• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Rogue waves of a(3+1)-dimensional BKP equation

    2022-12-28 09:52:14YuQiangYuan袁玉強XiaoYuWu武曉昱andZhongDu杜仲
    Chinese Physics B 2022年12期
    關(guān)鍵詞:杜仲

    Yu-Qiang Yuan(袁玉強) Xiao-Yu Wu(武曉昱) and Zhong Du(杜仲)

    1Department of Mathematics,China University of Mining and Technology(Beijing),Beijing 100083,China

    2School of Science,Beijing Forestry University,Beijing 100083,China

    3Department of Mathematics and Physics,North China Electric Power University,Baoding 071003,China

    Keywords: (3+1)-dimensional BKP equation, Kadomtsev–Petviashvili hierarchy reduction, interaction,rogue wave,lump

    1. Introduction

    Since nonlinear waves have extensive applications, such as the evolution of optical pulse and water wave packet, researches of the nonlinear waves have been attractive in the optical fibers,fluids,and plasmas.[1–3]The physical systems relating to those nonlinear waves have been described via those nonlinear evolution equations (NLEEs) such as the nonlinear Schr¨odinger equation,the three-wave resonant interaction system, the Kadomtsev–Petviashvili(KP)equation, the longwave-short-wave resonant interaction system,the Ito equation,and the Fokas–Lenells equation.[4–7]The NLEEs play a critical part in explaining and handling problems in the fields of experiment and engineering.[8–10]Among these models,studies of the high dimensional NLEEs are concentrated to investigate the rich nonlinear waves interactions.[11–15]

    In this paper, we will investigate a (3+1)-dimensional BKP equation,[16–20]

    whereuis an analytic function of the scaled spatial coordinatesx,y,zand temporal coordinatet, with the subscripts denoting the partial differential derivatives. Equation (1) has been proposed as an opposite procedure on applying the linear superposition principle.[16]By using the multiple exp-function algorithm, the multiple wave solutions of Eq. (1) have been presented.[17]Rational lump solutions of Eq. (1) have been obtained via the symbolic computation.[18]The lump and linerogue wave have been derived via the KP hierarchy reduction method.[19]Certain hybrid solutions and breather solutions have been constructed.[20]

    Recently, some semi-rational solutions with certain parameter constraints which reveal special resonant interaction[The resonant interaction describing a special interaction between theN-th order rational solutions andN+1 solitons,which occurs that the phase of the lump (line rogue wave)varies to infinite suddenly when such lump(line rogue wave)interacts with a soliton (based on the semi-rational solutions obtained by the Hirota method)]between the lump(line rogue wave) and soliton have been investigated via the KP hierarchy reduction[21,22]and bilinear method for the KP I equation,[23,24]the Fokas system,[25]the Davey–Stewartson(DS)I equation,[26]and some other models.[27]The resonant interaction describes the pattern in which a lump arises from one soliton and then merges with the other soliton. What is more, such the lump (line rogue wave) is localized in both space and time,which performs like a rogue wave in the higher dimensional space.

    Motivated by the above interesting interaction,in this paper, we will pay our attention to investigating such resonant interaction by constructing semi-rational solutions of Eq. (1)which have not been reported before, to our knowledge. In Section 2, via the KP hierarchy reduction, we will derive the semi-rational solutions in determinant form of Eq.(1). Resonant interactions between one lump(line rogue wave)and two solitons,and between the higher-order lump and three solitons will be discussed in Section 3. Our conclusions will be presented in Section 4.

    2. Semi-rational solutions of Eq.(1)

    In this section, we will construct the semi-rational solutions which generate the resonant interactions between the lump (line rogue wave) and the solitons (actually the kinks)via the KP hierarchy reduction method. The basic idea of such a reduction is to make the bilinear form of the studied equation as a reduction of the KP hierarchy under certain constraints.Then we begin with the bilinear equation of Eq.(1),[19,20]

    whereτis a function of the variablesxj(j=1,2,3,4). TheN-th order semi-rational solutions for KP hierarchy(4)are defined as the followingN+1 determinant:

    withξ=px ?ip2y ?2p3t ?ip4z,ξ′=x ?2ipy ?6p2t ?4ip3z.The above solutions combine the rational and the exponential functions,namely,they are the semi-rational solutions in nature. Moreover,it is worth noting the following:

    (I) The above semi-rational solutions will be reduced to rational solutions if the constantδjkis removed, which are exactly those solutions reported in Ref. [19] of Eq. (1). We conclude that the order of operator?p(or?p?)determines the order of rational solutions and the order of the determinant determines the number of solitons. More subtle discussions will be seen in Section 3. In addition,to obtain the interaction between the rational lump or rogue wave and solitons, we need at least two solitons. Thus,the fundamental solutions defined above should be second-order determinants.

    (II) Dynamics of the rational solutions contain entirely different two cases(a stable propagating lump and a line rogue wave),consequently,the above semi-rational will lead to two interaction patterns,i.e.,the interaction between the lump and the solitons,and between the line rogue wave and the solitons.

    3. Interaction between the lump (line rogue wave)and solitons

    3.1. The first order lump and rogue wave

    By settingN=1 in solutions(6),we derive

    withR=ηη?+1/(p+p?)2,η=ξ′?1/p+p?, andc10=c20=1,c11=0. It can be seen thatζj0is always accompanied byζ?j0,which means that the imaginary part ofζj0can be removed,thus we will takeζj0as real constants hereafter.

    Separating the rational and exponential functions, we rewrite the fundamental semi-rational solutions of Eq.(1)as

    with the subscripts R and I denoting the real and imaginary parts of constants. We derive that properties of the two solitons are determined by e2(ξR+ζ10)and e2(ξR+ζ20)respectively,while the properties of the rational solutions are determined byη2R+η2I.

    Based on the above solutions, we can obtain the asymptotic ofuas

    The result shows the soliton with two different asymptotic planes,which implies the above soliton is a kink one. Besides,for studying the interaction, we will takeζ10>ζ20(also in the following discussions),which makes the rational functionη2R+η2Ihold the prominent effect in the intermediate time.SinceηRandηIbear different variables, then with the different choices of parameters and planes, we will derive two different kinds of nonlinear waves: (i)whena2?3b2/=0,the rational solutions generate a lump that develops along the trajectory ofηR=0 andηI=0; (ii) whena2?3b2=0 and on thex–zplane,ηIis just a constant,thus the rational solutions generate a line wave(along the line trajectoryηR=0). Then combining with the kink solitons,we will discuss the interactions between the lump and kink solitons,and between the line rogue wave and kink solitons on thex–zplane.

    In Fig. 1, we present the interaction between one lump and two kink solitons on thex–yplane.The semi-rational solutions generate a novel nonlinear wave structure which shows:(i) as the two kink solitons own the same wavenumber, they are nearly parallel with each other;(ii)the lump only exists in a short time and emerges from one kink soliton and disappears into the other one later. It should pay attention that during the interaction, such lump localizes not only in space (the nature of the lump)but also in time,which behaves like a rogue wave.Similar structure has also been revealed in Refs.[23,26]for the KP and DSI equations(that lump is called a lump-type rogue wave). In addition, as the lump will disappear finally instead of passes through the kink soliton, such interaction is quite different from that interaction pattern reported in Ref. [20].Interactions of the lump and kink solitons on they–zplane are similar to those on thex–yplane,so we will omit those analyses.

    When we choosea2?3b2=0 on thex–zplane,ηIcan be seen as a constant, then solutions (9) will generate the interaction between line rogue wave and kink solitons. As shown in Figs.2,we find that(i)the two kink solitons propagate stably;(ii)the line rogue wave rises up at a certain time,reaches higher amplitude att=0, and then disappears soon; (iii) especially,the line rogue wave only exists in a segment between the two kink solitons,which implies that the line rogue wave is also localized in space. Such line rogue wave is different from that proposed in Ref.[21](which extends to infinity in space)for DSI equation. To discuss such interaction more clearly,in Fig. 3 we present some details such as the density plot of interaction att=0 and the trajectories at different positions in Fig.2(c).We compare the evolution of the interaction at different times at a fixed position atx=?5. A localized wave with a sharp shape rises between the two kink solitons(as shown in the real line in Fig.3(b))and vanishes after a short time.

    In general, in this paper, we obtain two novel kinds of interactions: between the lump and two kink solitons and between the rogue wave and two kink solitons. Evolutions of the lump and the line rogue wave are both confined in time and to space(the segment between two kink solitons),which perform like a rogue wave. Thus,we show two kinds of potential rogue wave for Eq.(1)via the semi-rational solutions, which are different from that in Refs.[19,20].

    Fig.1. Interaction between a lump and two kink solitons via solutions(9)with z=0,a=1,b=1,ζ10=2π,ζ20=?2π.

    Fig.2. Interaction between a line rogue wave and two kink solitons via solutions(9)with y=0,a=1,b=?1/√3,ζ10=2π,ζ20=?2π.

    Fig.3.(a)The density plot of interaction at t=0,(b)trajectories at different positions in Fig.2(a). The parameters are the same as those in Fig.2.

    3.2. Higher-order lump and rogue wave

    WithN=2 in solutions (7), we can derive the secondorder semi-rational solutions of Eq.(1):

    wheremjkare given by solutions(7). The same as the above analyses, those solutions will generate interactions between three solitons and higher-order rational solutions,including(I)between three kink solitons and the line rogue wave on thex–zplane with constrainta2?3b2=0, as shown in Fig. 5;(II)between three kink solitons and two lumps in other cases,as shown in Fig. 4. The three kink solitons are of the same wavenumber(a+ib), thus they are all nearly parallel. In addition to the different kinds of rational solutions,the distance between the two kink solitons will also remarkably affect such wave interactions, which can be adjusted via the phase shifts constantsζj0. Thus,in what follows,we will discuss the interactions between the lumps (line rogue waves) and three kink solitons graphicly.

    We present the interactions between two lumps and three kink solitons on thex–yplane as an example. With different choices ofζj0, there are two kinds of interaction. The one is, by settingζ10>ζ20>ζ30, we see that two lumps arise from the leftmost (in thex-axis direction) kink soliton,go through the middle one, and fuse into the rightmost kink soliton,as shown in Figs.4(a)–4(d);The other is,while settingζ10>ζ30>ζ20,as shown in Figs.4(e)–4(h),we see only one lump arises from the leftmost kink soliton,with its shape varying when it goes through the middle kink soliton. And later,it shows a two-lumps outline(which means that there is another lump arising from the middle kink soliton). Subsequently,the two lumps fuse into the rightmost kink soliton.

    In the same way, with different choices ofζj0, we will present two interactions between line rogue wave and three kink solitons by settinga2?3b2= 0 on thex–zplane in Fig.5. Withζ10>ζ20>ζ30,it can be seen that one line rogue wave rises up in the segment between the leftmost and rightmost kink solitons, crosses the middle one, and arranges on a line nearly; and soon it reaches higher amplitude att=0,in the meantime, these two segments of the rogue wave connect together; and then the two segments retreat back with amplitudes decreased, and finally disappear. While by settingζ10>ζ30>ζ20,the rogue wave behaves almost the same as the former case except for that one segment of the rogue wave increases its amplitude after retreating back, as shown in Fig.5(g). Thus,the dynamics of these two interactions between the rogue wave and kinks are nearly the same,different from those in Fig.4. Besides,it is noteworthy that the secondorder rational solutions do not generate two-line rogue waves(arranging on two lines) or a second-order rogue wave (with three wave arms). Hence,in this paper,we call such localized line rogue waves as one rogue wave,distinctly different from those reported in Refs.[23,26].

    Fig.4. Interactions between two lumps and three kinks via solutions(13)with a=1,b=0. (a)–(d)ζ10=6,ζ20=0. and ζ30=?6;(e)–(h): ζ10=6π,ζ20=?6π,and ζ30=0.

    Fig. 5.Interactions between one rogue wave and three kinks via solutions (13) withy=1,a=1,b=?1/√3, and (a)–(d):ζ10=5,ζ20=0 andζ30=?5;(e)–(h):ζ10=4π,ζ20=?4π,andζ30=0.

    4. Conclusions

    In this paper, we investigated certain rogue waves of the(3+1)-dimensional BKP equation. Via the KP hierarchy reduction, semi-rational solutions in the determinant form of Eq.(1)have been constructed,which generate two novel nonlinear wave behaviors: (i) the interaction between one lump and two kink solitons with the lump developing from one kink soliton and then fusing into the other one; (ii) the interaction between one line rogue wave and two kink solitons on thex–zplane with the line rogue wave growing from and then decaying into the constant background between the segment of the two solitons. We have found that evolutions of the lump and line rogue wave are localized both in time and space, which means that such lump and line rogue wave play as a rogue wave. In addition, we have also discussed the second-order semi-rational solutions graphicly, which describe two types of interactions between two lumps(one line rogue wave)and three kink solitons.

    Acknowledgements

    Project supported by the Fundamental Research Funds for the Central Universities (Grant Nos. 2021XJLX01 and BLX201927),China Post-doctoral Science Foundation(Grant No. 2019M660491), and the Natural Science Foundation of Hebei Province,China(Grant No.A2021502003).

    猜你喜歡
    杜仲
    DPPH-HPLC-QTOF-MS/MS快速篩選和鑒定杜仲黑茶中抗氧化活性成分
    HPLC法同時測定杜仲-當(dāng)歸藥對中5種成分
    中成藥(2018年8期)2018-08-29 01:28:14
    略陽杜仲
    陜西畫報(2016年1期)2016-12-01 05:35:28
    UPLC同時測定杜仲中6種有效成分的含量
    杜仲雄花氨基酸多樣性及營養(yǎng)價值評價
    聚焦微波助脫除纖維素提取杜仲籽殼中杜仲膠
    HPLC法同時測定杜仲3個藥用部位中8種成分
    中成藥(2016年8期)2016-05-17 06:08:28
    正交法優(yōu)選杜仲葉中綠原酸提取工藝
    殃及池魚
    周末
    亚洲精品国产色婷婷电影| 50天的宝宝边吃奶边哭怎么回事| 午夜福利影视在线免费观看| 少妇粗大呻吟视频| 日韩 欧美 亚洲 中文字幕| 亚洲精品国产精品久久久不卡| 久久精品成人免费网站| 在线av久久热| 国产99久久九九免费精品| 97人妻天天添夜夜摸| 女人高潮潮喷娇喘18禁视频| 国产午夜精品久久久久久| 在线观看午夜福利视频| 久久久久精品国产欧美久久久| 91九色精品人成在线观看| 免费在线观看影片大全网站| 国产欧美日韩精品亚洲av| 叶爱在线成人免费视频播放| 母亲3免费完整高清在线观看| 日本撒尿小便嘘嘘汇集6| 国产高清国产精品国产三级| 一级黄色大片毛片| 黄色女人牲交| 满18在线观看网站| 人妻久久中文字幕网| 在线观看舔阴道视频| 一进一出抽搐gif免费好疼 | 精品乱码久久久久久99久播| 男人的好看免费观看在线视频 | 欧美不卡视频在线免费观看 | 免费高清在线观看日韩| 色婷婷av一区二区三区视频| 天天躁日日躁夜夜躁夜夜| 久久人人97超碰香蕉20202| www.999成人在线观看| 久久久久国内视频| 9色porny在线观看| 欧美亚洲日本最大视频资源| 欧美激情极品国产一区二区三区| 老司机午夜十八禁免费视频| 一本综合久久免费| 亚洲第一av免费看| a级毛片在线看网站| 首页视频小说图片口味搜索| 欧美精品啪啪一区二区三区| av欧美777| 狠狠狠狠99中文字幕| 很黄的视频免费| 久久国产亚洲av麻豆专区| 老汉色∧v一级毛片| 99热只有精品国产| 中文字幕人妻熟女乱码| 一区二区三区国产精品乱码| 村上凉子中文字幕在线| 满18在线观看网站| 国产精品一区二区在线不卡| 老汉色∧v一级毛片| 中文字幕人妻丝袜一区二区| 国产欧美日韩综合在线一区二区| 午夜日韩欧美国产| 精品亚洲成国产av| 在线看a的网站| 18禁裸乳无遮挡动漫免费视频| 久久国产亚洲av麻豆专区| 日韩免费av在线播放| 亚洲熟妇熟女久久| 黄色片一级片一级黄色片| 国产99久久九九免费精品| 老汉色∧v一级毛片| 91精品三级在线观看| 欧美精品一区二区免费开放| 美女福利国产在线| 一级a爱片免费观看的视频| 国内毛片毛片毛片毛片毛片| av网站在线播放免费| 欧美精品啪啪一区二区三区| 久久国产精品男人的天堂亚洲| 黄片小视频在线播放| 欧美激情 高清一区二区三区| 一区二区日韩欧美中文字幕| 国产免费现黄频在线看| 免费人成视频x8x8入口观看| 亚洲av欧美aⅴ国产| 精品福利永久在线观看| 中文字幕另类日韩欧美亚洲嫩草| 久久99一区二区三区| 国产精品久久久久久人妻精品电影| 在线看a的网站| 国产色视频综合| 国产区一区二久久| 日韩欧美在线二视频 | 国产精品二区激情视频| 丝袜美腿诱惑在线| 色精品久久人妻99蜜桃| 精品一区二区三区av网在线观看| 国产成人欧美| 女性生殖器流出的白浆| 久久久久视频综合| 亚洲精品成人av观看孕妇| 亚洲精品一二三| 大香蕉久久成人网| 热re99久久国产66热| 亚洲av成人不卡在线观看播放网| 亚洲欧美一区二区三区黑人| av天堂久久9| 日韩中文字幕欧美一区二区| 国产精品九九99| 国产成人一区二区三区免费视频网站| 欧美国产精品va在线观看不卡| 午夜福利欧美成人| 欧美色视频一区免费| 亚洲 欧美一区二区三区| 美女视频免费永久观看网站| 欧美激情高清一区二区三区| 丰满人妻熟妇乱又伦精品不卡| 亚洲三区欧美一区| 91成年电影在线观看| 国产成人免费观看mmmm| 侵犯人妻中文字幕一二三四区| 国产一卡二卡三卡精品| 国产国语露脸激情在线看| 天天躁日日躁夜夜躁夜夜| 啦啦啦免费观看视频1| 国产精品 国内视频| 欧美大码av| 美女视频免费永久观看网站| 亚洲七黄色美女视频| 欧美国产精品一级二级三级| 午夜精品国产一区二区电影| 在线看a的网站| 国产人伦9x9x在线观看| 乱人伦中国视频| 男女之事视频高清在线观看| 国产精品一区二区免费欧美| 女人高潮潮喷娇喘18禁视频| 十八禁人妻一区二区| 精品国产乱子伦一区二区三区| 18禁观看日本| 黄频高清免费视频| 人人澡人人妻人| 久久久久久久国产电影| 电影成人av| 夜夜躁狠狠躁天天躁| 欧美日韩乱码在线| 亚洲情色 制服丝袜| 久久人人97超碰香蕉20202| 天堂中文最新版在线下载| 免费av中文字幕在线| 欧美亚洲日本最大视频资源| 亚洲国产精品一区二区三区在线| 日日爽夜夜爽网站| 人妻 亚洲 视频| 国产熟女午夜一区二区三区| 久久久久国产精品人妻aⅴ院 | 国产99久久九九免费精品| 新久久久久国产一级毛片| 夜夜爽天天搞| 国产99久久九九免费精品| 精品亚洲成a人片在线观看| 国产成人精品久久二区二区91| av天堂久久9| 亚洲 国产 在线| 欧美激情高清一区二区三区| 怎么达到女性高潮| 精品一品国产午夜福利视频| 国产熟女午夜一区二区三区| 手机成人av网站| 高清视频免费观看一区二区| 久久久久国产一级毛片高清牌| 亚洲成人免费电影在线观看| 国内毛片毛片毛片毛片毛片| 精品国内亚洲2022精品成人 | 18禁黄网站禁片午夜丰满| 欧美性长视频在线观看| 日本黄色日本黄色录像| 亚洲国产中文字幕在线视频| 日韩欧美国产一区二区入口| 桃红色精品国产亚洲av| 美国免费a级毛片| 日韩欧美一区视频在线观看| 99久久国产精品久久久| a级毛片黄视频| 天堂动漫精品| 国产亚洲欧美98| 亚洲欧美精品综合一区二区三区| 99精国产麻豆久久婷婷| 夜夜躁狠狠躁天天躁| 免费黄频网站在线观看国产| 久9热在线精品视频| 欧美乱色亚洲激情| 啦啦啦 在线观看视频| 十分钟在线观看高清视频www| 亚洲欧美精品综合一区二区三区| 欧美日韩亚洲综合一区二区三区_| svipshipincom国产片| 国产高清视频在线播放一区| 亚洲五月天丁香| 丁香六月欧美| 久久精品aⅴ一区二区三区四区| 波多野结衣一区麻豆| 国产在视频线精品| 在线免费观看的www视频| 精品久久久久久电影网| 超碰97精品在线观看| 午夜亚洲福利在线播放| 丁香六月欧美| 黄色女人牲交| 最新在线观看一区二区三区| 老司机靠b影院| 捣出白浆h1v1| av超薄肉色丝袜交足视频| 国产野战对白在线观看| 午夜福利免费观看在线| 久久久国产成人精品二区 | 9色porny在线观看| 三上悠亚av全集在线观看| 人人妻人人澡人人爽人人夜夜| 亚洲一区高清亚洲精品| 欧美性长视频在线观看| 亚洲国产精品sss在线观看 | 国产av精品麻豆| 首页视频小说图片口味搜索| 热99国产精品久久久久久7| 啦啦啦免费观看视频1| 中国美女看黄片| xxx96com| 三上悠亚av全集在线观看| 99国产精品免费福利视频| 视频在线观看一区二区三区| 欧洲精品卡2卡3卡4卡5卡区| 色老头精品视频在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 19禁男女啪啪无遮挡网站| 欧美精品一区二区免费开放| 黑人猛操日本美女一级片| 免费日韩欧美在线观看| 国产xxxxx性猛交| 亚洲欧美一区二区三区黑人| 亚洲第一欧美日韩一区二区三区| 亚洲自偷自拍图片 自拍| 一a级毛片在线观看| 麻豆av在线久日| 中文字幕最新亚洲高清| 妹子高潮喷水视频| 日本a在线网址| 亚洲色图综合在线观看| 在线免费观看的www视频| 91麻豆av在线| 日韩制服丝袜自拍偷拍| 成人黄色视频免费在线看| 成年人午夜在线观看视频| 美女高潮到喷水免费观看| 国内久久婷婷六月综合欲色啪| 国产在线一区二区三区精| 青草久久国产| 欧美不卡视频在线免费观看 | 黄色片一级片一级黄色片| 欧美 亚洲 国产 日韩一| 另类亚洲欧美激情| 国产精品影院久久| 他把我摸到了高潮在线观看| 精品久久久久久电影网| 久久久久国产精品人妻aⅴ院 | 操美女的视频在线观看| 水蜜桃什么品种好| www.999成人在线观看| 十分钟在线观看高清视频www| 老司机深夜福利视频在线观看| av欧美777| 波多野结衣一区麻豆| av不卡在线播放| 久久久水蜜桃国产精品网| 人妻久久中文字幕网| 亚洲国产欧美日韩在线播放| 精品免费久久久久久久清纯 | 精品乱码久久久久久99久播| av片东京热男人的天堂| 老熟妇乱子伦视频在线观看| 亚洲精品美女久久久久99蜜臀| 久久久久久亚洲精品国产蜜桃av| 亚洲成人免费电影在线观看| 色94色欧美一区二区| 精品久久蜜臀av无| 国产精品亚洲一级av第二区| 不卡一级毛片| 91麻豆精品激情在线观看国产 | 多毛熟女@视频| 日韩欧美国产一区二区入口| 亚洲人成电影观看| 9191精品国产免费久久| 日韩欧美三级三区| 国产97色在线日韩免费| 水蜜桃什么品种好| 啦啦啦 在线观看视频| av网站在线播放免费| 12—13女人毛片做爰片一| 在线看a的网站| 亚洲精品久久午夜乱码| 国产亚洲精品第一综合不卡| 久久性视频一级片| 又黄又粗又硬又大视频| 欧美黑人欧美精品刺激| 十分钟在线观看高清视频www| 激情在线观看视频在线高清 | 黄色怎么调成土黄色| 午夜免费成人在线视频| 麻豆av在线久日| 看黄色毛片网站| 午夜福利乱码中文字幕| 久久性视频一级片| 丁香六月欧美| 国产精品综合久久久久久久免费 | 人人澡人人妻人| 午夜视频精品福利| 国产男女超爽视频在线观看| 久久久久视频综合| 亚洲欧美日韩另类电影网站| 丰满的人妻完整版| av福利片在线| 曰老女人黄片| 欧美黑人欧美精品刺激| 成人国语在线视频| 激情视频va一区二区三区| 国产欧美日韩精品亚洲av| 精品无人区乱码1区二区| 咕卡用的链子| 免费黄频网站在线观看国产| av网站免费在线观看视频| 国产精品一区二区在线不卡| 不卡一级毛片| 免费观看人在逋| 欧美中文综合在线视频| 老熟妇仑乱视频hdxx| 久久香蕉国产精品| x7x7x7水蜜桃| 又黄又粗又硬又大视频| 少妇被粗大的猛进出69影院| 麻豆国产av国片精品| 欧美精品啪啪一区二区三区| 国产一卡二卡三卡精品| 精品久久蜜臀av无| 在线观看www视频免费| 视频区欧美日本亚洲| 久久精品国产99精品国产亚洲性色 | videos熟女内射| 久久天躁狠狠躁夜夜2o2o| 免费在线观看日本一区| 午夜福利视频在线观看免费| 亚洲av日韩在线播放| 国产高清国产精品国产三级| 天堂俺去俺来也www色官网| 午夜福利,免费看| 香蕉国产在线看| 免费在线观看视频国产中文字幕亚洲| 国产高清激情床上av| 操美女的视频在线观看| av免费在线观看网站| 日本黄色日本黄色录像| 免费久久久久久久精品成人欧美视频| 一级a爱视频在线免费观看| 精品久久久久久久毛片微露脸| 国产精品 欧美亚洲| 精品亚洲成a人片在线观看| 香蕉国产在线看| 精品福利观看| 俄罗斯特黄特色一大片| 国产成人av激情在线播放| 午夜影院日韩av| 一区在线观看完整版| 成年版毛片免费区| 黄频高清免费视频| 国产99久久九九免费精品| 久久国产精品男人的天堂亚洲| 国产av又大| 色播在线永久视频| 热99久久久久精品小说推荐| 欧美色视频一区免费| 日韩免费高清中文字幕av| 美女高潮喷水抽搐中文字幕| av片东京热男人的天堂| 亚洲av成人一区二区三| 久久久久久久国产电影| 久久99一区二区三区| 国产精品亚洲av一区麻豆| 岛国在线观看网站| 久久久水蜜桃国产精品网| 欧美黄色淫秽网站| 国产精品综合久久久久久久免费 | 99久久99久久久精品蜜桃| 女人久久www免费人成看片| 成人精品一区二区免费| 国内毛片毛片毛片毛片毛片| 国产精品国产高清国产av | 丝袜在线中文字幕| 美女 人体艺术 gogo| 99国产极品粉嫩在线观看| 操美女的视频在线观看| 在线视频色国产色| 国产精品 欧美亚洲| 亚洲视频免费观看视频| 高潮久久久久久久久久久不卡| 亚洲精品美女久久av网站| 久久 成人 亚洲| 亚洲av日韩精品久久久久久密| 色综合婷婷激情| 国产一区二区三区在线臀色熟女 | 国产成人系列免费观看| 校园春色视频在线观看| 亚洲成人国产一区在线观看| 日日夜夜操网爽| 91成年电影在线观看| av电影中文网址| 欧美日韩乱码在线| 一二三四在线观看免费中文在| 国产成人影院久久av| 国产一区二区三区视频了| 在线观看免费午夜福利视频| 亚洲美女黄片视频| av网站在线播放免费| 国产av一区二区精品久久| 国产日韩一区二区三区精品不卡| 岛国毛片在线播放| 国产亚洲精品一区二区www | 少妇粗大呻吟视频| 日本撒尿小便嘘嘘汇集6| 国产精品久久久av美女十八| 久久久久精品国产欧美久久久| 美女高潮喷水抽搐中文字幕| 精品高清国产在线一区| а√天堂www在线а√下载 | 国产成人一区二区三区免费视频网站| 国产一区有黄有色的免费视频| 亚洲精品国产一区二区精华液| 午夜免费观看网址| 久久国产亚洲av麻豆专区| 99精国产麻豆久久婷婷| 老司机在亚洲福利影院| 久久性视频一级片| 日本五十路高清| 99久久精品国产亚洲精品| 在线视频色国产色| 成人影院久久| 国产精品九九99| 亚洲一区二区三区不卡视频| 国产精品 国内视频| 国产精品 欧美亚洲| 亚洲视频免费观看视频| 啦啦啦在线免费观看视频4| 精品久久久久久久毛片微露脸| 两性午夜刺激爽爽歪歪视频在线观看 | 国产不卡一卡二| 欧美国产精品一级二级三级| 日本黄色日本黄色录像| 欧美日韩国产mv在线观看视频| 亚洲精品中文字幕一二三四区| 一二三四在线观看免费中文在| 香蕉国产在线看| 老熟女久久久| 欧美中文综合在线视频| 老汉色av国产亚洲站长工具| 亚洲一区二区三区不卡视频| 1024视频免费在线观看| 欧美日韩亚洲高清精品| 中文字幕色久视频| 亚洲第一青青草原| 精品国产国语对白av| cao死你这个sao货| 亚洲精品国产区一区二| 99热网站在线观看| 国产精品久久久人人做人人爽| 免费在线观看日本一区| 国产伦人伦偷精品视频| 国产视频一区二区在线看| 午夜精品久久久久久毛片777| 新久久久久国产一级毛片| 午夜久久久在线观看| 十八禁网站免费在线| 午夜91福利影院| 大型av网站在线播放| 亚洲精品在线美女| 女人精品久久久久毛片| 国产欧美日韩一区二区三| 一级毛片精品| 亚洲一码二码三码区别大吗| 亚洲精品国产区一区二| 久久久国产成人精品二区 | 一区二区三区精品91| 日韩制服丝袜自拍偷拍| 国产成人啪精品午夜网站| 天堂动漫精品| 老司机深夜福利视频在线观看| 免费看十八禁软件| 99久久人妻综合| 国产成人啪精品午夜网站| 国产欧美日韩精品亚洲av| 午夜福利影视在线免费观看| 国产成人影院久久av| 老熟女久久久| 男女高潮啪啪啪动态图| 成人免费观看视频高清| 手机成人av网站| 久久久国产成人免费| 在线视频色国产色| 精品一区二区三区av网在线观看| 中文字幕人妻丝袜制服| 热re99久久精品国产66热6| 日本vs欧美在线观看视频| 精品视频人人做人人爽| 日日夜夜操网爽| 狠狠狠狠99中文字幕| 亚洲精品在线美女| 少妇的丰满在线观看| 18禁国产床啪视频网站| 精品久久久精品久久久| 嫁个100分男人电影在线观看| 日韩制服丝袜自拍偷拍| 黑人猛操日本美女一级片| 五月开心婷婷网| 激情在线观看视频在线高清 | 在线观看一区二区三区激情| 我的亚洲天堂| 免费女性裸体啪啪无遮挡网站| 亚洲中文字幕日韩| 在线av久久热| 男女床上黄色一级片免费看| 不卡av一区二区三区| 成年人黄色毛片网站| 亚洲国产精品sss在线观看 | 又黄又粗又硬又大视频| 成年人黄色毛片网站| 亚洲国产毛片av蜜桃av| 怎么达到女性高潮| 最近最新中文字幕大全免费视频| 成人av一区二区三区在线看| 亚洲精品国产一区二区精华液| 黄色视频不卡| 欧美激情久久久久久爽电影 | 在线观看免费日韩欧美大片| 久久久国产欧美日韩av| 精品一区二区三区av网在线观看| 男女之事视频高清在线观看| 免费在线观看影片大全网站| 美女扒开内裤让男人捅视频| 亚洲精品粉嫩美女一区| 国产精品99久久99久久久不卡| 午夜老司机福利片| 午夜免费观看网址| 午夜福利影视在线免费观看| 午夜精品在线福利| 欧美在线黄色| 国产1区2区3区精品| 欧美在线一区亚洲| 日韩制服丝袜自拍偷拍| 中文字幕最新亚洲高清| 欧美激情高清一区二区三区| 亚洲精品国产区一区二| 高清av免费在线| 国产午夜精品久久久久久| 777久久人妻少妇嫩草av网站| 视频区图区小说| 国产精品久久久人人做人人爽| 亚洲欧美一区二区三区久久| 大香蕉久久成人网| 免费少妇av软件| 亚洲精品av麻豆狂野| av超薄肉色丝袜交足视频| 99国产极品粉嫩在线观看| 久久热在线av| 在线看a的网站| 午夜精品国产一区二区电影| 高清在线国产一区| 免费观看人在逋| 12—13女人毛片做爰片一| 国产成人啪精品午夜网站| 国产一区二区三区在线臀色熟女 | 亚洲精品美女久久久久99蜜臀| 国产精品国产高清国产av | 国产高清激情床上av| 王馨瑶露胸无遮挡在线观看| 嫁个100分男人电影在线观看| 亚洲国产精品sss在线观看 | 欧美激情久久久久久爽电影 | 国产av又大| av欧美777| 久久精品国产综合久久久| 欧美乱妇无乱码| avwww免费| 丝袜美足系列| 成人手机av| 成年动漫av网址| 久久精品国产综合久久久| 欧美日韩视频精品一区| 亚洲国产看品久久| 色播在线永久视频| 香蕉国产在线看| 一区二区日韩欧美中文字幕| 欧美乱码精品一区二区三区| tocl精华| 两个人免费观看高清视频| 9191精品国产免费久久| 如日韩欧美国产精品一区二区三区| 国产淫语在线视频| 在线观看舔阴道视频| 国产欧美日韩一区二区精品| 国产av一区二区精品久久| 中文字幕精品免费在线观看视频| 亚洲一卡2卡3卡4卡5卡精品中文| 另类亚洲欧美激情| av不卡在线播放| 国产成人一区二区三区免费视频网站| 欧美黄色片欧美黄色片| 老熟妇乱子伦视频在线观看| 两人在一起打扑克的视频| 久久久久精品人妻al黑| 侵犯人妻中文字幕一二三四区|