• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Learning physical states of bulk crystalline materials from atomic trajectories in molecular dynamics simulation

    2022-12-28 09:52:12TianShouLiang梁添壽PengPengShi時朋朋SanQingSu蘇三慶andZhiZeng曾志
    Chinese Physics B 2022年12期

    Tian-Shou Liang(梁添壽) Peng-Peng Shi(時朋朋) San-Qing Su(蘇三慶) and Zhi Zeng(曾志)

    1School of Mechanical and Electrical Engineering,Xi’an University of Architecture and Technology,Xi’an 710055,China

    2School of Civil Engineering,Xi’an University of Architecture and Technology,Xi’an 710055,China

    3School of Mechano-Electronic Engineering,Xidian University,Xi’an 710071,China

    Keywords: melting phase transition,crystalline materials,physical states,deep learning,molecular dynamics simulation

    Melting of crystalline material is a common physical phenomenon that occurs when the free energy of solid is equal to that of liquid, yet it remains elusive owing to the diversity in physical pictures of melting behavior in a variety of substances.[1–3]Large-scale molecular dynamics simulation is an effective and widely approved method for in-depth understanding of melting at the atomic level.[4–7]The atomic coordinates and velocities are the primary outputs describing atomic spatiotemporal state, and the pursuit to interpret the physical states of matter from atomic behavior is critical for understanding the essence of solid melting. Yet, till date finding a general physical quantity for interpreting the connotation of physical states has remained challenging.

    Usually, physical states of a simulation system can simply be determined via atomic local structure information,i.e.,order of atomic arrangement. The common atom types of crystalline systems mainly include face-centered cubic(FCC),body-centered cubic (BCC), hexagonal close packed (HCP),and icosahedral ones. Once subjected to thermal load, crystalline materials with regular lattice will lose their atomic order. According to this simple geometric change, the crystal structure recognition method, such as common neighbor analysis[8](CNA) and its extended model adaptive-CNA (a-CNA),[9]bond-orientational order parameter,[10]and the diamond structure[11](IDS) can be used to judge whether the crystal melts.[6,12]Recently,the polyhedral template matching(PTM)[13]was proposed based on the topology of the local atomic environment,which provides great reliability of atomic identification against thermal vibration. Although these methods can detect the melting phenomenon of crystalline materials, they cannot perform quantitative characterization due to the sensitivity to temperature or atom strain. Notably,the disorder of the atomic configuration is not the essence of the liquid phase.

    The Lindemann criterion,[14]proposed as early as the early 20th century, has been widely accepted as an orthodox theory to elucidate the melting of solid via atomic vibrations.According to the Lindemann melting theory, melting stems from the mechanical instability due to enhanced atomic vibration. Solid melts when the magnitude of atomic thermal vibration exceeds a certain proportion of interatomic spacing,e.g.,0.05–0.2.[15]The thresholds of different materials need to consider additional factors acting as prior knowledge,such as crystal structure,[16,17]crystal surface,[18]dimension,[19]and the periodic table.[20]

    Deep learning has attracted intensive attention to deal with complex scientific issues in many research fields.[21–24]Recently, a new modeling method“machine learning embedded with materials domain knowledge”[21]was proposed to reconcile the major contradictions[22]in applying machine learning to the materials community. Research shows that neural networks can explore the fundamental laws of classical mechanics.[23]Many scholars identified the transition of solid–liquid phase via deep learning,[25–28]where the atomic interaction potential surface[29]was applied to construct the learning feature.In fact,the dynamic behavior of atoms or particles is closer to the physical essence to characterize the melting phase transition of material systems.[30]From this point of view,atomic dynamic information,rather than atomic local structure, should be better to characterize the physical states.However,learning physical state of matter from atomic behavior for unlocking the essence of melting is still an open topic.

    Here, we put forward a strategy mapping atomic behavior to physical states for crystalline material via convolutionbased deep learning,where the temporal and spatial information of the atomic behavior, i.e., 3D atomic trajectories, are used as the inputs for training,validation,and prediction. The results show that the proposed method has excellent ability to identify solid and liquid atoms of bulk crystal materials in the first-order phase transition with high accuracy. The crossprediction demonstrates that the atomic behavior can be used to predict crystal phase transition. The proposed method exhibits the intrinsic characteristics against thermal shock noise.

    Figure 1 shows the time convolution neural network(TCNN) based architecture to forecast the physical state of crystalline materials during solid–liquid phase transition process which consists of two steps: (1) learning features from atomic trajectories [Figs. 1(a)–1(c)] and (2) predicting the solid–liquid phase transition of crystalline solid system[Figs. 1(c)–1(d)]. A defect-free bulk Au (FCC) is taken as an example to illustrate the architecture. Figure 1(a) shows a bulk Au arranged in a periodic box. Figure 1(b) shows the expanded trajectories of two atoms, signifying that the deep learning module exists three input channels.Figure 1(c)shows the module mainly including two parts: (1) the convolution layers for learning features from the atomic trajectories and(2) the fully connected neural network for mapping the features stemming from the first part to two output nodes indicating the atomic physical states, i.e., solid and liquid. Detailed configuration of this learning module and the corresponding parameters are provided in S1,where the inception module[31]was employed to build the convolution layers. The atoms that are identified as solid or liquid phase are called solid-like or liquid-like atoms for distinguishing the physical states in practical sense. It is noted that a single atom has no concept of physical state, but a group or system has real physical state,i.e.,solid,liquid and gas. Here we evaluate the physical state of the crystal material system by counting the proportion of liquid-like atoms predicted by the model,as shown in the upper panel of Fig.1(d). The lower panel of Fig.1(d)shows the corresponding error curve.

    In this paper, four single bulk crystalline solids, i.e., Au(FCC),Fe(BCC),Mg(HCP),and Si(diamond),and the Cu–Ni alloy with an initial FCC state were studied. The potential function of bulk Au is the multi-body potential function EAM.[32]That of bulk Fe is the multi-body potential function EAM/FS.[33]That of bulk Mg is the multi-body potential function EAM/FS.[34]That of bulk Si is the multi-body potential function SW.[35]The potential function of bulk Cu and Ni is the multi-body potential function EAM/ALLOY.[36]All molecular dynamics calculations were performed using the large-scale atomic/molecular massively parallel simulator(LAMMPS).[37]See S2 for the simulation details and S3 for the training settings and loss functions.

    Fig.1. Architecture for probing the melting process of bulk crystalline solids. (a)A bulk Au solid. (b)Atomic trajectories in 3D space. (c)TCNN-based module comprising convolution layers and full connection layers. (d)The phase transition curve defined as the variation of the liquid-like atoms(upper)and the prediction error of the atomic physical states(lower).

    Figure 2 shows the average atomic potential energy(PE)and the ratio of liquid-like atoms predicted by TCNN as a function of temperature for the Au,Fe,Mg,and Si bulk crystal solids. The phase transition processes predicted by TCNN are consistent with those via PE curves. Since the quasistatic simulation method was adopted to anneal the crystalline solid with a gap of 10 K near the phase transition point,we calculated the melting points by averaging the two points before and after the phase transition. The predicted melting point is 1335.0 K for Au, 2000.4 K for Fe, 1075.2 K for Mg, and 2313.5 K for Si. In fact, there is a certain deviation of melting points between calculations and experiments,which mainly depends on the potential function, material defects, heating rate and simulation method. For all cases, the ratio of liquid-like atoms is almost at the level of 0.0 before the phase transition, and abrupt increases to 1.0 after the phase transition. The former means that the system is solid, while the latter is liquid. The results are also verified from the Lindemann law in S4,where the threshold to identify solid-like or liquid-like atoms is not unique for different materials. The results are confirmed by the distribution of atomic diffusion coefficient as shown in S5.These coincidences are not surprising,because atomic trajectory contains atomic thermal vibration and diffusion behavior,which should be learned via deep learning.

    Fig.2. The first-order phase transition curves represented with average atomic potential energy(blue)and ratio of liquid-like atoms by TCNN(red). (a)Au,(b)Fe,(c)Mg,and(d)Si.

    Figure 3 shows the robustness of the model against thermal oscillation.For comparative analysis,TCNN,a-CAN,and PTM were used to identify the atomic state of bulk Au,Fe,and Mg,and TCNN and IDS were employed for bulk Si. The first column displays the liquid-like atom variation curves, which show that the results predicted by TCNN exhibit the highest accuracy. Even within the superheated state near the phase transition point,the error of bulk Au is less than 4%,bulk Fe is less than 3%, bulk Mg is less than 2%, and bulk Si is almost negligible,shown as the middle one. The results of bulk Au, Fe, and Mg classified using a-CNA and PTM comprised large errors. The errors at the time of impending phase transition afforded when using a-CNA and PTM are 88.5% and 38.1%for bulk Au,79.7%and 34.5%for bulk Fe,and 80.1%and 23.6% for bulk Mg, respectively. The a-CNA and PTM usually employ atomic local information to identify the type or specific structure of atomic crystals; hence,they are easily affected by the violent thermal oscillation. The results of bulk Si identification through TCNN and IDS methods comprised negligible errors,which is attributed to the thermal stability of the diamond lattice. The right panels show several snapshots captured at the moments before and after the phase transition,where solid-like and liquid-like atoms are denoted with blue and orange colors,respectively.

    Therefore, the identification result by the TCNN-based method is insensitive to temperature and the errors for all crystal bulk materials were less than 4%, which can be explained from the statistical properties of the method itself. Theoretically, atomic vibration is a behavior contained in the trajectory of atoms. From this perspective, it should be beneficial to the recognition accuracy of atomic types, as described by Lindemann’s theory: the physical state of matter can be characterized using atomic thermal oscillation. Note that whether the thermally activated oscillation characteristic plays a positive role needs to be further researched due to the black box characteristic of neural networks.

    Last,cross-prediction experiments were designed to illustrate the generality of predicting the phase transition of crystalline solids using atomic trajectories. Figure 4(a)shows the variation of the ratio curves of liquid-like atoms of bulk Au,Fe,Mg,and Si with temperature,which were obtained by the approach that the physical state of each atom experiencing the phase transition process was predicted using different models trained with the data of other elements. Taking bulk Au as an example, the model parameters were first separately trained with the training data of Au,Fe,Mg,or Si,and given the welltrained network parameters, i.e., models; then, these models were utilized to predict the atomic physical state of each atom of bulk Au with additional data prepared using different random seeds. It shows that all the cross-prediction results for each case can accurately capture the temperature point of the phase transition, which agree well with the prediction results using target elements. However, the correctness loss before and after phase transition differs on a case-to-case basis. For bulk Au, the cross-prediction accuracies before phase transition exhibit little deviation, while those after phase transition decrease to a certain extent. Surprisingly, the accuracy increases with temperature,which is almost coincident once the temperature exceeds 1800 K. The cross-prediction results of the other elements (Fe, Mg, and Si) are consistent with each other;only the red curves(Au models)shown in the panels of Fe and Mg are not consistent,where a slight deviation ocurrs in a small range before the phase transition.

    Fig.3. Prediction accuracy of four types of bulk crystalline solids: (a)bulk Au(FCC),(b)bulk Fe(BCC),(c)bulk Mg(HCP),and(d)bulk Si(diamond)using TCNN,PTM,a-CNA,and IDS.The first column: ratio of liquid-like atoms as function of temperature; the middle column:the specific ratio of solid-like atoms with light blue and liquid-like atoms with pale yellow; the last column: snapshots corresponding to the middle column.

    To understand these deviations, the previous results shown in Fig. 2 are reviewed. In the melting process, bulk Au hardly experiences overheating,while bulk Fe or Mg experiences a certain degree of overheating and Si endures a large degree of overheating.These seemingly coincidental phenomena indicate that phase transition under overheating induces high prediction accuracy. On the one hand,as the temperature increases, the liquid phase characteristics of atomic behavior(rapid diffusion, violent oscillation, etc.) become significant.On the other hand, when phase transition occurs in the absence of overheating or a small amount of overheating occurs,some atoms still afford local vibrations similar to solid-like atoms.Hence,relevant features can be captured by deep learning methods and retain in the model parameters.

    We further demonstrated the generality of the TCNNbased method for predicting the evolution of physical states for solid alloys, where the 50%–50% copper–nickel alloy(Cu0.5Ni0.5) was considered, as shown in Fig. 4(b). The left panel shows that the model trained by each single element(Cu or Ni)not only can accurately predict the phase transition process of the alloy but also has high consistency in the ratio curves of liquid-like atoms at each temperature point. The right panel shows that the max error of Cu is about 2.5%and Ni is about 1.5%. The errors of the prediction results are almost the same (2%) near the phase transition line. It shows that the atomic behavior of different elements exhibits unified solid-or liquid-phase characteristics,which is independent of element or lattice types.The TCNN-based method using complete atomic trajectories affords a certain degree of consistency and universality,indicating that a more universal characterization quantity should be defined to identify the physical state of crystalline solid. This is consistent with the mean square displacement (MSD) theory that only considers the characteristics of atomic trajectories without distinguishing element types. Note that the average diffusion coefficient of particles is calculated by combing MSD with the Einstein theory.[38]

    Fig. 4. Cross-prediction of melting phase transition for single-element crystalline solid and Cu0.5Ni0.5 alloy solid. (a) Ratio distribution of liquid-like atoms vs. temperature for bulk Au,Fe,Mg,and Si. (b)Ratio distribution of liquid-like atoms of Cu0.5Ni0.5 alloy vs. temperature.

    This paper is limited to crystal bulk materials. However,the black box nature of the model limits us to deeply understand mechanism of the model extracting features and learning physical states. This interpretability problem should be solved by introducing domain expert knowledge. In addition,the applicability of our model needs further verification for more complex material systems with liquid-like atoms and solidlike atoms, such as nanoscale materials with significant scale effects, metallic glass materials and polymers with complex glass conversion processes.

    Herein, a deep learning architecture based on the timedomain convolution neural network was proposed to predict the phase transition process of bulk crystalline solids by probing the atomic physical state with atomic trajectories. For the bulk Au,Fe, Mg, and Si, the proposed architecture can accurately predict the physical states. i.e., solid and liquid. The predicted results are insensitive to temperature and the errors for all the crystal bulk materials are less than 4%. The crosstraining and prediction analysis indicate that there should exhibit a lattice-independent generalized physical quantity for characterizing the physical state of crystal materials. Our study inspires future research to construct a more universal characterization quantity based on the atomic behavior to identify the atomic physical states of various materials.

    Acknowledgements

    Project supported by the China Postdoctoral Science Foundation (Grant No. 2019M663935XB), the Natural Science Foundation of Shaanxi Province, China (Grant No. 2019JQ-261), and the National Natural Science Foundation of China(Grant Nos.11802225 and 51878548).

    国产亚洲精品一区二区www| 欧美 亚洲 国产 日韩一| 一进一出抽搐动态| 日本撒尿小便嘘嘘汇集6| 亚洲国产欧洲综合997久久,| 久久精品国产清高在天天线| 久久这里只有精品中国| 欧美黑人欧美精品刺激| 亚洲精品美女久久久久99蜜臀| 天堂√8在线中文| 午夜福利免费观看在线| 黄色视频,在线免费观看| 国产一区二区三区在线臀色熟女| 亚洲av电影在线进入| 天堂动漫精品| 久久久久久国产a免费观看| 久久久久久大精品| 18禁美女被吸乳视频| 母亲3免费完整高清在线观看| 99久久无色码亚洲精品果冻| 亚洲成av人片免费观看| 在线看三级毛片| 国产单亲对白刺激| 欧美中文综合在线视频| 观看免费一级毛片| 99久久99久久久精品蜜桃| 手机成人av网站| 亚洲一区二区三区色噜噜| 91字幕亚洲| 天天躁狠狠躁夜夜躁狠狠躁| 国产精品99久久99久久久不卡| 人妻夜夜爽99麻豆av| 午夜影院日韩av| 他把我摸到了高潮在线观看| or卡值多少钱| 男女视频在线观看网站免费 | 国产三级中文精品| 国产99白浆流出| 天天躁夜夜躁狠狠躁躁| 成人三级黄色视频| 久久这里只有精品中国| www日本黄色视频网| 十八禁网站免费在线| av在线天堂中文字幕| 欧美黑人巨大hd| 久久九九热精品免费| 久久这里只有精品19| 人妻久久中文字幕网| 在线播放国产精品三级| 成人18禁高潮啪啪吃奶动态图| 日日夜夜操网爽| 中文字幕av在线有码专区| 欧美日韩精品网址| 妹子高潮喷水视频| 日本五十路高清| 国产一区在线观看成人免费| 日韩成人在线观看一区二区三区| 国产精品久久久久久精品电影| 亚洲av成人av| 黄色视频,在线免费观看| 国产黄a三级三级三级人| 久久人妻福利社区极品人妻图片| 亚洲成av人片免费观看| 久久久国产成人精品二区| 99久久综合精品五月天人人| 久久久久久久久免费视频了| 91九色精品人成在线观看| 岛国在线观看网站| 全区人妻精品视频| 亚洲真实伦在线观看| 91麻豆精品激情在线观看国产| 欧美一区二区国产精品久久精品 | 欧美黑人欧美精品刺激| 叶爱在线成人免费视频播放| 亚洲五月天丁香| 久久久精品国产亚洲av高清涩受| 亚洲男人的天堂狠狠| 免费观看精品视频网站| 岛国在线观看网站| 老熟妇仑乱视频hdxx| 嫩草影视91久久| 这个男人来自地球电影免费观看| 国产探花在线观看一区二区| 国产免费男女视频| 麻豆久久精品国产亚洲av| 久久精品aⅴ一区二区三区四区| 91av网站免费观看| 欧美色视频一区免费| 亚洲国产精品久久男人天堂| 黑人操中国人逼视频| 麻豆成人av在线观看| 两个人的视频大全免费| 亚洲欧美日韩无卡精品| 亚洲男人天堂网一区| 我要搜黄色片| 国产av又大| 中出人妻视频一区二区| 50天的宝宝边吃奶边哭怎么回事| 老司机深夜福利视频在线观看| 久久精品91蜜桃| 精品久久久久久,| 久久久久久久久久黄片| 岛国在线观看网站| 成年版毛片免费区| 国产亚洲精品第一综合不卡| 午夜亚洲福利在线播放| 亚洲国产中文字幕在线视频| 午夜激情av网站| 男女做爰动态图高潮gif福利片| 国产精品 国内视频| 国产又黄又爽又无遮挡在线| 每晚都被弄得嗷嗷叫到高潮| 欧美一区二区国产精品久久精品 | netflix在线观看网站| av中文乱码字幕在线| 极品教师在线免费播放| 亚洲免费av在线视频| 国产精品电影一区二区三区| 亚洲 欧美一区二区三区| 国产亚洲精品久久久久5区| 亚洲精品中文字幕一二三四区| 久9热在线精品视频| 国产激情久久老熟女| 脱女人内裤的视频| 国产乱人伦免费视频| 午夜影院日韩av| 久久久国产精品麻豆| 后天国语完整版免费观看| 精品久久久久久成人av| 男男h啪啪无遮挡| 国产一区二区三区视频了| 亚洲国产看品久久| a级毛片a级免费在线| 给我免费播放毛片高清在线观看| 日韩高清综合在线| 成年女人毛片免费观看观看9| 99精品在免费线老司机午夜| 一边摸一边做爽爽视频免费| 亚洲精品久久成人aⅴ小说| 国产精品自产拍在线观看55亚洲| 亚洲九九香蕉| 别揉我奶头~嗯~啊~动态视频| 天堂影院成人在线观看| 精品高清国产在线一区| tocl精华| 99久久精品国产亚洲精品| 欧美中文日本在线观看视频| e午夜精品久久久久久久| 欧美久久黑人一区二区| 熟女电影av网| 国产又色又爽无遮挡免费看| 岛国视频午夜一区免费看| 亚洲av美国av| a级毛片在线看网站| 亚洲国产中文字幕在线视频| 免费无遮挡裸体视频| 又黄又爽又免费观看的视频| ponron亚洲| 久久久久久久久久黄片| 国产亚洲欧美在线一区二区| 日韩av在线大香蕉| 在线观看午夜福利视频| 亚洲成av人片免费观看| 欧美成人免费av一区二区三区| 窝窝影院91人妻| 变态另类成人亚洲欧美熟女| 色在线成人网| 午夜福利免费观看在线| 久9热在线精品视频| 国产精品一区二区免费欧美| 老司机深夜福利视频在线观看| 日韩欧美国产一区二区入口| 五月玫瑰六月丁香| a级毛片在线看网站| 亚洲欧美精品综合久久99| 国产久久久一区二区三区| 好看av亚洲va欧美ⅴa在| 日本免费一区二区三区高清不卡| 日本精品一区二区三区蜜桃| 午夜福利在线观看吧| 国内久久婷婷六月综合欲色啪| 精品国产超薄肉色丝袜足j| 色综合站精品国产| 亚洲欧美精品综合久久99| 亚洲电影在线观看av| videosex国产| 亚洲成a人片在线一区二区| 白带黄色成豆腐渣| 一二三四社区在线视频社区8| 免费在线观看亚洲国产| 日韩精品中文字幕看吧| 深夜精品福利| 日韩有码中文字幕| 婷婷亚洲欧美| 长腿黑丝高跟| 老司机福利观看| 老汉色∧v一级毛片| 久久久久久大精品| 成人18禁在线播放| 欧美又色又爽又黄视频| cao死你这个sao货| svipshipincom国产片| 成人av一区二区三区在线看| 亚洲av熟女| 最近最新中文字幕大全电影3| 又粗又爽又猛毛片免费看| а√天堂www在线а√下载| 91老司机精品| 亚洲自拍偷在线| 午夜福利视频1000在线观看| 精品国内亚洲2022精品成人| 一区二区三区激情视频| 黄片小视频在线播放| 国产精品综合久久久久久久免费| 久久婷婷人人爽人人干人人爱| 亚洲中文av在线| 99在线视频只有这里精品首页| 国产在线精品亚洲第一网站| 亚洲专区国产一区二区| 亚洲乱码一区二区免费版| 长腿黑丝高跟| 欧美乱妇无乱码| 亚洲人成伊人成综合网2020| 久久久久精品国产欧美久久久| 国产激情欧美一区二区| 手机成人av网站| 国产真人三级小视频在线观看| 欧美日韩亚洲综合一区二区三区_| 亚洲成人久久爱视频| 真人做人爱边吃奶动态| 999久久久精品免费观看国产| 美女黄网站色视频| 日韩大码丰满熟妇| svipshipincom国产片| 变态另类成人亚洲欧美熟女| 国产私拍福利视频在线观看| a级毛片在线看网站| 法律面前人人平等表现在哪些方面| 成人国产综合亚洲| 日本 av在线| 日韩欧美免费精品| 可以免费在线观看a视频的电影网站| 757午夜福利合集在线观看| 女同久久另类99精品国产91| 一级片免费观看大全| www.熟女人妻精品国产| 一级毛片高清免费大全| 麻豆成人av在线观看| 两个人免费观看高清视频| 久久午夜亚洲精品久久| 丁香六月欧美| 免费看a级黄色片| 亚洲精品中文字幕一二三四区| 国产久久久一区二区三区| 亚洲熟女毛片儿| 精品久久久久久,| 人人妻人人澡欧美一区二区| 中亚洲国语对白在线视频| 淫妇啪啪啪对白视频| 国产视频一区二区在线看| av欧美777| 久久久久久国产a免费观看| 国产区一区二久久| 一本综合久久免费| 一二三四在线观看免费中文在| 日本成人三级电影网站| 国产一区在线观看成人免费| 午夜免费观看网址| 日韩高清综合在线| 国产在线精品亚洲第一网站| 亚洲成人久久性| 国产黄a三级三级三级人| 亚洲人成电影免费在线| 精品国内亚洲2022精品成人| 久久欧美精品欧美久久欧美| 中文字幕熟女人妻在线| 国内精品久久久久久久电影| 久久久久久久久中文| 亚洲欧美日韩无卡精品| 国产av又大| 亚洲欧美精品综合一区二区三区| 国产精品自产拍在线观看55亚洲| 精品国产乱子伦一区二区三区| 一级a爱片免费观看的视频| 99久久国产精品久久久| 国产一区二区三区视频了| 男女视频在线观看网站免费 | 99久久精品热视频| 久久久久久亚洲精品国产蜜桃av| 色哟哟哟哟哟哟| 麻豆av在线久日| 欧美性长视频在线观看| 琪琪午夜伦伦电影理论片6080| 国产又黄又爽又无遮挡在线| 男女下面进入的视频免费午夜| 国产视频内射| 日韩免费av在线播放| 在线观看午夜福利视频| 激情在线观看视频在线高清| 露出奶头的视频| 淫妇啪啪啪对白视频| 日韩欧美一区二区三区在线观看| 欧美色欧美亚洲另类二区| 久久久久久人人人人人| 18禁裸乳无遮挡免费网站照片| 天天一区二区日本电影三级| 欧美日韩中文字幕国产精品一区二区三区| 久久国产精品人妻蜜桃| 日韩精品免费视频一区二区三区| 非洲黑人性xxxx精品又粗又长| 不卡一级毛片| 久久久久九九精品影院| www日本在线高清视频| 亚洲性夜色夜夜综合| 一级毛片女人18水好多| 亚洲精品色激情综合| 国产区一区二久久| 不卡一级毛片| 一个人免费在线观看电影 | 欧美大码av| 麻豆久久精品国产亚洲av| 露出奶头的视频| 国产精品久久电影中文字幕| 欧美三级亚洲精品| 国产精品精品国产色婷婷| 国产精品 欧美亚洲| 久久久久久九九精品二区国产 | 成人精品一区二区免费| 国产成人系列免费观看| 俺也久久电影网| 中文资源天堂在线| 两个人免费观看高清视频| 欧美日韩一级在线毛片| 99国产精品一区二区三区| 99热只有精品国产| 久久久久久亚洲精品国产蜜桃av| 一边摸一边做爽爽视频免费| 免费看美女性在线毛片视频| 国产aⅴ精品一区二区三区波| 一a级毛片在线观看| 成人国语在线视频| 午夜福利在线在线| x7x7x7水蜜桃| 久久欧美精品欧美久久欧美| 亚洲五月婷婷丁香| 国产亚洲精品av在线| 精品少妇一区二区三区视频日本电影| 18禁观看日本| 亚洲av日韩精品久久久久久密| 午夜激情福利司机影院| 手机成人av网站| www.999成人在线观看| 三级毛片av免费| 岛国在线观看网站| 床上黄色一级片| 欧美一级毛片孕妇| 麻豆久久精品国产亚洲av| 一夜夜www| 欧美久久黑人一区二区| 最好的美女福利视频网| 亚洲国产欧美一区二区综合| 国产在线精品亚洲第一网站| 午夜福利18| 两性夫妻黄色片| 国产伦一二天堂av在线观看| 亚洲精品色激情综合| 亚洲第一欧美日韩一区二区三区| 久久久久久免费高清国产稀缺| 99国产综合亚洲精品| 男女那种视频在线观看| 欧美av亚洲av综合av国产av| 99在线视频只有这里精品首页| 欧美不卡视频在线免费观看 | 欧美国产日韩亚洲一区| 91字幕亚洲| 久99久视频精品免费| 每晚都被弄得嗷嗷叫到高潮| 成人av在线播放网站| 色哟哟哟哟哟哟| 国产欧美日韩一区二区精品| 老汉色∧v一级毛片| 麻豆成人午夜福利视频| av免费在线观看网站| 久久中文字幕一级| 两个人看的免费小视频| 国产一级毛片七仙女欲春2| 日韩欧美免费精品| 一级毛片女人18水好多| 日本 av在线| 97超级碰碰碰精品色视频在线观看| 日本黄色视频三级网站网址| 一夜夜www| 波多野结衣巨乳人妻| 香蕉av资源在线| 国产区一区二久久| 三级男女做爰猛烈吃奶摸视频| 男女床上黄色一级片免费看| 老司机福利观看| 97碰自拍视频| 男插女下体视频免费在线播放| 又黄又粗又硬又大视频| 国产成年人精品一区二区| 色综合欧美亚洲国产小说| 国产三级中文精品| 禁无遮挡网站| 国产精品国产高清国产av| av有码第一页| 久久人妻av系列| 美女午夜性视频免费| 在线观看免费午夜福利视频| 欧美精品亚洲一区二区| 日本a在线网址| 亚洲一区二区三区不卡视频| 国产精品九九99| 亚洲欧洲精品一区二区精品久久久| 人人妻人人澡欧美一区二区| 久99久视频精品免费| 亚洲电影在线观看av| 国产精品 国内视频| 三级男女做爰猛烈吃奶摸视频| 黄片大片在线免费观看| 亚洲一区二区三区色噜噜| 麻豆国产av国片精品| 国产黄片美女视频| 久久久水蜜桃国产精品网| 久99久视频精品免费| 好看av亚洲va欧美ⅴa在| 国产亚洲欧美在线一区二区| 黑人欧美特级aaaaaa片| 国产高清激情床上av| 成年免费大片在线观看| 亚洲 欧美 日韩 在线 免费| 五月玫瑰六月丁香| av片东京热男人的天堂| 精品一区二区三区视频在线观看免费| 最近最新中文字幕大全免费视频| 久久久精品大字幕| 亚洲乱码一区二区免费版| tocl精华| 国产精品乱码一区二三区的特点| 人人妻人人澡欧美一区二区| 久久性视频一级片| 久久精品国产综合久久久| 国产精品久久久久久精品电影| 国产成人欧美在线观看| 国产高清视频在线播放一区| 国产精品久久久久久人妻精品电影| 午夜日韩欧美国产| 中文字幕人妻丝袜一区二区| 精品久久久久久久久久免费视频| 少妇人妻一区二区三区视频| 亚洲成a人片在线一区二区| 男人舔奶头视频| 久久性视频一级片| 又黄又爽又免费观看的视频| 99在线人妻在线中文字幕| 亚洲天堂国产精品一区在线| 神马国产精品三级电影在线观看 | 手机成人av网站| 性色av乱码一区二区三区2| 一本大道久久a久久精品| 国产精品自产拍在线观看55亚洲| 一区二区三区国产精品乱码| 老汉色av国产亚洲站长工具| 国产又黄又爽又无遮挡在线| 国产精品久久久人人做人人爽| 欧美另类亚洲清纯唯美| 亚洲国产精品999在线| 国产单亲对白刺激| 午夜影院日韩av| 国产69精品久久久久777片 | 18禁黄网站禁片免费观看直播| 欧美乱妇无乱码| 每晚都被弄得嗷嗷叫到高潮| 亚洲欧美日韩高清专用| 麻豆久久精品国产亚洲av| 男人的好看免费观看在线视频 | 51午夜福利影视在线观看| 精品国产乱子伦一区二区三区| 久久婷婷人人爽人人干人人爱| 国产精品亚洲av一区麻豆| 日本黄大片高清| 啪啪无遮挡十八禁网站| 韩国av一区二区三区四区| 中文字幕人妻丝袜一区二区| 亚洲欧美日韩高清在线视频| 黄片小视频在线播放| 国内久久婷婷六月综合欲色啪| 久久精品国产清高在天天线| 日本在线视频免费播放| 丰满的人妻完整版| 成熟少妇高潮喷水视频| 国产av在哪里看| 18禁裸乳无遮挡免费网站照片| 又黄又粗又硬又大视频| 国内毛片毛片毛片毛片毛片| 国产熟女午夜一区二区三区| 欧美乱妇无乱码| 老汉色∧v一级毛片| 欧美日韩福利视频一区二区| 亚洲全国av大片| 国产亚洲欧美98| 亚洲乱码一区二区免费版| 老司机午夜福利在线观看视频| 美女免费视频网站| 国产精品亚洲av一区麻豆| www日本黄色视频网| 欧美中文日本在线观看视频| 午夜福利高清视频| 后天国语完整版免费观看| 又紧又爽又黄一区二区| 亚洲av熟女| 又黄又爽又免费观看的视频| 老鸭窝网址在线观看| 一二三四在线观看免费中文在| 在线观看免费日韩欧美大片| 欧美日韩黄片免| 欧美日韩一级在线毛片| 老熟妇仑乱视频hdxx| 国产麻豆成人av免费视频| 日韩免费av在线播放| 别揉我奶头~嗯~啊~动态视频| 亚洲一区二区三区色噜噜| 18美女黄网站色大片免费观看| 国产黄片美女视频| 最近最新免费中文字幕在线| 午夜激情av网站| 亚洲精品久久国产高清桃花| 国产视频一区二区在线看| 亚洲精品久久国产高清桃花| 熟女电影av网| 给我免费播放毛片高清在线观看| 亚洲专区国产一区二区| 国产精品久久久久久人妻精品电影| 亚洲国产精品合色在线| 欧美在线一区亚洲| 香蕉久久夜色| 久久久久久大精品| 亚洲国产欧美网| 免费在线观看完整版高清| 老司机福利观看| 久久99热这里只有精品18| 国产aⅴ精品一区二区三区波| 国产欧美日韩精品亚洲av| 国产精品野战在线观看| 听说在线观看完整版免费高清| 黑人操中国人逼视频| 九色成人免费人妻av| 亚洲在线自拍视频| 亚洲18禁久久av| 可以在线观看毛片的网站| 五月玫瑰六月丁香| 精品国产乱子伦一区二区三区| 九色成人免费人妻av| 久久 成人 亚洲| 色综合站精品国产| 99国产精品99久久久久| 极品教师在线免费播放| 在线十欧美十亚洲十日本专区| 日韩av在线大香蕉| 婷婷精品国产亚洲av| 久久精品成人免费网站| 老汉色∧v一级毛片| 欧美日韩亚洲国产一区二区在线观看| 99在线人妻在线中文字幕| 成年版毛片免费区| 免费在线观看黄色视频的| 国产又色又爽无遮挡免费看| 99国产精品99久久久久| 亚洲精品久久国产高清桃花| 色在线成人网| 免费在线观看日本一区| 国产精品 国内视频| av天堂在线播放| 国产精品一区二区免费欧美| 91av网站免费观看| 日韩欧美 国产精品| √禁漫天堂资源中文www| 最近视频中文字幕2019在线8| 黑人巨大精品欧美一区二区mp4| 亚洲免费av在线视频| 亚洲精品美女久久久久99蜜臀| 国产精品乱码一区二三区的特点| 欧美日韩一级在线毛片| 国产精品久久久人人做人人爽| 国产午夜精品论理片| 最近在线观看免费完整版| 国产主播在线观看一区二区| 欧美最黄视频在线播放免费| 欧美乱码精品一区二区三区| 久久精品91无色码中文字幕| 国产午夜福利久久久久久| 三级毛片av免费| 日本 av在线| 国产熟女xx| 禁无遮挡网站| 精品人妻1区二区| 欧美中文综合在线视频| 欧美黄色片欧美黄色片| 亚洲欧美日韩东京热| 欧美日韩一级在线毛片| 久久天堂一区二区三区四区| 欧美 亚洲 国产 日韩一| 可以在线观看的亚洲视频| 久久婷婷人人爽人人干人人爱| 国产伦在线观看视频一区| 亚洲色图 男人天堂 中文字幕| 久久精品aⅴ一区二区三区四区| 欧美乱码精品一区二区三区| 国产欧美日韩一区二区精品| 草草在线视频免费看| 国产伦在线观看视频一区| 91国产中文字幕| 久久久久亚洲av毛片大全| 久久久国产成人精品二区|