• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Watt-level,green-pumped optical parametric oscillator based on periodically poled potassium titanyl phosphate with high extraction efficiency

    2022-12-28 09:53:10HangHangYu俞航航ZhiTaoZhang張志韜andHongWenXuan玄洪文
    Chinese Physics B 2022年12期

    Hang-Hang Yu(俞航航), Zhi-Tao Zhang(張志韜), and Hong-Wen Xuan(玄洪文)

    GBA Branch of Aerospace Information Research Institute,Chinese Academy of Sciences,Guangzhou 510700,China

    Keywords: SRO-OPO,PPKTP,build-up time

    1. Introduction

    In the past decades,visible laser has glorious applications in light communications,nonlinear spectroscopy and trace gas sensing.[1–3]Compact green-pumped optical parametric oscillators (OPOs) are proven way to generate short-pulse visible laser,which could also be as one of pumping sources for solid-state 193 nm laser generation. A green-pumped optical parametric oscillator (OPO) has the advantage of producing visible laser radiation directly as well as the tunability, owing to the current commercially available high-performance quasi-phase-matched (QPM) nonlinear materials such as periodically poled MgO-doped LiNbO3(MgO:PPLN), LiTaO3(PPLT), and KTiOPO4(PPKTP).[4–9]It provides broader solutions for realization of solid-state 193 nm laser or other deep ultraviolet lasers. Photorefractive effect and green-induced infrared absorption in PPLN and PPLT are inevitable, which hinder the OPO output power boosting, although the MgOdoped crystals have obtained extensive research due to their mature growth and poling technology.[10–12]Recently,PPKTP shows itself as a promising candidate for high power OPOs in visible and near-infrared range, not only for its high damage threshold but also for its high effective nonlinearity.[13,14]Notably, PPKTP has a higher photorefractive damage threshold and negligible green-induced infrared absorption compared to PPLN and PPLT. Table 1 summarizes the state-of-art OPOs based on PPKTP pumped by both CW-and pulsed-green laser.A CW green-pumped singly resonant oscillator OPO (SROOPO)based on PPKTP generated the signal at 946.4 nm with 28 mW under the pump power of 1.2 W,and the quantum efficiency was 13%.[15]For the dual-wavelength output by the green-pumped doubly resonant oscillator(DRO)OPOs based on PPKTP, the output power of the signal was from tens of mW to hundreds of mW.[16,17]Until now, the highest output signal power in the visible and near-infrared(below 1μm)region is~580 mW at 765 nm.[18]In a word,the thermal effect inside PPKTP limits the OPO performances at high pumping power. High-power visible laser with good beam quality is the cornerstone to generate the 193 nm by single-step operation of sum frequency. However, there have been no reports on the Watt-level visible signal laser generated by green-pumped PPKTP-based OPOs seen from Table 1. The realization of Watt-level visible signal laser by PPKTP-based OPOs is still of challenge.

    In this contribution, we demonstrate a Watt-level,nanosecond SRO-OPO employed a short cavity with a high conversion efficiency. A uniform grating-period PPKTP was applied to generate a signal light at 709 nm and an idler light at 2132 nm pumped by a 532 nm laser. The signal wavelength at 709 nm will be applied to the 193 nm generation by frequency mixing with the ultraviolet laser at 266 nm in further research, which is the second-harmonic wavelengths of the pump. Hence, the signal wavelength of 709 nm is fixed by keeping constant temperature and therefore the wavelengthtuning characteristic of crystal is needless. The average output power of the signal was 1.51 W with the repetition rate of 100 kHz and the pulse duration of~1 ns. To the best of our knowledge,this is the first report on Watt-level,nanosecond PPKTP-based SRO-OPO with a high pump extraction efficiency up to 59%. This system also has the potential for power scaling up to a higher level.

    Table 1. The state-of-art OPOs based on PPKTP pumped by CW-and pulsed-green laser.

    2. Experimental setup

    The experimental setup is schematically shown in Fig.1.The pump is a commercially available diode-pumped-solidstate laser (DPSSL) operating at the central wavelength of 532 nm with about 3 ns pulse duration and 100 kHz repetition rate.The pumping source provides up to average power of 40 W with linearly polarization and in the approximate TEM00spatial mode withM2<1.5.The PPKTP crystal(Raicol Crystals Inc.) is 1 mm×2 mm×30 mm in dimensions with a domain inversion period of 11.05μm. The crystal is mounted on a 40 mm-long copper oven with temperature tuning available from 20?C to 60?C by thermos-electric cooler(TEC)with the precision of 0.1?C.Anti-reflective(AR)coating for 532 nm is applied to two end sides of the crystal. The OPO cavity has a length of~5.5 cm, and it is made up of a plane-convex dichromic mirror(DM)and a plane output coupler(OC).The dichromic mirror, with a radius of curvature of 2 m, is AR coated for 532 nm(R<0.5%).The OC is high reflective(HR)coating for 532 nm(T<0.2%)and partial reflective(PR)coating for the signal (T=35%). Both DM and OC mirrors are AR coated for idler (2143 nm) to form an SRO-OPO operation.

    Fig.1. Experimental setup of the green-pumped PPKTP OPO.FI,Faraday isolator;PBS:polarizing beam splitter;HWP:half-wave plate;DM:dichromic mirror;L:lens;M:mirror;OC:output coupler.

    3. Results

    Gauging the precise build-up time of OPO will play a significant role in SFG process of 193 nm generation in terms of the temporal overlap as well as the phase control. Due to the temporal gain narrowing effect,the pulse duration of the signal was shorter than that of the pump, making it an issue to have an exact measurement of OPO build-up time by our current photodiode(PD,Hamamatsu S5973-01). Benefitting from the stabilized twin-peak pulse profile of the pump,the estimation of the build-up time was feasible by our PD and oscilloscope.The pulse profiles of the pump and signal were measured by the fast response PD with the bandwidth more than 1 GHz and an oscilloscope (MSO44, Tektronix) to investigate the buildup time of OPO process, as shown in Fig.2. The position of PD was fixed during measurement for depleted pump and signal pulse profile. Two dichromic mirrors with different coating(HR for 532 nm&HT for 709 nm,and HT for 532 nm&HR for 709 nm)were individually set before PD according to the necessity of measurement. For acquiring the high contrast data, the comparable amplitude responses of PD for the extraction pump and signal were required,which were achieved by using dichromic mirrors and polarization misalignment between pump and PPKTP crystal.

    The pulse duration of the pump with twin-peak pulse profile before the OPO process was firstly measured to be 2.3 ns,as shown in Fig. 2(a). During the OPO process, the pulse profile was measured as depicted in Fig. 2(b) with a FWHM duration of right peak of 1.1 ns. Obviously, the pulse shape in Fig. 2(b) appears to have a similar twin-peak profile with the pulse shape of initial pump in Fig. 2(a) besides a larger right peak. After inserting a dichromic mirror(HT for 532 nm& HR for 709 nm) between PD and OPO cavity during the OPO process, the residual pulse profile shows a similar ratio twin-peak profile with initial pulse profile of pump shown in Fig.2(a). Therefore,the pulse profile in Fig.2(b)is verified to be the combination of the undepleted pump and the signal.

    Pulse profiles in Figs. 2(a) and 2(b) are compared as shown in Fig. 2(c). The curves of A and B are the replica of Figs.2(a)and 2(b),respectively. Curve C is the difference between B and A only by mathematical substraction. To further confirm that the pulse profile in Fig. 2(b) is the combination of the undepleted pump and the signal, the pulse duration of the signal shown in the left inset of Fig.2(d)was measured to be of~1 ns after filtering out the undepleted pump by use of another dichromic mirror(HR for 532 nm&HT for 709 nm).The pulse profile of the measured signal is normalized and demonstrated to be curve E in Fig.2(d),and curve D is the normalization pulse profile of curve C.It is obvious that curves E and D fit with each other perfectly,which implies that the pulse shape in Fig.2(b)is not only the undeleted pump but also with the signal. It is surprising that the pulse profile of signal is singlet instead of twin-peak pulse profile as pump. There is no reasonable explanation for this phenomenon. We notice that the slight humps exist on the right part in both curves D and E in Fig.2(d),which may result from the right peak of pump pulse profile.

    The right inset of Fig. 2(d) shows the residuals between D and E, which was supposed to be zero theoretically. It is mainly caused by the central peak mismatch and the intensity noise actually. To acquire the precise build-up time of OPO,we suppose that the singlet profile of signal arises from the left peak of pump pulse. Therefore,the build-up time of OPO could be obtained by the variation of curve E in delay time when the peak of the curve D coincides with the curve E in Fig.2(d). The build-up time of OPO is certified with~1.6 ns by the time variation of curve E.

    Fig. 2. Measured pulse profile of the pump and the signal. (a) The initial pulse profile of pump before the OPO process. (b) The combined pulse profile of signal and depleted pump during the OPO process. (c)The plots of detailed measurement data. (d)The comparison between the difference in(c)with individually measured signal pulse.

    Fig.3. The spectra of(a)pump and signal,and(c)idler.

    The spectra of the pump and signal were measured using a spectrometer with the spectral resolution of 0.66 nm(HR4Pro,Ocean Optics). At the same time,the idler was checked by an optical spectrum analyzer(OSA,AQ6376,YOKOGAWA),as shown in Fig. 3. The central wavelengths for the pump and signal were 531.5 nm and 709 nm when the temperature of the crystal was set to 60?C.The spectrum width of the signal was~1 nm, which was narrower than that of pump with 1.2 nm.The inset in Fig. 3(b) is the enlarged view of idler showing SNR more than 20 dB,and the central wavelength of idler was 2132 nm with a spectrum width of 4.2 nm by using 0.2 nm resolution of OSA. The spectrum width of idler is obviously higher than that of the signal and pump,which may result from the associated effects of the non-monochromaticity of pump and QPM tolerability around central pump wavelength of PPKTP. It could contribute to multi-OPO processes within the spectrum width of pump.

    Fig.4. Power scaling and efficiency of the OPO.(a)The output power and slope efficiency of signal and idler versus pump power. (b) The overall conversion and extraction efficiency versus pump power.

    The signal and idler output powers were measured with results in Fig. 4. The temperature of PPKTP maintains at 60?C. The maximum pump power was limited to 4.5 W to avoid excessive heat loading and the significant thermal lensing effect at high pump. With a single-side pump scheme,the OPO threshold is as low as~300 mW.The data-fitting slope efficiency of signal and idler are 37.6%and 14%,respectively,as illustrated in Fig.4(a).At the pump power of 4.3 W,the signal and idler achieved the maximum output power of 1.51 W and 0.57 W, respectively. As shown in Fig. 4(b), the overall conversion and extraction efficiencies are>45%and>52%,respectively, when the pump power is above 1.5 W. The output power and the extraction efficiency initially experiences a rapid increase, which leads to the maximum extraction efficiency up to 59%. It is worth emphasizing that the measurement of idler power was only carried out after the OC without including the idler power on the pump-incidence side. Thus,it implies a higher idler power inside the SRO-OPO cavity.The overall efficiency continuously decreases because of the severe mode mismatch caused by the thermal lensing effect with pump power increasing. The slow downward trend of extraction efficiency benefits from the short cavity,which could eliminate the mode mismatch partially. Therefore, a higher conversion efficiency could be obtained when the mode mismatch is improved by selecting appropriate pump parameters in the further research.

    Fig.5. Beam profile measurement of signal in horizontal(a)and vertical(b)planes.

    The beam quality of the commercial pump is withM2<1.5. To investigate the beam quality of the signal, we measured the variation of beam profile with a lens of focal length 100 mm recorded by a commercially available beam profiling camera (SP907, Ophir). Limited by the attenuation devices,the signal power was set to~800 mW. Insets in Fig. 5 are the signal beam profiles at different positions, intuitively reflecting the beam distribution and variation with diverse locations. Intensive measurements were performed near the focus,and the results are presented in Fig.5. With Gaussian fitting,the beam propagation factorM2was obtained to be~1.9 and 1.7 in horizontal and vertical axes,respectively. The identical beam radii in the horizontal and vertical axes indicate an excellent spot roundness. Because of the severe thermal lensing,the standing wave cavity is more challenging to obtain a good beam quality than the ring cavity. TheM2<1.9 (M2x<1.9,M2y<1.7)of the signal was obtained by precise adjustment of the cavity mirrors,which was close to the beam quality of the pump.

    4. Conclusions

    In summary,we have demonstrated a Watt-level PPKTPbased SRO-OPO with a pulse duration of~1.0 ns. The maximum output power of signal is 1.51 W with maximum extraction efficiency up to 59%. The build-up time of OPO is estimated to be 1.6 ns with twin-peak pulse profile of pump.A good beam propagation factorM2in horizontal and vertical planes is obtained with excellent Gaussian fitting. Furthermore, the expected improvement of output power, beam quality,and extraction efficiency could be obtained by selecting a better pump source. This OPO laser will be applied to our DUV laser at 193 nm by sum-frequency generation with 266 nm in the following experimental research.

    Acknowledgements

    The work was supported by the Chinese Academy of Sciences Pioneer Hundred Talents Program (Grant No. E1Z1D101) and the Research Project of Aerospace Information Research Institute, Chinese Academy of Sciences(Grant No.E2Z2D101).

    男女床上黄色一级片免费看| 不卡一级毛片| 亚洲激情在线av| 国内精品久久久久精免费| 国产蜜桃级精品一区二区三区| 国产1区2区3区精品| 亚洲欧美日韩卡通动漫| 亚洲美女视频黄频| 午夜日韩欧美国产| 成年女人永久免费观看视频| 人人妻,人人澡人人爽秒播| 亚洲欧美日韩高清在线视频| 午夜精品久久久久久毛片777| 国产精品精品国产色婷婷| www.自偷自拍.com| 美女扒开内裤让男人捅视频| 久9热在线精品视频| 亚洲熟妇熟女久久| 悠悠久久av| 人妻丰满熟妇av一区二区三区| 欧美三级亚洲精品| 免费在线观看日本一区| 热99re8久久精品国产| 欧美午夜高清在线| 不卡一级毛片| 亚洲 欧美一区二区三区| 毛片女人毛片| 成在线人永久免费视频| 亚洲专区字幕在线| 欧美另类亚洲清纯唯美| a级毛片在线看网站| 免费电影在线观看免费观看| 一进一出抽搐gif免费好疼| 亚洲av片天天在线观看| 日日摸夜夜添夜夜添小说| 一卡2卡三卡四卡精品乱码亚洲| 亚洲精品456在线播放app | 精品国产乱子伦一区二区三区| 久久精品91无色码中文字幕| 宅男免费午夜| 日韩 欧美 亚洲 中文字幕| 国产亚洲精品av在线| 亚洲成人久久爱视频| 免费观看人在逋| 一进一出好大好爽视频| 日本黄大片高清| 国产69精品久久久久777片 | 最近最新免费中文字幕在线| 久久精品aⅴ一区二区三区四区| 久久国产精品影院| 两个人看的免费小视频| 欧美乱妇无乱码| 国产精品精品国产色婷婷| 日韩精品青青久久久久久| 色老头精品视频在线观看| 午夜成年电影在线免费观看| 久久久国产成人免费| 俄罗斯特黄特色一大片| 婷婷六月久久综合丁香| 国产午夜福利久久久久久| 夜夜躁狠狠躁天天躁| 三级毛片av免费| 岛国在线免费视频观看| 人妻夜夜爽99麻豆av| 少妇的逼水好多| 在线看三级毛片| 一个人免费在线观看电影 | avwww免费| 欧美绝顶高潮抽搐喷水| 99久久成人亚洲精品观看| bbb黄色大片| 中国美女看黄片| 免费大片18禁| 亚洲av日韩精品久久久久久密| 最好的美女福利视频网| 亚洲色图av天堂| 两个人看的免费小视频| 美女高潮的动态| 午夜免费激情av| 亚洲18禁久久av| 亚洲真实伦在线观看| 国产毛片a区久久久久| 国产aⅴ精品一区二区三区波| 亚洲成人久久爱视频| 亚洲av成人av| 91av网一区二区| 欧美日韩黄片免| 757午夜福利合集在线观看| 国产 一区 欧美 日韩| 青草久久国产| 我要搜黄色片| 久久香蕉国产精品| 美女黄网站色视频| 欧美日本亚洲视频在线播放| 国产高潮美女av| 午夜福利在线观看免费完整高清在 | 亚洲欧美日韩高清专用| 亚洲国产欧美人成| 国产成年人精品一区二区| 欧美又色又爽又黄视频| 亚洲欧美日韩东京热| xxx96com| 欧美黄色淫秽网站| 性色avwww在线观看| 亚洲性夜色夜夜综合| 18禁国产床啪视频网站| 久久久久亚洲av毛片大全| 亚洲欧美精品综合一区二区三区| 三级男女做爰猛烈吃奶摸视频| 国产人伦9x9x在线观看| 亚洲一区高清亚洲精品| 嫁个100分男人电影在线观看| 久久香蕉国产精品| 天堂动漫精品| 久久精品aⅴ一区二区三区四区| 久久久国产欧美日韩av| 中文亚洲av片在线观看爽| 亚洲国产欧美网| 成人18禁在线播放| 淫妇啪啪啪对白视频| 欧洲精品卡2卡3卡4卡5卡区| 女人被狂操c到高潮| 好男人在线观看高清免费视频| 色在线成人网| 免费看光身美女| 成人一区二区视频在线观看| 亚洲在线自拍视频| 在线播放国产精品三级| 欧美3d第一页| 91麻豆av在线| 日本黄色片子视频| 欧美黄色淫秽网站| 99久久国产精品久久久| 午夜激情欧美在线| 桃红色精品国产亚洲av| 美女免费视频网站| 久久精品人妻少妇| 精品国产亚洲在线| 久久精品亚洲精品国产色婷小说| 99在线视频只有这里精品首页| 亚洲欧美日韩卡通动漫| 亚洲美女视频黄频| 99视频精品全部免费 在线 | 亚洲欧美精品综合一区二区三区| 视频区欧美日本亚洲| 免费在线观看日本一区| 久久伊人香网站| 又爽又黄无遮挡网站| 真人做人爱边吃奶动态| 狂野欧美白嫩少妇大欣赏| 免费观看的影片在线观看| 久久天躁狠狠躁夜夜2o2o| 国产精品久久视频播放| 亚洲性夜色夜夜综合| 免费大片18禁| 91av网站免费观看| 观看美女的网站| 久久精品影院6| 叶爱在线成人免费视频播放| 国产高清视频在线观看网站| 美女大奶头视频| 丰满的人妻完整版| 国产精品一及| 免费av毛片视频| 一个人免费在线观看电影 | av欧美777| 成人三级黄色视频| 欧美在线黄色| 午夜免费观看网址| 变态另类丝袜制服| 久久香蕉国产精品| 国产欧美日韩精品亚洲av| 色吧在线观看| 大型黄色视频在线免费观看| 成人国产综合亚洲| 日韩欧美国产一区二区入口| 一级a爱片免费观看的视频| 国产一区在线观看成人免费| 日韩欧美国产一区二区入口| 精华霜和精华液先用哪个| 又紧又爽又黄一区二区| 亚洲精品在线观看二区| 亚洲精品一卡2卡三卡4卡5卡| h日本视频在线播放| h日本视频在线播放| 亚洲成人免费电影在线观看| 曰老女人黄片| 三级男女做爰猛烈吃奶摸视频| 国产伦在线观看视频一区| av黄色大香蕉| 伦理电影免费视频| 亚洲国产精品久久男人天堂| 国产精品亚洲美女久久久| 国产精品99久久久久久久久| 757午夜福利合集在线观看| 黑人巨大精品欧美一区二区mp4| 看免费av毛片| 日日摸夜夜添夜夜添小说| 一级毛片精品| 一区二区三区国产精品乱码| 韩国av一区二区三区四区| 国产亚洲精品久久久久久毛片| 亚洲中文字幕日韩| 动漫黄色视频在线观看| 久久精品91蜜桃| 不卡一级毛片| 伊人久久大香线蕉亚洲五| 日韩中文字幕欧美一区二区| 午夜福利高清视频| 亚洲国产精品合色在线| 免费一级毛片在线播放高清视频| 欧美极品一区二区三区四区| 欧美另类亚洲清纯唯美| 国产高清三级在线| 真人做人爱边吃奶动态| 国内精品一区二区在线观看| 男人舔奶头视频| 亚洲成人中文字幕在线播放| 午夜a级毛片| 国产av不卡久久| 欧美性猛交黑人性爽| а√天堂www在线а√下载| 久久亚洲真实| 亚洲欧美精品综合久久99| xxx96com| 国产1区2区3区精品| 亚洲国产高清在线一区二区三| 成人av一区二区三区在线看| 亚洲av成人不卡在线观看播放网| 婷婷精品国产亚洲av| 亚洲成人免费电影在线观看| 亚洲一区二区三区色噜噜| 亚洲成人免费电影在线观看| 国产99白浆流出| 一a级毛片在线观看| 日韩 欧美 亚洲 中文字幕| 深夜精品福利| 一进一出抽搐gif免费好疼| 国产精品一区二区精品视频观看| 亚洲欧美精品综合一区二区三区| 又黄又爽又免费观看的视频| 人妻夜夜爽99麻豆av| 午夜影院日韩av| 久久久国产精品麻豆| cao死你这个sao货| 国产69精品久久久久777片 | 99久久成人亚洲精品观看| 久久午夜综合久久蜜桃| 一区二区三区国产精品乱码| 久久久久国产精品人妻aⅴ院| 国产精品一区二区三区四区免费观看 | 欧洲精品卡2卡3卡4卡5卡区| 最新美女视频免费是黄的| 一级黄色大片毛片| 国产极品精品免费视频能看的| 999久久久国产精品视频| 最好的美女福利视频网| 日韩欧美一区二区三区在线观看| 长腿黑丝高跟| 亚洲无线在线观看| 99riav亚洲国产免费| 欧美日韩一级在线毛片| 在线观看日韩欧美| 久久伊人香网站| 9191精品国产免费久久| 老司机在亚洲福利影院| 国产精品久久久久久亚洲av鲁大| 免费av毛片视频| 女生性感内裤真人,穿戴方法视频| 国产精品 国内视频| 99riav亚洲国产免费| 日本黄色片子视频| 色尼玛亚洲综合影院| 国产av麻豆久久久久久久| 欧美日韩精品网址| 亚洲 国产 在线| 草草在线视频免费看| 国产精品一区二区三区四区久久| 偷拍熟女少妇极品色| 亚洲成av人片免费观看| 国产97色在线日韩免费| 精品久久久久久久久久免费视频| 女同久久另类99精品国产91| 亚洲专区国产一区二区| 1000部很黄的大片| 久久精品夜夜夜夜夜久久蜜豆| 色综合站精品国产| 久久久精品欧美日韩精品| 亚洲国产色片| 精品99又大又爽又粗少妇毛片 | 嫩草影视91久久| 午夜a级毛片| 噜噜噜噜噜久久久久久91| 亚洲人成电影免费在线| 97超级碰碰碰精品色视频在线观看| 中文字幕最新亚洲高清| 香蕉久久夜色| 国产精品亚洲一级av第二区| 一进一出抽搐gif免费好疼| 他把我摸到了高潮在线观看| 精品国产乱码久久久久久男人| 精品欧美国产一区二区三| 美女扒开内裤让男人捅视频| 韩国av一区二区三区四区| 午夜视频精品福利| 中文字幕人成人乱码亚洲影| 舔av片在线| 成人av在线播放网站| 精品无人区乱码1区二区| 麻豆一二三区av精品| 亚洲人成网站在线播放欧美日韩| 久久久久亚洲av毛片大全| 国产野战对白在线观看| 日本 av在线| 久久久精品欧美日韩精品| 午夜免费激情av| 久久久久国产一级毛片高清牌| 日日摸夜夜添夜夜添小说| 小说图片视频综合网站| 搡老岳熟女国产| 国产黄a三级三级三级人| 亚洲一区高清亚洲精品| 小蜜桃在线观看免费完整版高清| 日韩精品青青久久久久久| 亚洲,欧美精品.| 狠狠狠狠99中文字幕| 叶爱在线成人免费视频播放| 熟女人妻精品中文字幕| 九色国产91popny在线| av福利片在线观看| 啦啦啦免费观看视频1| 国产亚洲欧美在线一区二区| bbb黄色大片| 亚洲天堂国产精品一区在线| 精品国产乱子伦一区二区三区| 日韩国内少妇激情av| 国产高潮美女av| 成人国产一区最新在线观看| 国产三级中文精品| 天堂√8在线中文| 欧美性猛交黑人性爽| 国产一区二区在线av高清观看| 老鸭窝网址在线观看| 热99re8久久精品国产| av在线天堂中文字幕| 国内精品久久久久久久电影| 免费观看精品视频网站| 精品国产乱子伦一区二区三区| 欧美乱色亚洲激情| 久久久久亚洲av毛片大全| 久久香蕉国产精品| 亚洲五月婷婷丁香| 级片在线观看| 亚洲av五月六月丁香网| av中文乱码字幕在线| 亚洲18禁久久av| 国产真人三级小视频在线观看| 国产精品精品国产色婷婷| 亚洲国产欧美一区二区综合| 欧美3d第一页| 国内精品久久久久精免费| 在线观看免费视频日本深夜| 人人妻人人澡欧美一区二区| 欧美日韩中文字幕国产精品一区二区三区| 美女cb高潮喷水在线观看 | 女人被狂操c到高潮| 人人妻人人看人人澡| 好男人电影高清在线观看| 久久久水蜜桃国产精品网| 嫩草影院入口| 蜜桃久久精品国产亚洲av| 日韩精品中文字幕看吧| 久久国产乱子伦精品免费另类| 露出奶头的视频| 久久性视频一级片| 法律面前人人平等表现在哪些方面| 天天一区二区日本电影三级| 在线观看免费视频日本深夜| 国产欧美日韩精品亚洲av| 国产欧美日韩一区二区精品| 国产人伦9x9x在线观看| 国产精品一区二区精品视频观看| 两个人的视频大全免费| 国产真人三级小视频在线观看| 成年女人永久免费观看视频| 国产精品女同一区二区软件 | 中文资源天堂在线| 午夜福利高清视频| www.999成人在线观看| 成人亚洲精品av一区二区| 精品久久蜜臀av无| av福利片在线观看| 久久天堂一区二区三区四区| 国产成人av教育| 国产1区2区3区精品| 丁香欧美五月| 偷拍熟女少妇极品色| 久久草成人影院| 看黄色毛片网站| 国产成人系列免费观看| 一夜夜www| 亚洲av电影不卡..在线观看| 久久久久免费精品人妻一区二区| 一区二区三区高清视频在线| www.999成人在线观看| 99精品久久久久人妻精品| 淫妇啪啪啪对白视频| 我的老师免费观看完整版| 国产私拍福利视频在线观看| 日日干狠狠操夜夜爽| 国产精品亚洲av一区麻豆| 国产成人精品久久二区二区免费| 一个人看的www免费观看视频| 国产精品久久久人人做人人爽| www.www免费av| 在线播放国产精品三级| 久久香蕉精品热| 日韩中文字幕欧美一区二区| 成在线人永久免费视频| 亚洲天堂国产精品一区在线| 亚洲欧美日韩无卡精品| 国产亚洲精品久久久com| 亚洲午夜理论影院| 欧美黄色片欧美黄色片| 国产v大片淫在线免费观看| 国产高清视频在线播放一区| 亚洲黑人精品在线| 久久精品国产综合久久久| 宅男免费午夜| 亚洲第一欧美日韩一区二区三区| 久久精品91蜜桃| 国产黄色小视频在线观看| 少妇的丰满在线观看| 网址你懂的国产日韩在线| 最近视频中文字幕2019在线8| 性色av乱码一区二区三区2| 亚洲第一欧美日韩一区二区三区| 韩国av一区二区三区四区| 757午夜福利合集在线观看| 久久精品国产亚洲av香蕉五月| 最近视频中文字幕2019在线8| 国产真实乱freesex| 高清在线国产一区| 国产亚洲精品久久久久久毛片| 国产精品一区二区三区四区久久| 国产淫片久久久久久久久 | АⅤ资源中文在线天堂| 免费看美女性在线毛片视频| 老司机福利观看| 曰老女人黄片| 亚洲精品色激情综合| 男人和女人高潮做爰伦理| 香蕉久久夜色| 999久久久国产精品视频| 国产成人福利小说| 桃色一区二区三区在线观看| 久久婷婷人人爽人人干人人爱| 国产视频一区二区在线看| 亚洲国产欧洲综合997久久,| 国产精品女同一区二区软件 | 露出奶头的视频| 成人午夜高清在线视频| 午夜免费激情av| 成熟少妇高潮喷水视频| 动漫黄色视频在线观看| 88av欧美| 久久久久精品国产欧美久久久| 日本熟妇午夜| 国产精品久久久久久精品电影| 后天国语完整版免费观看| 一级毛片高清免费大全| 日本五十路高清| 欧美成人性av电影在线观看| 给我免费播放毛片高清在线观看| 国产aⅴ精品一区二区三区波| 精品不卡国产一区二区三区| 免费高清视频大片| 亚洲欧美激情综合另类| 国产午夜精品论理片| 一进一出抽搐gif免费好疼| 偷拍熟女少妇极品色| 精品久久久久久成人av| 欧美激情久久久久久爽电影| 久久99热这里只有精品18| 久久中文字幕人妻熟女| 极品教师在线免费播放| 国产主播在线观看一区二区| 最近最新中文字幕大全免费视频| 中文字幕最新亚洲高清| 99久久久亚洲精品蜜臀av| 少妇裸体淫交视频免费看高清| 婷婷丁香在线五月| 欧美日韩精品网址| 久久中文看片网| 无人区码免费观看不卡| 免费在线观看视频国产中文字幕亚洲| 国产精品av视频在线免费观看| 久9热在线精品视频| 国产主播在线观看一区二区| 97超级碰碰碰精品色视频在线观看| 91九色精品人成在线观看| 女人高潮潮喷娇喘18禁视频| 国产精品 国内视频| 欧美一级a爱片免费观看看| 人妻夜夜爽99麻豆av| 亚洲精品美女久久久久99蜜臀| 国产美女午夜福利| 精品国产乱子伦一区二区三区| 日韩人妻高清精品专区| 91在线精品国自产拍蜜月 | 久久精品夜夜夜夜夜久久蜜豆| 免费看十八禁软件| 日韩大尺度精品在线看网址| 国产高清视频在线播放一区| 最近视频中文字幕2019在线8| 在线观看免费午夜福利视频| 亚洲中文字幕日韩| 久久中文字幕一级| 日韩欧美国产在线观看| 久久欧美精品欧美久久欧美| 母亲3免费完整高清在线观看| 久久久久免费精品人妻一区二区| 久久精品国产清高在天天线| 免费在线观看成人毛片| 亚洲欧美精品综合一区二区三区| 久久久久久久午夜电影| 国产久久久一区二区三区| 嫩草影视91久久| 亚洲精华国产精华精| 国产亚洲精品综合一区在线观看| 最新中文字幕久久久久 | 两个人视频免费观看高清| svipshipincom国产片| 午夜两性在线视频| 哪里可以看免费的av片| 婷婷丁香在线五月| 日本黄色视频三级网站网址| 黄频高清免费视频| 免费观看精品视频网站| 成人三级黄色视频| tocl精华| 日韩精品中文字幕看吧| 久久久久久国产a免费观看| 国产精品野战在线观看| 国内揄拍国产精品人妻在线| 最近在线观看免费完整版| 又黄又粗又硬又大视频| 国产精品免费一区二区三区在线| av片东京热男人的天堂| 熟女电影av网| 我要搜黄色片| 午夜精品一区二区三区免费看| 久久精品91蜜桃| 久久精品综合一区二区三区| 国产av一区在线观看免费| 午夜免费成人在线视频| 亚洲五月婷婷丁香| 两性午夜刺激爽爽歪歪视频在线观看| 国产午夜精品久久久久久| 日本三级黄在线观看| 村上凉子中文字幕在线| 一本一本综合久久| 亚洲专区字幕在线| 深夜精品福利| 亚洲精品456在线播放app | 久久久久久久久久黄片| 国产97色在线日韩免费| 1000部很黄的大片| 亚洲精华国产精华精| 熟妇人妻久久中文字幕3abv| 岛国视频午夜一区免费看| 中文字幕精品亚洲无线码一区| 国产亚洲精品一区二区www| 在线视频色国产色| 最近在线观看免费完整版| 一级黄色大片毛片| 日韩欧美免费精品| 成人一区二区视频在线观看| 国产精品久久久久久精品电影| 最新在线观看一区二区三区| 一进一出抽搐gif免费好疼| 两性夫妻黄色片| 欧美国产日韩亚洲一区| 动漫黄色视频在线观看| 在线观看美女被高潮喷水网站 | 亚洲av中文字字幕乱码综合| 国产成年人精品一区二区| 欧美另类亚洲清纯唯美| 欧美av亚洲av综合av国产av| 国产精品av视频在线免费观看| 国产日本99.免费观看| 99热这里只有精品一区 | 身体一侧抽搐| 麻豆久久精品国产亚洲av| 91在线精品国自产拍蜜月 | 精品一区二区三区四区五区乱码| 亚洲色图av天堂| 亚洲精品国产精品久久久不卡| 国产激情久久老熟女| 久久人人精品亚洲av| 国产精品美女特级片免费视频播放器 | 免费在线观看成人毛片| 色哟哟哟哟哟哟| 十八禁人妻一区二区| 国产视频一区二区在线看| 欧美在线一区亚洲| netflix在线观看网站| 床上黄色一级片| 国产极品精品免费视频能看的| www.www免费av| 国产99白浆流出| 后天国语完整版免费观看| 日本黄色视频三级网站网址| 免费看十八禁软件| av天堂中文字幕网|