three and four unpaired electrons, respectively, resulting in the formation of the corresponding number of covalent bonds by sharing electrons(see Figs.S1–S5 of supporting information (SI)for details). Hence, actinide-based EMF superatoms are promising candidates for building controllable structures.

    Fig.1. Structural analyses of the complex assembled by EMF superatoms. (a)and(b)The structural representation and the number of chemical bonds that can be formed for An@C28 (An=Ac,Pa,U,Np and Pu),respectively. (c)and(d)The top and side views of the assembled complex. Color codes:grew,C;blue,Ac;red,Pa;green,U;orange,Np;pink,Pu. The blue label is the distance between the complex and the substrate. (e)and(f)The bond length and bond order analyses of inter-superatomic C–C bonds,respectively.

    Based on the above discussions, we designed a bulk planar complex on the Au(111) surface. For the optimized structure, the distance between An@C28and Au substrate is 2.8±0.1 ?A (Figs. 1(c) and 1(d)), which is consist with the result of a low-energy electron diffraction experiment.[42]Obviously,this has exceeded the bond length of the Au–C single bond(2.0–2.3 ?A),[53]and belongs to physical adsorption. The distance of the complex from the substrate boundary is sufficiently far to avoid boundary effects (see Fig. S6 of SI). In the complex, there are many different interactions, including one,two,three,and four chemical bonds for a superatom and weak interactions between closed-shell parts. Hence, multiple analyses were performed to confirm that the interactions in the complex are as expected. First, to verify that the number of inter-molecular chemical bonds is determined by the number of valence electrons,the bond length and Mayer bond order analyses were performed. The results show that the inter-superatomic C–C bond length is between 1.523–1.611 ?A and the bond order of these chemical bonds is close to 1(Figs. 1(e) and 1(f)), indicating that these bonds are covalent bonds formed by sharing electrons between superatoms.Hence, the number of 17 inter-molecular covalent bonds corresponds exactly to the 34 unpaired electrons in the whole system. Orbital analysis of the complex suggests that the units are connected by valence orbital fusion (see Fig. S7 of SI).In addition,the upper and lower parts are connected by weak interactions,since the shortest bond length between the superatoms in the upper and lower parts is about 3 ?A and the corresponding bond order is zero. Therefore, predictable intersuperatomic interaction systems can be constructed from the bottom up based on the understanding of the bonding properties of the superatomic units.

    The electron density difference(EDD)and charge population analyses also prove that the number of inter-molecular chemical bonds is determined by the number of valence electrons. These analyses reveal only a small amount of charge transfer between superatoms in the upper part and no charge transfer between superatoms in the lower part, based on each unit being divided into a fragment (see Fig. S8 of SI). This indicates that they are bonded by sharing unpaired electrons.In addition,the upper part of the complex is composed of five kinds of superatoms and staggered connections. The charge transfer between different superatoms suggests that the chemical bonds between different superatoms are polar. Moreover,the lower part of the complex assembled by the same units has no charge transfer between them, indicating the formation of non-polar inter-molecular bonds.This conclusion is consistent with previous studies showing that polar bonds are formed between heterodimers,and non-polar bonds are formed between homodimers.[54,55]

    To investigate the weak interaction in the complex, the upper and lower parts were divided into two fragments(Fig. 2(a)). It is shown that there is no charge transfer between the two fragments. Combining the analyses of bond length and Mayer bond order, they both prove that the upper and lower parts are connected by weak interactions. Furthermore, the van der Waals (vdW) surface is around the complex rather than cutting off the upper and lower parts,showing electron density between them is more than 0.001. This also proves that there is a weak interaction between them.

    The independent gradient model based on Hirshfeld partition of molecular density (IGMH) analysis was performed to further visualize the weak interaction in the complex(Fig. 2(b)).[56]In the calculation, the upper and lower parts were defined as individual fragments. In the IGMH map, the map function sign(λ)ρ ≈0 represents the vdW interaction,the area of sign(λ)ρ<0 represents the attractive weak interaction, and the area of sign(λ)ρ>0 represents the repulsive interaction. It can be seen that a thin and broad isosurface appears between the fragments. The isosurface defined by the IGMH exhibits weak interaction. The light green region between the upper and lower parts is commonly dispersion interaction.This results in the weak interaction between the closedshell upper and lower parts.

    Fig.2. The interaction analysis of the complex. (a)The electron density difference analysis between the upper and lower parts. The blue line is the van der Waals(vdW)surface,the electron density is 0.001. (b)The sign(λ2)colored scatter map,and the isosurface corresponds to the independent gradient model based on Hirshfeld partition of molecular density (IGMH) analysis of the complex. The correspondence between the peaks and maximum of δginter in the isosurface map is indicated via green arrows.

    Fig. 3. Electronic structures of the complex and its building blocks An@C28 (An=Ac, Pa, U, Np and Pu). (a) The TDOS of the complex and the PDOS of An@C28 in the complex. The vertical black line and the dotted line indicate the locations of HOMO and LUMO,and the values represent the HOMO–LUMO gap. The green,yellow,pink,and purple regions correspond to S,P&D,F and G SAMOs,and the grey and white regions represent electron occupancy and no electron occupancy. (b)Electrons occupied SAMOs of typical structure Pu@C28. Here,the isosurface is 0.01.

    To explore the relation of chemical properties between the complex and units, the total density of states (TDOS) of the complex and particle density of states(PDOS)of units in the complex were calculated (Fig. 3(a)). Due to the Pu@C28superatom has more valence electrons than other building blocks,its electrons occupied SAMOs are shown as typical orbitals(Fig.3(b)). Compared to the PDOS of units,the TDOS curve of the complex presents a smooth trend and smaller gap between the highest occupied molecular orbital(HOMO)and the lowest unoccupied molecular orbital (LUMO), caused by the increase in the number of electrons. The PDOS curves for the EMF units present similar trends,with the differences mainly around the frontier molecular orbitals,due to the different number of valence electrons. In addition,the curve frames of both SAMOs and non-SAMOs are reflected in the TDOS curves of the complexes. Similar trends in the DOS curves of the complex and units suggest that they have similar chemical properties. Therefore,EMF superatoms with different central atoms from the same period can not only control the number of bonds but also build complex structures with similar chemical properties. Evidently,the bottom-up approach shows great potential in the field of accurate assembly while preserving the properties of the units.

    4. Conclusion

    In summary, we have demonstrated that the pathway for constructing the demanding structures can be achieved by artificial superatomic units assembled from the bottom up. The mechanism of this precise assembly strategy is that the bonding properties can be regulated by adjusting central atoms in An@C28(An = Ac, Pa, U, Np and Pu), such as the formation of one,two,three and four chemical bonds or weak interactions between superatoms. Obviously, since our structures are microscopically at atomic-level precision, the properties of the constructed system are explicitly governed by quantum mechanics. Different from previous large-scale structural searches for possible assembled systems, we first propose a new paradigm for constructing the complex system with rich intra- and inter-molecular interactions based on the obtained superatoms with different kinds of electronic structures. In contrast to the top-down approach, the bottom-up approach has the advantage of high precision at the atomic level and forming materials or devices different from those composed of atoms. Therefore, this work provides a reference for designing demand materials from the bottom up and will facilitate the development of the new paradigm at the atomic level.

    Acknowledgments

    This work is dedicated to the 70th anniversary of physics and chemistry at Jilin University.

    This work is supported by the National Natural Science Foundation of China (Grant Nos. 11974136, 11674123, and 11374004). Z. W. also acknowledges the High-Performance Computing Center of Jilin University and National Supercomputing Center in Shanghai.

    猜你喜歡
    王志剛中華
    What Should The Man Do
    中華龍
    寶藏(2022年1期)2022-08-01 02:12:26
    王志剛教授簡(jiǎn)介
    王志剛教授簡(jiǎn)介
    Scalar or Vector Tetraquark State Candidate: Zc(4100)?
    愛(ài)我中華
    歌海(2018年5期)2018-06-11 07:02:15
    Satiric Art in Gulliver’s Travels
    東方教育(2017年11期)2017-08-02 15:02:00
    An Analysis of "The Open Boat" from the Perspective of Naturalism
    東方教育(2017年11期)2017-08-02 12:17:28
    On the Images of Araby and Their Symbolic Meaning
    東方教育(2017年11期)2017-08-02 06:22:44
    A Study of the Feminism in Mary Shelly`s Frankenstein
    東方教育(2017年11期)2017-08-02 00:08:49
    久热这里只有精品99| 亚洲精品,欧美精品| 日韩制服骚丝袜av| 一二三四中文在线观看免费高清| 亚洲av综合色区一区| 中文字幕久久专区| 国产成人精品久久久久久| 人人妻人人澡人人看| 久久影院123| 中文乱码字字幕精品一区二区三区| 国产69精品久久久久777片| 丝袜喷水一区| 国产男女超爽视频在线观看| www.色视频.com| 久久综合国产亚洲精品| 国产精品一二三区在线看| 国产日韩欧美在线精品| 国产精品久久久久久久电影| 又大又黄又爽视频免费| 国产成人免费无遮挡视频| 丰满饥渴人妻一区二区三| 大又大粗又爽又黄少妇毛片口| 欧美最新免费一区二区三区| 一区二区av电影网| av国产久精品久网站免费入址| 飞空精品影院首页| 少妇高潮的动态图| 日本色播在线视频| av在线播放精品| 久久精品久久久久久久性| 国产av一区二区精品久久| 欧美三级亚洲精品| 777米奇影视久久| 久久韩国三级中文字幕| 丝瓜视频免费看黄片| 免费大片黄手机在线观看| av在线观看视频网站免费| 午夜久久久在线观看| 老司机影院成人| 欧美日韩亚洲高清精品| 99re6热这里在线精品视频| 伊人亚洲综合成人网| 日韩三级伦理在线观看| 人妻少妇偷人精品九色| 少妇被粗大的猛进出69影院 | 夫妻性生交免费视频一级片| 九九久久精品国产亚洲av麻豆| 亚洲欧美日韩卡通动漫| 自线自在国产av| 国产成人freesex在线| 日本与韩国留学比较| 91久久精品国产一区二区三区| 在现免费观看毛片| 午夜免费男女啪啪视频观看| 成人毛片a级毛片在线播放| 亚洲精品色激情综合| 一级毛片我不卡| av线在线观看网站| 狠狠婷婷综合久久久久久88av| 国产一区二区在线观看av| 91精品国产国语对白视频| 国产精品久久久久久久久免| 性高湖久久久久久久久免费观看| 99久久中文字幕三级久久日本| 一区二区三区免费毛片| 国产色婷婷99| 视频在线观看一区二区三区| 国产成人av激情在线播放 | 日本黄大片高清| 一级毛片 在线播放| 午夜91福利影院| 亚洲国产精品国产精品| 天堂中文最新版在线下载| 国产一区亚洲一区在线观看| 欧美日韩av久久| 成年女人在线观看亚洲视频| 亚洲精品久久久久久婷婷小说| 亚洲精品国产色婷婷电影| 亚洲欧美一区二区三区国产| 久久av网站| 免费人妻精品一区二区三区视频| 久久影院123| 国产精品一二三区在线看| 日韩成人伦理影院| 国产精品成人在线| 日日摸夜夜添夜夜爱| 免费黄网站久久成人精品| 久久久久国产网址| www.色视频.com| 欧美人与善性xxx| 超色免费av| 黑人欧美特级aaaaaa片| 欧美 日韩 精品 国产| 亚洲精品美女久久av网站| 国产精品一国产av| 久久97久久精品| 国产亚洲一区二区精品| www.av在线官网国产| 久久精品国产自在天天线| 久久97久久精品| 内地一区二区视频在线| 一级毛片黄色毛片免费观看视频| 国产精品国产三级国产av玫瑰| 国语对白做爰xxxⅹ性视频网站| 国产乱人偷精品视频| 99精国产麻豆久久婷婷| 亚洲内射少妇av| 精品人妻熟女av久视频| 亚洲国产精品999| 亚洲精品久久久久久婷婷小说| 国产精品一区二区在线不卡| 免费黄网站久久成人精品| 成人免费观看视频高清| 日韩不卡一区二区三区视频在线| 丰满迷人的少妇在线观看| 最后的刺客免费高清国语| 特大巨黑吊av在线直播| 伊人久久精品亚洲午夜| 久久久午夜欧美精品| √禁漫天堂资源中文www| 久久午夜福利片| 久久久精品区二区三区| 亚洲精品乱码久久久v下载方式| 丝袜喷水一区| 91精品一卡2卡3卡4卡| 国产伦理片在线播放av一区| 国产在线视频一区二区| 精品熟女少妇av免费看| 成人毛片60女人毛片免费| 亚洲av国产av综合av卡| 日韩不卡一区二区三区视频在线| 极品人妻少妇av视频| 国国产精品蜜臀av免费| 免费观看无遮挡的男女| av女优亚洲男人天堂| 99久久精品一区二区三区| 男女啪啪激烈高潮av片| 免费观看性生交大片5| 欧美成人精品欧美一级黄| 欧美激情极品国产一区二区三区 | 亚洲精品av麻豆狂野| 18禁动态无遮挡网站| 人人妻人人爽人人添夜夜欢视频| 日本wwww免费看| 国产免费一区二区三区四区乱码| 日韩电影二区| 91国产中文字幕| 国精品久久久久久国模美| 亚洲不卡免费看| 成人亚洲精品一区在线观看| 2018国产大陆天天弄谢| 成人二区视频| 永久网站在线| 在线观看国产h片| 热re99久久精品国产66热6| 成年人免费黄色播放视频| 少妇人妻 视频| av卡一久久| av在线老鸭窝| 91国产中文字幕| 国产精品久久久久久av不卡| 考比视频在线观看| 久久久久精品久久久久真实原创| 最近的中文字幕免费完整| 久久久久久久久久成人| 久久久久久久久大av| 色婷婷久久久亚洲欧美| 看免费成人av毛片| 少妇的逼好多水| 韩国av在线不卡| 日韩,欧美,国产一区二区三区| 国产成人91sexporn| 成年人午夜在线观看视频| kizo精华| 久久久久久久久大av| 丝袜脚勾引网站| 中国美白少妇内射xxxbb| 久久精品国产自在天天线| 一本大道久久a久久精品| 久久这里有精品视频免费| 制服诱惑二区| 王馨瑶露胸无遮挡在线观看| 人妻 亚洲 视频| 大香蕉久久成人网| 夜夜骑夜夜射夜夜干| av视频免费观看在线观看| 街头女战士在线观看网站| 日日爽夜夜爽网站| 精品一区二区三卡| 国产极品粉嫩免费观看在线 | 亚洲欧美成人精品一区二区| av免费在线看不卡| 婷婷成人精品国产| 午夜福利在线观看免费完整高清在| 一级a做视频免费观看| 婷婷成人精品国产| 在线看a的网站| 精品一区在线观看国产| 亚洲国产精品国产精品| 国产午夜精品久久久久久一区二区三区| 少妇猛男粗大的猛烈进出视频| 夜夜爽夜夜爽视频| 看非洲黑人一级黄片| 亚洲国产最新在线播放| 欧美变态另类bdsm刘玥| 国产伦精品一区二区三区视频9| 99久久精品国产国产毛片| 久久久精品免费免费高清| 欧美精品一区二区免费开放| 免费观看的影片在线观看| 少妇的逼水好多| 成人黄色视频免费在线看| 国产成人a∨麻豆精品| 午夜影院在线不卡| 亚洲色图 男人天堂 中文字幕 | 夜夜骑夜夜射夜夜干| 午夜免费男女啪啪视频观看| 久久久久久久久大av| 亚洲欧美中文字幕日韩二区| 五月开心婷婷网| 国产亚洲欧美精品永久| 中文字幕亚洲精品专区| 欧美精品人与动牲交sv欧美| 91精品伊人久久大香线蕉| 一级爰片在线观看| 街头女战士在线观看网站| 啦啦啦中文免费视频观看日本| 亚洲av综合色区一区| 日韩熟女老妇一区二区性免费视频| 免费高清在线观看视频在线观看| 久久ye,这里只有精品| 简卡轻食公司| 亚洲精品一二三| 亚洲av国产av综合av卡| 国产精品一区二区在线不卡| 欧美丝袜亚洲另类| 欧美变态另类bdsm刘玥| 欧美精品一区二区免费开放| 国产成人免费无遮挡视频| 中文字幕亚洲精品专区| 女人久久www免费人成看片| 日日撸夜夜添| 色婷婷久久久亚洲欧美| 久久久久久久亚洲中文字幕| 高清午夜精品一区二区三区| 成人国产麻豆网| 99九九在线精品视频| 精品亚洲乱码少妇综合久久| 99re6热这里在线精品视频| 汤姆久久久久久久影院中文字幕| 久久ye,这里只有精品| 五月天丁香电影| 中文字幕人妻熟人妻熟丝袜美| 大香蕉久久网| 日本色播在线视频| 18禁在线播放成人免费| 女性被躁到高潮视频| 高清毛片免费看| 不卡视频在线观看欧美| 在线观看免费日韩欧美大片 | 成人免费观看视频高清| 在线观看美女被高潮喷水网站| 久久久a久久爽久久v久久| 国产精品无大码| 中文乱码字字幕精品一区二区三区| 免费大片黄手机在线观看| 国产精品欧美亚洲77777| 黑人巨大精品欧美一区二区蜜桃 | 青春草亚洲视频在线观看| 精品亚洲成a人片在线观看| 免费高清在线观看视频在线观看| 亚洲国产精品成人久久小说| 久久人妻熟女aⅴ| 日本爱情动作片www.在线观看| 成年女人在线观看亚洲视频| xxx大片免费视频| 女的被弄到高潮叫床怎么办| 国产极品天堂在线| 欧美精品亚洲一区二区| 欧美三级亚洲精品| 亚洲欧美清纯卡通| 国产在线免费精品| 免费大片18禁| 亚洲人成网站在线观看播放| 国国产精品蜜臀av免费| 欧美97在线视频| 日韩不卡一区二区三区视频在线| 亚洲av综合色区一区| 亚洲av欧美aⅴ国产| 精品卡一卡二卡四卡免费| 97超碰精品成人国产| 亚洲一级一片aⅴ在线观看| 特大巨黑吊av在线直播| 欧美日韩在线观看h| a 毛片基地| 精品国产露脸久久av麻豆| 免费观看性生交大片5| 亚洲人成网站在线观看播放| 高清av免费在线| 国产日韩欧美亚洲二区| 日韩精品有码人妻一区| 亚洲精品456在线播放app| 欧美精品一区二区大全| 免费日韩欧美在线观看| 免费观看av网站的网址| 久久 成人 亚洲| 亚洲欧美成人精品一区二区| av一本久久久久| 国产色爽女视频免费观看| 最黄视频免费看| 建设人人有责人人尽责人人享有的| 亚洲欧美精品自产自拍| 人妻人人澡人人爽人人| 成人亚洲欧美一区二区av| 18禁在线播放成人免费| 久久久欧美国产精品| 黑人高潮一二区| 亚洲精品国产av蜜桃| 大香蕉久久成人网| 建设人人有责人人尽责人人享有的| 国产女主播在线喷水免费视频网站| 午夜老司机福利剧场| 免费大片黄手机在线观看| 久久影院123| 亚洲精品久久成人aⅴ小说 | av黄色大香蕉| 亚洲欧美成人综合另类久久久| 性色av一级| 午夜福利网站1000一区二区三区| 亚洲综合精品二区| 黄色一级大片看看| 久久影院123| 午夜免费观看性视频| 午夜激情久久久久久久| 亚洲国产精品国产精品| 国产黄色免费在线视频| 国产精品熟女久久久久浪| 国产在线免费精品| 国产亚洲午夜精品一区二区久久| 亚洲人成网站在线播| 国产精品偷伦视频观看了| 国产成人aa在线观看| 满18在线观看网站| 久久久久网色| 熟女电影av网| 日韩欧美精品免费久久| 人体艺术视频欧美日本| 日韩欧美精品免费久久| 九九在线视频观看精品| 国产在视频线精品| 免费观看av网站的网址| 2021少妇久久久久久久久久久| 成人免费观看视频高清| 91精品伊人久久大香线蕉| 成年人免费黄色播放视频| 青青草视频在线视频观看| 97超碰精品成人国产| 亚洲内射少妇av| 国产高清三级在线| 一本—道久久a久久精品蜜桃钙片| 亚洲精品中文字幕在线视频| 只有这里有精品99| 建设人人有责人人尽责人人享有的| 欧美精品一区二区大全| a级毛片黄视频| 全区人妻精品视频| 国模一区二区三区四区视频| 久久国产精品大桥未久av| 久久精品久久精品一区二区三区| 熟女av电影| 国产国拍精品亚洲av在线观看| 亚洲少妇的诱惑av| 九九久久精品国产亚洲av麻豆| 晚上一个人看的免费电影| 国产精品国产三级专区第一集| 中文乱码字字幕精品一区二区三区| 色网站视频免费| 一二三四中文在线观看免费高清| 免费看光身美女| 久久人人爽av亚洲精品天堂| 日韩在线高清观看一区二区三区| 国产亚洲最大av| 中文字幕久久专区| 自拍欧美九色日韩亚洲蝌蚪91| 内地一区二区视频在线| 日韩不卡一区二区三区视频在线| 狠狠精品人妻久久久久久综合| 成人手机av| 免费黄色在线免费观看| 中文天堂在线官网| 久久久久网色| 天天操日日干夜夜撸| 日韩欧美精品免费久久| 熟女电影av网| 最后的刺客免费高清国语| 久久免费观看电影| 热re99久久国产66热| 国产日韩欧美在线精品| 亚洲精品日韩在线中文字幕| av国产精品久久久久影院| 午夜福利视频在线观看免费| 日产精品乱码卡一卡2卡三| 美女福利国产在线| 日本欧美视频一区| 欧美日韩精品成人综合77777| 男人爽女人下面视频在线观看| 久久精品国产亚洲av涩爱| 亚洲色图 男人天堂 中文字幕 | 久久97久久精品| 赤兔流量卡办理| 18禁裸乳无遮挡动漫免费视频| 中文字幕免费在线视频6| 国产精品国产三级专区第一集| 国产片特级美女逼逼视频| 99国产综合亚洲精品| 高清av免费在线| 99热这里只有是精品在线观看| 九九在线视频观看精品| 高清av免费在线| 久久久精品区二区三区| 男女边摸边吃奶| 精品一区二区三区视频在线| 亚洲成人av在线免费| 能在线免费看毛片的网站| 免费观看av网站的网址| 免费黄色在线免费观看| 欧美人与性动交α欧美精品济南到 | 高清视频免费观看一区二区| 99九九线精品视频在线观看视频| 亚洲中文av在线| 热re99久久国产66热| av.在线天堂| 黄色视频在线播放观看不卡| 欧美精品一区二区免费开放| 黑人巨大精品欧美一区二区蜜桃 | 99久国产av精品国产电影| 欧美精品人与动牲交sv欧美| 免费看av在线观看网站| 亚洲国产av影院在线观看| 老女人水多毛片| 又粗又硬又长又爽又黄的视频| 少妇的逼水好多| 久久影院123| 亚洲,欧美,日韩| 高清不卡的av网站| 插逼视频在线观看| 国产精品一区www在线观看| 天天操日日干夜夜撸| 亚洲综合精品二区| 国产成人午夜福利电影在线观看| 韩国av在线不卡| 亚洲国产精品一区二区三区在线| 欧美日韩视频高清一区二区三区二| 欧美激情极品国产一区二区三区 | 一区在线观看完整版| 高清欧美精品videossex| 黄色配什么色好看| 97在线视频观看| 国产免费又黄又爽又色| 成人黄色视频免费在线看| 成人二区视频| 在线观看免费日韩欧美大片 | 国产在线免费精品| 又粗又硬又长又爽又黄的视频| 国产精品麻豆人妻色哟哟久久| 亚洲精品日韩在线中文字幕| 黄色视频在线播放观看不卡| 国产男女超爽视频在线观看| 日本av手机在线免费观看| 99久国产av精品国产电影| 亚洲中文av在线| 啦啦啦中文免费视频观看日本| 考比视频在线观看| 91国产中文字幕| 国产成人a∨麻豆精品| 国产午夜精品一二区理论片| 看非洲黑人一级黄片| 欧美丝袜亚洲另类| 伦精品一区二区三区| 久久久久久伊人网av| 卡戴珊不雅视频在线播放| 久热这里只有精品99| 制服诱惑二区| 久久午夜福利片| 久久精品国产鲁丝片午夜精品| 国产精品无大码| 久久国内精品自在自线图片| 亚洲性久久影院| 日韩不卡一区二区三区视频在线| 国产精品久久久久成人av| 日韩在线高清观看一区二区三区| av网站免费在线观看视频| 人妻夜夜爽99麻豆av| 久久综合国产亚洲精品| 欧美成人精品欧美一级黄| 免费观看av网站的网址| 王馨瑶露胸无遮挡在线观看| 免费少妇av软件| 亚洲一区二区三区欧美精品| 青春草亚洲视频在线观看| 韩国av在线不卡| 91久久精品电影网| 校园人妻丝袜中文字幕| 乱人伦中国视频| 国产av码专区亚洲av| 日日爽夜夜爽网站| 在线观看一区二区三区激情| 国产精品成人在线| 精品少妇内射三级| 欧美人与善性xxx| 亚洲欧洲日产国产| 免费人成在线观看视频色| 亚洲美女视频黄频| 欧美成人午夜免费资源| 91aial.com中文字幕在线观看| 新久久久久国产一级毛片| 男女边吃奶边做爰视频| 亚洲性久久影院| 亚洲精品国产av成人精品| 成年美女黄网站色视频大全免费 | 亚洲精华国产精华液的使用体验| 校园人妻丝袜中文字幕| 制服丝袜香蕉在线| 青春草国产在线视频| 亚洲欧美成人综合另类久久久| 一级毛片aaaaaa免费看小| av在线播放精品| 久久99一区二区三区| 在线观看www视频免费| 日日撸夜夜添| 亚洲国产精品999| 插阴视频在线观看视频| 在线观看免费日韩欧美大片 | 九九久久精品国产亚洲av麻豆| 亚洲不卡免费看| 少妇人妻久久综合中文| 熟女人妻精品中文字幕| 国产av精品麻豆| 亚洲av电影在线观看一区二区三区| 青春草视频在线免费观看| 国产精品无大码| 另类精品久久| 亚洲色图 男人天堂 中文字幕 | 女人久久www免费人成看片| 少妇丰满av| 超碰97精品在线观看| 少妇被粗大的猛进出69影院 | 国产乱人偷精品视频| 在线看a的网站| 一二三四中文在线观看免费高清| videos熟女内射| 人人妻人人澡人人看| 老司机影院成人| a级片在线免费高清观看视频| 成人国语在线视频| 亚洲精品第二区| 免费大片黄手机在线观看| 久久 成人 亚洲| 久久国产精品男人的天堂亚洲 | 伊人久久国产一区二区| 久久免费观看电影| 丝袜脚勾引网站| 欧美日本中文国产一区发布| 成人国产麻豆网| 国产亚洲精品久久久com| 欧美日韩综合久久久久久| 久久久国产一区二区| 超碰97精品在线观看| 在线播放无遮挡| www.色视频.com| 熟女人妻精品中文字幕| 交换朋友夫妻互换小说| 91精品国产国语对白视频| 亚洲久久久国产精品| 日韩伦理黄色片| 一级毛片我不卡| 久久久久久久久久成人| 精品国产一区二区久久| 久久久久国产精品人妻一区二区| 欧美激情 高清一区二区三区| 中国国产av一级| 国产精品人妻久久久久久| 中国三级夫妇交换| 日本91视频免费播放| 午夜av观看不卡| 国产精品一二三区在线看| 久久99一区二区三区| 国产 精品1| 不卡视频在线观看欧美| 9色porny在线观看| 日本91视频免费播放| 各种免费的搞黄视频| 王馨瑶露胸无遮挡在线观看| 亚洲成色77777| 少妇的逼好多水| 秋霞伦理黄片| 亚洲美女视频黄频| 亚洲图色成人| 91国产中文字幕| 欧美亚洲日本最大视频资源| 狠狠婷婷综合久久久久久88av| 精品国产国语对白av| 97超碰精品成人国产| 99热网站在线观看| 中文字幕人妻熟人妻熟丝袜美| 亚洲精品亚洲一区二区| 国模一区二区三区四区视频| 精品国产一区二区三区久久久樱花| 丰满迷人的少妇在线观看| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 黑人巨大精品欧美一区二区蜜桃 | 婷婷色综合大香蕉| 如何舔出高潮| 高清黄色对白视频在线免费看| 亚洲四区av|