• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Sparse identification method of extracting hybrid energy harvesting system from observed data

    2022-12-28 09:52:16YaHuiSun孫亞輝YuanHuiZeng曾遠輝andYongGeYang楊勇歌
    Chinese Physics B 2022年12期

    Ya-Hui Sun(孫亞輝) Yuan-Hui Zeng(曾遠輝) and Yong-Ge Yang(楊勇歌)

    1School of Mathematics and Statistics,Guangdong University of Technology,Guangzhou 510520,China

    2State Key Laboratory for Strength and Vibration of Mechanical Structures,Xi’an Jiaotong University,Xi’an 710049,China

    Keywords: data-driven,hybrid energy harvester,harmonic excitation,Gaussian white noise

    1. Introduction

    The vibration energy harvester(VEH)can produce electric energy from ambient vibrations[1–3]to provide wireless sensors with sustaining energy. There are many types of energy harvesting techniques, such as piezoelectric,[4,5]electromagnetic,[6]etc.[7,8]Among them, combining piezoelectric components and electromagnetic elements,hybrid energy harvesters were investigated and widely applied due to the advantage of improving the harvesting efficiency.[9]Panyam and Daqaq[10]studied a tri-stable hybrid energy harvester under harmonic excitation by using multi-scales method. Karami and Inman[11]proposed an approximation method to explore the hybrid energy harvester under harmonic excitation. Xiaet al.[12]investigated the performances of the energy harvesters with different boundary conditions. Moreover, noises exist in the real environment and result in different dynamical behaviors.[13,14]Therefore, hybrid energy harvesters under random excitation were studied in previous researches.[15–20]For example,Zhouet al.[15]showed that the performance of hybrid energy harvesters under Gaussian excitation is improved by adding nonlinear components. Senghaet al.[16]modeled a hybrid energy harvesting system driven by harmonic excitation and colored noise. Foupouapouognigniet al.[17]indicated that the performance of the hybrid VEH,which was influenced by Gaussian white noise (GWN) and harmonic excitation, was improved. Sunet al.[18]used the stochastic averaging technique to analyze the stochastic responses of a fractional-order hybrid VEH driven by GWN.The influences of colored noise excitation on hybrid VEH were investigated by Yang and Cao.[20]

    Stochastic responses of hybrid VEH in the above articles were studied in the condition that the governing equations were firstly known. However,for a complex system,it is trouble to model the governing equations precisely in practical applications. To overcome this difficulty, in recent years, datadriven modeling[21,22]was presented and applied in different areas,such as fluid dynamics,meteorology,finance,etc.[23–26]With the developments of machine learning and data science,some methods were proposed to identify elusive dynamical systems. For deterministic differential equations, Bruntonet al.[27]proposed a data-driven method called sparse identification of nonlinear dynamics (SINDy), and demonstrated that the method is well agreement in the deterministic differential equations by using the iterative threshold algorithm. Boninsegnaet al.[28]modified the SINDy to avoid the adjustment of the threshold parameter in Ref.[27]. However,stochastic differential equations widely exist in practical applications. For stochastic differential equations (SDEs), the methods which were devised in Refs. [27,28] were also used to model SDEs driven by GWN. Rudyet al.[29]presented a deep neural network approach to estimate the coefficients and the measurement noise simultaneously, and showed good robustness of the method by increasing the noise level. Daiet al.[30]proposed the maximum likelihood estimation to learn the SDE under fractional Brownian motion, and the results showed a good accuracy for true values. Lu and Lermusiaux[31]devised a Bayesian learning technique to model stochastic dynamical systems. Huang and Li[32]used the SINDy to discover the equations of a four-dimensional stochastic projectile system. Wuet al.[33]obtained the mean residence time and escape probability of SDEs from data by using the devised approach.Additionally,based on the Koopman generator,Zhanget al.[34]developed an approach to extract SDEs influenced by L′evy noise from data on mean exit time, and indicated that this method can also apply to dynamical systems under GWN. Lu and Duan[35]discovered the SDEs from data with L′evy noise by utilizing extended dynamic mode decomposition, and acquired the transition probability density functions by solving the Fokker–Planck equations. Together with the Kramers–Moyal formulas and SINDy, governing laws under different L′evy noise were extracted from the observed data of stochastic dynamics equations.[36–38]Among these methods,SINDy has been widely applied in discovering governing equations from massive datasets. The method combines the least-squares and compressed-sensing to solve the sparse coefficients of the equations, so that the approximate governing equations can be obtained. It is useful to analyze the subsequent dynamical behavior of the system.

    To the best of our knowledge, few authors pay attention to discovering the equations from data for the hybrid energy harvester in present. In this paper,we develop a sparse identification approach to identify the equations for the hybrid VEH.The framework of this paper is organized as follows. In Section 2, the mathematical model of the hybrid VEH with nondimensional form is given.In Section 3,a sparse identification process is developed to solve the sparse coefficients for the hybrid VEH. In Sections 4 and 5, two examples of the hybrid VEH are taken to examine the validity of the devised method.In Section 6,some conclusions are remarked.

    2. Hybrid VEH under noise excitation

    A family of hybrid electromagnetic and piezoelectric energy harvesters are considered as shown in Fig.1. The model is simplified as a mass–spring–damper system in Fig.1(a)coupled with a piezoelectric circuit in Fig.1(b)and an electromagnetic circuit in Fig.1(c)under base acceleration.

    Fig.1. (a)Simplified diagram of a hybrid VEH coupled with(b)a piezoelectric energy harvesting circuit and(c)an electromagnetic circuit.

    The coupling equations of the hybrid energy harvesting system are given by

    Here, ˉX, ˙ˉXand ¨ˉXbdenote the displacement, the velocity and the base acceleration of the massM,respectively. ˉVis the electric voltage measured across the equivalent resistance loadRp.Cpand ˉζ1are the the piezoelectric capacitance and the piezoelectric coupling coefficient.L, ˉIand ˉζ2denote the inductance of the coil, the output current and the electromagnetic coupling coefficient, respectively.RcandResuccessively denote the load resistances of the electromagnetic and the resistance of the coil.f(ˉX)andg(ˉX)represent the damping term and the stiffness term.

    Then,we make the equations dimensionless by means of a transformation[18,39]Here,f(x) andg(x) are the non-dimensional damping force and stiffness term.ζ1,ζ2,λ1andλ2are the non-dimensional coupling coefficients in Eq. (1).μ1is the reciprocal of the product of resistance and capacitance.μ2represents the ratio of resistance and inductance.

    As examples of different external excitation, harmonic excitation and GWN[18,40]are considered in Sections 4 and 5. With the method of stepwise sparse regressor(SSR),[28,41]we devise the method of identified sparse regression to discover the governing equations by learning the coefficients of the formula.

    3. Sparse identification for hybrid VEH

    Drawing on the ideas of machine learning, we combine the least-square sense, SSR algorithm and cross-validation(CV). A sparse identification process is developed to learn the unknown coefficients in the equations. Assume that we have observedNdata points of system state time series of displacement, voltage and output current denoted byX,VandI, respectively. Meanwhile, data pointsX,VandIhave been dimensionless to [x1,x2,x3,...,xN], [v1,v2,v3,...,vN]and[i1,i2,i3,...,iN]at[t1,t2,t3,...,tN]. We transform Eq.(3)into the following differential equations:

    3.1. Learned process of drift term

    In this subsection, we introduce the sparse identification of drift termb=[b1,b2,b3,b4]T. Firstly, we approximate the first-order derivative by using the first-order difference,i.e.,

    The learned results will be better if we select an abundant type of basis functions, while the real workload is enormous and polynomial basis functions are enough precise for most cases.

    By referring to Ref.[42],b2,b3andb4are estimated by using the Kramers–Moyal formula,i.e.,

    where

    However,Eq.(11)may have no solutions due to the equations more than variables. Based on this, we use the least square sense,i.e.,

    whereρ>0 is called as the penalty factor applied in restricting the weight of the sparsity constraint. Due to the meaning of theL1regular,some terms in the solutions will be equal to zero.

    The approach we used to solve Eq. (15) is iterative algorithm SSR together with CV. Compared with the iterative threshold algorithm,[21,27]Lasso,[43]elastic net[44]and matching pursuit,[45]SSR not only can adaptively select the number of iterations and the sparsity level,but also does not needlessly adjust the external parameters like threshold parameterλ. The purposes of CV[46]are the division of data and the selection of optimal parameter. The pipeline works are summarized in Table 1.

    Table 1. The algorithm for sparse identification.

    3.2. Learned process of diffusion term

    For GWN,the diffusion terma22in Eq.(4)is calculated as 2D. Analogously, we construct the basis functionΨ(X).Then,the diffusion term is approximated as

    According to the steps in Table 1, we strengthen the sparse level of the solutionqand the sparse solution ^qis obtained.

    4. Discover equations for a hybrid VEH under harmonic excitation

    4.1. A hybrid VEH under harmonic excitation

    Letf(x) =c4x4+c2x2+c0,g(x) =δ1x+δ3x3+δ5x5[47,48]andD=0. The equations of the system can be expressed as

    4.2. Sparse learning of the system under harmonic excitation

    We set parameters asc0=?0.5,c2=0.5,c4=?0.1,δ1=1,δ3=?3,δ5=1,ζ1=0.5,ζ2=0.5,F=1,μ1=1,λ1=1,μ2=0.5,λ2=1.

    According to Eq.(22),five independent system state trajectories ofNh=105steps each are generated as the observed data by using the method of the fourth order Runge–Kutta.We compute the derivatives ˙X, ˙Y, ˙Vand ˙Iby applying Eq.(6)with the time step ?t=0.001,where the smaller ?t,the higher the accuracy. Then,Kh=27 basis function dictionaryφh(t,X,˙X,V,I)is considered. The specific composition of the dictionary reads as

    The matricesAandBcan be obtained by Eqs.(9),(10)and (12). To avoid under-fitting and over-fitting, 7-fold CV is utilized to select the specific number of iterations on which SSR needs to be run. We have a family of models with the number of iterations as parameter(SSR(0),...,SSR(27)). By performing the algorithm in Table 1,we select the one model that is best to fit the observed datasets. Figures 2(a), 2(b)and 2(c) respectively demonstrate MSE of coefficients learning from Eqs. (22b), (22c) and (22d), wherendenotes the number of non-zero coefficients.

    From Fig.2(a),we can see that whenn<8,the MSE vibrates firstly and then decreases slowly.Subsequently,the part ofn ≥8 is magnified in the upper right of Fig.2(a).The results show that whennchanges from 8 to 9,the mean square error plummets, and then slowly decreases untiln=11. We hold the opinion that the model is under-fitting inn<8 and overfitting inn>11.[28]Analogously,Figs.2(b)and 2(c)show that the number of non-zero coefficients in Eqs.(22c)and(22d)is 2. Thus, for Eq. (22b), we focus onn=9 andn=10. For Eqs.(22c)and(22d),n=2 is the best parameter value.

    Fig.2. MSE from applying SSR algorithm is plotted as a function of solution size n. (a)Eq.(22b);(b)Eq.(22c);(c)Eq.(22d).

    Table 2. Identified coefficients for Eq.(22b).

    The sparse solutions ?uhcan be learned as listed in Tables 2–4. The results indicate that the coefficients learned from the algorithm are similar to the true values,andn=9 is more suitable for Eq.(22b).Furthermore,Figs.3(a)and 3(b)demonstrate the comparisons of learned values and true values with regard to damping forcef(x)and stiffness termg(x),respectively. Figure 4 shows the comparison of time-varying displacement and time-varying voltage from the original system and the learned system.The results show that the true system and the learning system are in good agreement.

    Table 3. Identified coefficients for Eq.(22c).

    Table 4. Identified coefficients for Eq.(22d).

    Fig.3. Comparisons between the learned values and true values of(a)f(x)and(b)g(x).

    Fig. 4. Comparisons of (a) time-varying displacement and (b) timevarying voltage.

    Fig.5. Comparisons between true values and learned values of the b2h. (a)and(b)y=0.5,I=0.5;(c)and(d)y=0.5,V =0.5.

    Fig.6. Comparisons between true and learned functions. (a)and(b)b3h;(c)and(d)b4h.

    Table 5. The learned results of 10 sets data with different ?t and different Nh.

    Since Eq. (23b) is four-dimensional, the figure of equation is impossible to plot intuitively. Thus, we plot the equation as two-dimensional by fitting two state variables. In Figs.5 and 6,comparisons of the true and learnedb2h,b3handb4hare shown to indicate the learning results. Here,Figs.5(a)and 5(c) represent the true functionb2h; Figs. 5(b) and 5(d)represent the learning functionb2h. The two rows of the figures denote the case with(i)y=0.5 andI=0.5; (ii)y=0.5 andV=0.5, respectively. Figures 6(a) and 6(b) are the true functions ofb3handb4h, respectively. Figures 6(c) and 6(d)are the learning functions ofb3handb4h,respectively. The results show that the learning functions agree well with the true functions.

    By referring to Refs.[49–51],we know that as the fluctuations of the estimated parameters are small with the increase of data length,the estimated parameters converge approximately to the true value of the parameters. Then, 10 sets data with different ?tandNhare learned by the sparse identification algorithm. The results from Table 5 demonstrate that for the same time step ?t, the longer the data length, the smaller the standard (Std.) deviation. For the same data lengthNh, the standard deviation decreases as the ?tdecreases. Thus, with an increase of data length and a small time step,the identified coefficients can be close to the true values of the coefficients.

    5. Discover equations for a hybrid VEH under GWN and harmonic excitation

    5.1. A hybrid VEH under GWN and harmonic excitation

    In this section,the parameter values are the same as those in Subsection 4.2, except for the parameter 2D=0.01. We consider a hybrid energy harvester under both GWN and harmonic excitation,i.e.,

    Accordingly, the diffusion terma22=2D, and the drift termbof Eq.(26)can be obtained as

    5.2. Pre-processing of drift term and diffusion term

    For the drift termb,KG=18 basis function dictionaryφG(t,X,˙X,V,I)is given by

    By using the sparse identification algorithm in Table 1,the drift coefficients ?uGcan be solved by

    whereAandBare obtained by Eqs.(9),(10)and(12).

    Analogously,for the diffusion terma22=2D,L=4 basis function dictionaryψ(X)is constructed as

    According to Subsection 3.2,the sparse solution ^qcan be calculated.

    5.3. Sparse learning of the system under GWN and harmonic excitation

    On the basis of Eq. (26), the fourth-order Runge–Kutta[52]is utilized to generate one hundred independent system state trajectories ofNG=105steps. Then, ˙X, ˙Y, ˙Vand ˙Iare approximated numerically by Eq.(6).Through Eqs.(28)and (29),AandBin Eq. (29) are established. Similarly, ^Aand ^Bare obtained via Eqs.(30)and(19).

    Fig.7. The mean MSE of CV for fifty trajectories and each non-zero coefficients n. (a)Function b2G;(b)function b3G;(c)function b4G;(d)function a22.

    Likewise,we use 10-fold CV to find the optimal number of iterations of SSR.For the one hundred trajectories and each the number of non-zero coefficientsn, the mean MSE of 10-fold CV is calculated by performing the algorithm in Table 1.Here,Figs.7(a),7(b),7(c)and 7(d)show the mean MSE of the functionb2G,b3G,b4Ganda22with every trajectories and the number of iterations. Then,to judge the number of iterations,we choose the optimal trajectory which has a minimum MSE in all average MSE. Figures 8(a), 8(b), 8(c) and 8(d) are the MSE of the functionsb2G,b3G,b4Ganda22. From Fig.8(a),the MSE has large fluctuations inn<4 and small fluctuations inn ≥4. The part ofn ≥7 is amplified in the upper right of Fig.8(a). It can be seen that the MSE decreases sharply fromn=8 ton=9 and fluctuates aftern>10. Meanwhile, the minimum MSE of the trajectory is acquired inn=10. Thus,we conclude that the best number of iterations isKG?9 orKG?10 in drift functionb2G,i.e.,n=9 orn=10. Due to the feature ofb2G,we only considern=9. Similarly according to the above analysis,because of the minimum MSE corresponding to then, the number of optimal non-zeros coefficients of the functionsb3G,b4Ganda22aren=2,n=2 andn=1,respectively. Differently,in Fig.8(d),we choosen=1 becausen=0 does not satisfy the existence of white noise in Eq.(25).

    In the following,from the sparse identification algorithm in Table 1, we learn the coefficients ofb2G,b3G,b4Ganda22usingKG?9,KG?2,KG?2 andL?1 iterations,respectively.With the application of the optimal trajectory and 10-fold CV,the learned results are shown in Tables 6,7,8 and 9 correspond tob2G,b3G,b4Ganda22,respectively.

    Fig.8. The MSE of optimal trajectory with non-zero coefficients n. (a)Function b2G;(b)function b3G;(c)function b4G;(d)function a22.

    Table 6. Identified coefficients for b2G.

    Table 7. Identified coefficients for b3G.

    Table 8. Identified coefficients for b4G.

    Table 9. Identified coefficients for a22.

    We show intuitively the learned results in Figs.9–11. Figure 9 demonstrates the fitting situation of the functionsf(x)andg(x). Figure 10 represents the comparison of the original system and the learned system in time-varying displacementx(t)and voltageV(t). It can be seen that compared with the true coefficients, the learned coefficients have slight deviation within an acceptable range.

    Fig.9. Comparisons between the learned values and true values of(a) f(x)and(b)g(x).

    Fig.10. Comparisons of(a)time-varying displacement and(b)time-varying voltage.

    Fig.11. Comparisons between true and learned functions. (a)and(b)b3G;(c)and(d)b4G.

    Then, the results of comparison between true values and learned values with respect tob3Gandb4Gare shown in Fig.11.Figures 11(a) and 11(b) are the true functions ofb3Gandb4G, respectively. Figures 11(c) and 11(d) are the learning functions ofb3Gandb4G, respectively. The true and learned results of functionb2Gare displayed in three partsx–V,x–Iandx–t. We demonstrate the equation in two-dimensional due to the dimension ofb2Gmore than two. Figures 12(a)–12(e)represent the true results. Figures 12(b)–12(f)represent the learned results. The three rows of the figures describe the case with(i)y=0.5,I=0.5 andt=10;(ii)y=0.5,V=0.5 andt=10;(iii)y=0.5,V=0.5 andI=0.5,respectively. It can be seen that the coefficients learned from the sparse identification algorithm have good enough accuracy.

    Fig. 12. Comparisons between true values and learned values of the b2G. (a) and (b) y=0.5, I =0.5,t =10; (c) and (d) y=0.5,V =0.5,t=10;(e)and(f)y=0.5,V =0.5,I=0.5.

    Above all,the hybrid energy harvesting system identified by sparse identification is consistent enough with the real system.

    6. Conclusion

    In this paper,a sparse identification approach was developed to acquire the governing equations of the hybrid energy harvesting system from the simulated sample state data. Two examples were taken to verify the feasibility and effectiveness of the method.

    To begin with,a hybrid energy harvester under harmonic excitation was the first example. Through approximating derivatives by the first-order difference and constructing the basis functions dictionary,we obtained the expressions of differential equations of the system,which are equal to the linear combination of basis functions. Then,for the number of nonzero coefficientsnand each sample trajectory, 7-fold crossvalidation(CV)was applied to prevent under-fitting and overfitting by observing the variations of MSE.Removing the situations of under-fitting and over-fitting,we selectedn=9,n=2 andn=2 for the differential equations ˙y, ˙Vand ˙I,respectively.After solvingAu=Bby using the sparse identification algorithm,we learned the unknown coefficients,and discussed the degree of fitting.The results showed that the method is applied to solve the coefficients which are sufficiently accurate to the true functions,and all the learned coefficients are greatly converge to the true coefficients with the increase of data length under a small time step.Thus,this method can be well utilized to the deterministic hybrid energy harvesting system.

    A hybrid energy harvester under both harmonic excitation and Gaussian white noise was the second example. Firstly,we received the approximated equations of the drift term and diffusion term based on the Kramers–Moyal formulas. According to the basis function dictionary,we calculated the iterative expressions of the drift term and diffusion term, respectively.Together with the 10-fold CV, the sparse identification algorithm was used to obtain the number of optimal non-zero coefficientsn=9,n=2,n=2 andn=1 corresponding to the functions ofb2G,b3G,b4Ganda22, respectively. According to the comparison of learned functions and true functions,the results demonstrated that the method is well applied to the hybrid energy harvesting system with an acceptable deviation.Meanwhile, compared with the first example, the second example depends on more sufficient data to reduce the effect of the noise.

    Thus,measuring the time-series data of the system state,we can build the equations for the hybrid energy harvester.Then,the learned system can be applied to explore the subsequent dynamical behavior with the aim of the improvement of performance of the energy harvester.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant Nos. 12002089 and 11902081) and Project of Science and Technology of Guangzhou (Grant No.202201010326).

    av在线老鸭窝| 在线观看免费视频网站a站| 免费看不卡的av| 制服丝袜香蕉在线| 少妇丰满av| 亚洲av电影在线观看一区二区三区| 能在线免费看毛片的网站| 免费在线观看成人毛片| 国产精品伦人一区二区| 国产精品国产av在线观看| 亚洲欧美精品自产自拍| xxx大片免费视频| 国产av国产精品国产| 建设人人有责人人尽责人人享有的 | 国产片特级美女逼逼视频| 国产深夜福利视频在线观看| 在线播放无遮挡| 边亲边吃奶的免费视频| 亚洲国产欧美在线一区| 五月天丁香电影| 精品亚洲成国产av| 国产av码专区亚洲av| 少妇丰满av| 色视频在线一区二区三区| 午夜激情福利司机影院| 秋霞伦理黄片| 日日啪夜夜撸| 一级毛片电影观看| 亚洲欧美一区二区三区国产| 国产成人午夜福利电影在线观看| 交换朋友夫妻互换小说| 国产亚洲午夜精品一区二区久久| 最近2019中文字幕mv第一页| 久久久精品免费免费高清| 制服丝袜香蕉在线| 免费久久久久久久精品成人欧美视频 | 精品99又大又爽又粗少妇毛片| 亚洲无线观看免费| 男女边摸边吃奶| 国产亚洲欧美精品永久| 水蜜桃什么品种好| 免费人成在线观看视频色| 亚洲第一区二区三区不卡| 精品一区二区免费观看| 一本久久精品| 最近最新中文字幕大全电影3| 亚洲成人av在线免费| 视频区图区小说| 91精品国产国语对白视频| 亚洲精品中文字幕在线视频 | 啦啦啦在线观看免费高清www| av在线播放精品| 国产无遮挡羞羞视频在线观看| 久久亚洲国产成人精品v| 午夜日本视频在线| 丰满乱子伦码专区| 在线免费观看不下载黄p国产| 国产欧美日韩精品一区二区| 一区二区三区精品91| 少妇的逼好多水| 色婷婷久久久亚洲欧美| 久久久欧美国产精品| 国产黄色免费在线视频| av一本久久久久| 亚洲欧美日韩另类电影网站 | 亚洲国产欧美在线一区| 亚洲精品成人av观看孕妇| 小蜜桃在线观看免费完整版高清| 国产一区二区三区av在线| 久久久久久久精品精品| 亚洲图色成人| 午夜福利在线观看免费完整高清在| 国产成人免费观看mmmm| 色婷婷久久久亚洲欧美| 亚洲国产精品999| 一区二区三区精品91| 一级毛片久久久久久久久女| 亚洲av在线观看美女高潮| av福利片在线观看| 国产国拍精品亚洲av在线观看| 亚洲精品日本国产第一区| 成年女人在线观看亚洲视频| av播播在线观看一区| 嫩草影院新地址| 国产精品蜜桃在线观看| 国产av精品麻豆| 一本—道久久a久久精品蜜桃钙片| 我要看黄色一级片免费的| 免费少妇av软件| 我的老师免费观看完整版| 一级a做视频免费观看| 黄色视频在线播放观看不卡| 国产伦在线观看视频一区| 日本色播在线视频| 国产在视频线精品| 午夜免费男女啪啪视频观看| 国内揄拍国产精品人妻在线| 久久久色成人| 少妇的逼水好多| 欧美亚洲 丝袜 人妻 在线| 国产精品女同一区二区软件| 亚洲图色成人| 99精国产麻豆久久婷婷| 91久久精品国产一区二区三区| 少妇熟女欧美另类| 亚洲久久久国产精品| 哪个播放器可以免费观看大片| 噜噜噜噜噜久久久久久91| 国产 精品1| 中文字幕亚洲精品专区| 国产男女超爽视频在线观看| 色哟哟·www| 久久久色成人| 日韩国内少妇激情av| 国产午夜精品久久久久久一区二区三区| 国产综合精华液| 建设人人有责人人尽责人人享有的 | 国产熟女欧美一区二区| 久久精品久久久久久噜噜老黄| 久久影院123| 日韩一区二区三区影片| 亚洲久久久国产精品| 亚洲欧美成人综合另类久久久| 嫩草影院新地址| 又粗又硬又长又爽又黄的视频| 亚洲久久久国产精品| 韩国高清视频一区二区三区| 免费在线观看成人毛片| 国产69精品久久久久777片| 成人影院久久| 黄片wwwwww| 亚洲欧美精品专区久久| 两个人的视频大全免费| 亚洲精品视频女| 深夜a级毛片| 亚洲国产精品专区欧美| 啦啦啦在线观看免费高清www| 天天躁日日操中文字幕| 美女cb高潮喷水在线观看| 国产 精品1| 老熟女久久久| av视频免费观看在线观看| 肉色欧美久久久久久久蜜桃| 成人毛片a级毛片在线播放| 色婷婷av一区二区三区视频| 大香蕉97超碰在线| 99久久精品一区二区三区| 日韩人妻高清精品专区| 男女国产视频网站| av线在线观看网站| 亚洲av日韩在线播放| 偷拍熟女少妇极品色| 建设人人有责人人尽责人人享有的 | 丝袜脚勾引网站| 99久国产av精品国产电影| 狠狠精品人妻久久久久久综合| 欧美区成人在线视频| 国产精品一及| 日本欧美国产在线视频| 内射极品少妇av片p| 少妇人妻一区二区三区视频| 99久久精品国产国产毛片| 亚洲国产毛片av蜜桃av| 日韩av在线免费看完整版不卡| 日韩成人av中文字幕在线观看| 干丝袜人妻中文字幕| 国产精品一区二区在线观看99| 搡女人真爽免费视频火全软件| 亚洲高清免费不卡视频| av.在线天堂| 亚洲av成人精品一二三区| 在现免费观看毛片| 精品视频人人做人人爽| 久久久久久九九精品二区国产| 成人18禁高潮啪啪吃奶动态图 | 亚州av有码| 国产精品熟女久久久久浪| 91狼人影院| 日本色播在线视频| 18禁在线播放成人免费| 18禁动态无遮挡网站| 亚洲av二区三区四区| 国产国拍精品亚洲av在线观看| 久久精品夜色国产| 久久亚洲国产成人精品v| 久久99热这里只有精品18| 精品久久久精品久久久| 久久久久久久久久成人| 久久久成人免费电影| 成人无遮挡网站| 午夜免费观看性视频| 日日啪夜夜撸| 女性被躁到高潮视频| av专区在线播放| 国产黄色免费在线视频| 国产精品嫩草影院av在线观看| 成年女人在线观看亚洲视频| 午夜福利高清视频| 亚洲成人手机| 亚洲三级黄色毛片| 深夜a级毛片| 亚洲高清免费不卡视频| 久久精品熟女亚洲av麻豆精品| 久久国产乱子免费精品| 中文字幕精品免费在线观看视频 | 一本—道久久a久久精品蜜桃钙片| 亚洲精品成人av观看孕妇| 久久亚洲国产成人精品v| 五月伊人婷婷丁香| 91久久精品国产一区二区成人| 极品少妇高潮喷水抽搐| 国产黄色免费在线视频| 国产淫片久久久久久久久| 小蜜桃在线观看免费完整版高清| 日韩制服骚丝袜av| 久久久久国产精品人妻一区二区| 国产av码专区亚洲av| 亚洲欧洲日产国产| 特大巨黑吊av在线直播| 久久久久久久久大av| 18禁在线无遮挡免费观看视频| 国产高清三级在线| 你懂的网址亚洲精品在线观看| 成人特级av手机在线观看| 免费看av在线观看网站| 在线看a的网站| 成人影院久久| 亚洲av成人精品一区久久| 亚洲精品视频女| 一级毛片我不卡| 在线观看免费视频网站a站| 搡女人真爽免费视频火全软件| 久久国内精品自在自线图片| 免费黄频网站在线观看国产| 免费播放大片免费观看视频在线观看| 亚洲电影在线观看av| 国产男人的电影天堂91| 亚洲av在线观看美女高潮| 亚洲精品aⅴ在线观看| 日本猛色少妇xxxxx猛交久久| 国产一级毛片在线| av在线蜜桃| 少妇猛男粗大的猛烈进出视频| 国产日韩欧美在线精品| 美女国产视频在线观看| 亚洲精品成人av观看孕妇| 99视频精品全部免费 在线| 男女国产视频网站| 高清在线视频一区二区三区| 欧美精品一区二区免费开放| 国产精品久久久久成人av| www.av在线官网国产| 精品一区二区免费观看| 老司机影院成人| 看免费成人av毛片| 亚洲自偷自拍三级| 欧美成人午夜免费资源| 亚洲av国产av综合av卡| 久久久色成人| 国产黄片美女视频| 亚洲精品国产色婷婷电影| 中文字幕亚洲精品专区| 亚洲欧美精品自产自拍| 午夜福利影视在线免费观看| 日韩国内少妇激情av| 欧美少妇被猛烈插入视频| 国产一级毛片在线| 亚洲精品自拍成人| 亚洲综合精品二区| 日韩,欧美,国产一区二区三区| 我的女老师完整版在线观看| 中文字幕免费在线视频6| 国产精品一区二区性色av| 高清av免费在线| 纯流量卡能插随身wifi吗| 亚洲欧美一区二区三区黑人 | 亚洲av.av天堂| 精品人妻熟女av久视频| 大话2 男鬼变身卡| 午夜福利视频精品| 国产色婷婷99| 美女国产视频在线观看| 色视频www国产| 高清黄色对白视频在线免费看 | 美女主播在线视频| 国产 精品1| 亚洲国产高清在线一区二区三| 日韩强制内射视频| 久久婷婷青草| 亚洲综合色惰| 欧美 日韩 精品 国产| 成年美女黄网站色视频大全免费 | 在线天堂最新版资源| 偷拍熟女少妇极品色| 中文字幕人妻熟人妻熟丝袜美| 免费观看a级毛片全部| av女优亚洲男人天堂| av福利片在线观看| 青青草视频在线视频观看| 日韩一区二区视频免费看| 欧美日韩精品成人综合77777| 亚洲人与动物交配视频| 成人毛片60女人毛片免费| 精品久久久久久久末码| 国产毛片在线视频| 超碰av人人做人人爽久久| a级一级毛片免费在线观看| 中国三级夫妇交换| 黑丝袜美女国产一区| 国产精品女同一区二区软件| 91精品一卡2卡3卡4卡| 国产成人免费观看mmmm| 在线亚洲精品国产二区图片欧美 | 观看免费一级毛片| 欧美日韩视频精品一区| 国产精品国产三级国产专区5o| 你懂的网址亚洲精品在线观看| 亚洲成人手机| 欧美人与善性xxx| 丰满乱子伦码专区| 99热这里只有是精品50| 爱豆传媒免费全集在线观看| 九九爱精品视频在线观看| 国产av码专区亚洲av| 久久人人爽av亚洲精品天堂 | 国产高清不卡午夜福利| 免费观看性生交大片5| 美女中出高潮动态图| 精品国产乱码久久久久久小说| 超碰97精品在线观看| 1000部很黄的大片| 麻豆成人午夜福利视频| 人人妻人人澡人人爽人人夜夜| 久久6这里有精品| 男人添女人高潮全过程视频| 国产男人的电影天堂91| 亚洲精品一区蜜桃| 一级毛片 在线播放| 热re99久久精品国产66热6| 亚洲激情五月婷婷啪啪| 成年人午夜在线观看视频| 亚洲欧美精品自产自拍| 王馨瑶露胸无遮挡在线观看| 国产白丝娇喘喷水9色精品| 伦理电影免费视频| 久久久欧美国产精品| 国产精品人妻久久久影院| 欧美高清性xxxxhd video| 亚洲av国产av综合av卡| 色婷婷久久久亚洲欧美| 久久久久久九九精品二区国产| 国产综合精华液| 国产又色又爽无遮挡免| 自拍欧美九色日韩亚洲蝌蚪91 | 97在线人人人人妻| 日产精品乱码卡一卡2卡三| 久久精品夜色国产| 人妻夜夜爽99麻豆av| av不卡在线播放| 亚洲中文av在线| 亚洲精品久久午夜乱码| 国产精品不卡视频一区二区| 丰满乱子伦码专区| 日韩电影二区| 日韩av免费高清视频| 久久精品国产a三级三级三级| 国产一区二区在线观看日韩| 水蜜桃什么品种好| 亚洲精品久久久久久婷婷小说| 毛片女人毛片| 久久人妻熟女aⅴ| 久久国产亚洲av麻豆专区| 欧美高清成人免费视频www| 五月玫瑰六月丁香| 久久这里有精品视频免费| 丰满人妻一区二区三区视频av| 97在线人人人人妻| 日韩不卡一区二区三区视频在线| 国产深夜福利视频在线观看| 欧美日韩精品成人综合77777| 久久久久久久大尺度免费视频| 亚洲精品乱码久久久久久按摩| 在线免费观看不下载黄p国产| 伦精品一区二区三区| 少妇丰满av| 99热6这里只有精品| 蜜臀久久99精品久久宅男| 亚洲精品日本国产第一区| 纵有疾风起免费观看全集完整版| 我要看黄色一级片免费的| 国产成人精品久久久久久| 18禁在线无遮挡免费观看视频| 亚洲成人av在线免费| 91在线精品国自产拍蜜月| 国产精品一区二区三区四区免费观看| 人人妻人人添人人爽欧美一区卜 | 色婷婷av一区二区三区视频| a 毛片基地| 久久久久久九九精品二区国产| videossex国产| 夜夜看夜夜爽夜夜摸| 日本av手机在线免费观看| 欧美人与善性xxx| 久久久久人妻精品一区果冻| 日韩,欧美,国产一区二区三区| 激情 狠狠 欧美| 91狼人影院| 搡老乐熟女国产| 人妻一区二区av| a级毛片免费高清观看在线播放| 赤兔流量卡办理| 中文精品一卡2卡3卡4更新| 在线观看一区二区三区激情| 亚洲av.av天堂| 国产色爽女视频免费观看| 草草在线视频免费看| 精品99又大又爽又粗少妇毛片| 菩萨蛮人人尽说江南好唐韦庄| 欧美高清性xxxxhd video| 日韩一本色道免费dvd| 国产淫片久久久久久久久| 日韩av在线免费看完整版不卡| 国产人妻一区二区三区在| 日韩一本色道免费dvd| 免费观看的影片在线观看| 亚洲精品aⅴ在线观看| 国模一区二区三区四区视频| 纵有疾风起免费观看全集完整版| 久久久色成人| 免费高清在线观看视频在线观看| 国产精品一区www在线观看| 亚洲精品乱码久久久久久按摩| 亚洲欧美中文字幕日韩二区| 日本与韩国留学比较| 成年免费大片在线观看| 亚洲欧美成人综合另类久久久| 晚上一个人看的免费电影| 最新中文字幕久久久久| 亚洲精品456在线播放app| 国产亚洲5aaaaa淫片| 九色成人免费人妻av| 国产精品人妻久久久久久| 国产精品欧美亚洲77777| 麻豆成人av视频| 欧美区成人在线视频| 有码 亚洲区| 我要看日韩黄色一级片| 国产成人a∨麻豆精品| 成年女人在线观看亚洲视频| av免费观看日本| 丝袜脚勾引网站| 亚洲电影在线观看av| 亚洲av成人精品一二三区| 在线观看免费高清a一片| 久久久久久久亚洲中文字幕| 国产亚洲5aaaaa淫片| 能在线免费看毛片的网站| 亚洲久久久国产精品| av专区在线播放| 菩萨蛮人人尽说江南好唐韦庄| 久久久久性生活片| av在线蜜桃| 91精品国产国语对白视频| 精品少妇黑人巨大在线播放| 日韩制服骚丝袜av| 日本黄色片子视频| 高清午夜精品一区二区三区| 男男h啪啪无遮挡| 另类亚洲欧美激情| 又大又黄又爽视频免费| 成年免费大片在线观看| 成人亚洲精品一区在线观看 | 久久韩国三级中文字幕| 免费观看在线日韩| 丝袜脚勾引网站| 精品人妻视频免费看| 如何舔出高潮| 各种免费的搞黄视频| 亚洲人成网站高清观看| 18禁在线播放成人免费| 99国产精品免费福利视频| 啦啦啦中文免费视频观看日本| 日韩视频在线欧美| 欧美精品国产亚洲| 国产欧美日韩精品一区二区| 精品午夜福利在线看| 中文字幕免费在线视频6| 五月伊人婷婷丁香| 国产精品麻豆人妻色哟哟久久| 一本—道久久a久久精品蜜桃钙片| 国产午夜精品一二区理论片| 搡老乐熟女国产| 亚洲经典国产精华液单| 国语对白做爰xxxⅹ性视频网站| av网站免费在线观看视频| 亚洲欧美日韩另类电影网站 | 国产精品熟女久久久久浪| 日产精品乱码卡一卡2卡三| 久久精品国产亚洲网站| 日本wwww免费看| 亚洲av成人精品一区久久| 99九九线精品视频在线观看视频| 精品少妇黑人巨大在线播放| 国产亚洲精品久久久com| 日韩欧美 国产精品| 久热久热在线精品观看| 只有这里有精品99| 精品人妻一区二区三区麻豆| 一级a做视频免费观看| 欧美高清成人免费视频www| 午夜福利视频精品| 你懂的网址亚洲精品在线观看| 日韩一区二区三区影片| 亚洲熟女精品中文字幕| 日本欧美视频一区| 精品一区在线观看国产| 黄色日韩在线| 亚洲色图综合在线观看| 纵有疾风起免费观看全集完整版| 少妇猛男粗大的猛烈进出视频| 男女免费视频国产| 亚洲国产精品成人久久小说| 免费观看a级毛片全部| 久久人人爽人人片av| 搡女人真爽免费视频火全软件| 国产久久久一区二区三区| 欧美另类一区| 久热这里只有精品99| 亚洲精品久久午夜乱码| 久久av网站| 91精品国产国语对白视频| 免费大片黄手机在线观看| 丰满少妇做爰视频| 日产精品乱码卡一卡2卡三| 晚上一个人看的免费电影| 国产精品福利在线免费观看| 亚洲图色成人| 欧美国产精品一级二级三级 | 看十八女毛片水多多多| 欧美精品亚洲一区二区| av在线观看视频网站免费| av黄色大香蕉| 高清av免费在线| 亚洲中文av在线| 免费观看无遮挡的男女| 国产永久视频网站| 国产精品蜜桃在线观看| 高清日韩中文字幕在线| 久久亚洲国产成人精品v| 美女福利国产在线 | av国产精品久久久久影院| 身体一侧抽搐| 久久人人爽人人片av| 99久久中文字幕三级久久日本| 联通29元200g的流量卡| 亚洲欧美日韩卡通动漫| 日本-黄色视频高清免费观看| 美女高潮的动态| 日本色播在线视频| 国产大屁股一区二区在线视频| 国产精品av视频在线免费观看| 国产一区有黄有色的免费视频| 麻豆国产97在线/欧美| 久久女婷五月综合色啪小说| 少妇 在线观看| 成人国产麻豆网| 午夜免费男女啪啪视频观看| 啦啦啦视频在线资源免费观看| 久久精品人妻少妇| 18禁动态无遮挡网站| 欧美另类一区| av福利片在线观看| 人妻少妇偷人精品九色| 国产一区二区三区av在线| 热re99久久精品国产66热6| 国产精品av视频在线免费观看| 97超碰精品成人国产| 高清不卡的av网站| 亚洲一区二区三区欧美精品| 日韩一区二区三区影片| 97超视频在线观看视频| 久久精品国产亚洲av涩爱| 最近手机中文字幕大全| 精品久久久久久久久亚洲| 老师上课跳d突然被开到最大视频| 人人妻人人添人人爽欧美一区卜 | 黑人猛操日本美女一级片| 欧美激情国产日韩精品一区| 丝袜脚勾引网站| 国产乱人视频| 国产乱人偷精品视频| 一级毛片久久久久久久久女| 久久久久久久久久人人人人人人| 亚洲成人一二三区av| 一本—道久久a久久精品蜜桃钙片| 人妻制服诱惑在线中文字幕| 婷婷色综合www| 日韩中字成人| 久久久欧美国产精品| 国产免费一区二区三区四区乱码| 国产精品无大码| 精品亚洲成国产av| 嫩草影院新地址| 国产精品久久久久久久电影| 色视频www国产| 日韩av免费高清视频| 一个人看视频在线观看www免费| 欧美精品亚洲一区二区| 少妇被粗大猛烈的视频| 亚洲精华国产精华液的使用体验| 美女cb高潮喷水在线观看| 蜜臀久久99精品久久宅男| 大又大粗又爽又黄少妇毛片口| 亚洲aⅴ乱码一区二区在线播放| 人妻夜夜爽99麻豆av|