• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Transmission-type reconfigurable metasurface for linear-to-circular and linear-to-linear polarization conversions

    2022-12-28 09:53:08PingWang王平YuWang王豫ZhongmingYan嚴(yán)仲明andHongchengZhou周洪澄
    Chinese Physics B 2022年12期
    關(guān)鍵詞:王平

    Ping Wang(王平), Yu Wang(王豫), Zhongming Yan(嚴(yán)仲明), and Hongcheng Zhou(周洪澄)

    School of Electrical Engineering,Southwest Jiaotong University,Chengdu 611756,China

    Keywords: polarization conversion,reconfigurable metasurface,Fabry–P′erot resonance

    1. Introduction

    Polarization is one of the fundamental properties of electromagnetic (EM) waves, which carries plenty of information about the scatters. Thus, the polarization modulation is significant and valuable in many aspects, such as wireless communication,[1–3]radar cross section reduction,[4,5]and imaging.[6,7]To process polarization information as much as possible,the devices which can manipulate multiple polarization are essential. Metasurfaces have provided excellent alternatives. As a two-dimensional artificial material, metasurfaces have been widely utilized to control EM waves because of their low profile,low loss,easy processing,high flexibility,and so on. For possessing tunable property and functionality,various reconfigurable metasurfaces were fabricated by integrating with RF devices[8–16]or functional materials.[17,18]

    It has always been pursued to manipulate the polarization of waves at will. To date, various reconfigurable polarization conversion metasurfaces(PCMs)with multiple functions have been proposed. However,the major of reported transmissiontype PCM can only achieve co-polarization transmission and a single polarization conversion. For example, the reconfigurable PCMs composed of periodic rings[8]or chiral structures[9]incorporated with PIN diodes were proposed,which can realize co-polarization transmission and linear-tocircular (LTC) polarization conversion. Some reconfigurable PCMs formed by split rings achieved co-polarization transmission and linear-to-linear (LTL) polarization conversion.[10,11]However, the dynamic switching among LTC and LTL polarization conversions is still rare for the transmission-type PCM. In Ref. [16], the bi-layer PCM incorporated with varactor diodes was proposed, it could convert the incident LP waves into multiple polarization, but it could only operate in narrow frequency band. The integration of LTC and LTL polarization conversions has been concerned.[19–21]To solve the problem, several designs based on passive metasurfaces were reported.Unfortunately,their operational bands for each function cannot overlap,which causes the reported designs impossible to process multi-polarization signals with the same frequency. The design proposed in Refs.[22,23]can reconfigure the incident linear polarization to multiple linear and circular polarization by rotating the metasurfaces,but the slow mechanical adjustment may be limited in applications.

    In this paper,we design a novel transmission-type reconfigurable PCM based on Fabry–P′erot(F–P)resonate cavity for LTC and LTL polarization conversions. The proposed PCM consists of a layer of grating, a polarization conversion surface and a reconfigurable polarization selective surface. The switching of functions is realized by changing states of the PIN diodes. To verify the design,the prototype has been fabricated and tested. As demonstrated by the measurement results,the PCM can convert linear polarized(LP)waves to CP waves from 3.31 GHz to 3.56 GHz with the axial ratio (AR)less than 3 dB when the PIN diodes are switched off. Instead,when the diodes are switched on, the PCM can rotate the LP waves to cross-polarized waves from 2.76 GHz to 4.24 GHz with the polarization conversion ratio(PCR)higher than 0.95.The operational bandwidths are 7.3%and 42.3%for the LTC and LTL polarization conversions. The thickness of proposed PCM is 0.2λ0(λ0is the wavelength corresponding to the central frequency). Moreover, the F–P resonance excited in the PCM is discussed in this paper, and the conditions for realizing LTC polarization conversion are also derived. Before our work,a lot of LTL polarization converters combining F–P resonate cavity have been proposed.[24–26]Nevertheless, to the best of our knowledge, the transmission-type LTC polarization converter based on F–P cavity-like metasurface has not been reported. Our proposed design provides a new method for converting incident linear polarized wave into circular polarized and cross-polarized wave,which may promote the development of transmission-type metasurface toward arbitrary polarization manipulations.

    2. Analysis and design

    2.1. Operational principles of the PCM

    For achieving dynamically switching among LTC and LTL polarization conversions, we propose an approach for constructing the PCM whose schematic diagram is depicted in Fig. 1. Layer A is a polarization selector which only permits they-polarized wave to pass through. Layer B is a polarization conversion surface composed of periodic anisotropic structures, which can partially converts the incidenty-polarized wave intoxpolarization. The reconfigurable layer C which integrates PIN diodes has two functions, including co-polarization transmission and polarization selection. The three layers form an F–P resonate cavity. The corresponding relationships between the states of PIN diodes and the PCM are illustrated in Table 1.

    Table 1. Working states of PIN diodes and functions of PCM.

    Fig.1. Schematic diagram of proposed PCM for polarization conversion.

    Fig.2. The schematic diagram of the propagation of waves in PCM,as the state of PIN diode is switched(a)off and(b)on.

    For describing the operational principle, we have established an F–P resonate model based on the PCM as shown in Fig. 2. They-polarized waves illuminate PCM along?zaxis,and the transmission directions of waves in PCM are indicated by the arrows. They-andx-polarized components are denoted by solid and dashed lines,respectively. First,the incidenty-polarized waves pass through layer A and interact with layer B, then the reflected and transmitted waves which includey- andx-polarized components are excited by layer B.They-polarized backward wave penetrates into layer A,thexpolarized one is reflected by layer A and interacts with layer B once again. In contrast, the propagation processes of forward waves depend on states of layer C.If layer C is in state 1, as shown in Fig. 2(a), they- andx-polarized components can pass through it. When layer C is in state 2, as shown in Fig.2(b),only thex-polarized component can pass through it.They-polarized component will be reflected by layer C and undergoes the multiple reflections. It should be noted that the above descriptions of wave propagation in state 1 ignore the reflection of layer C,in fact,a few ofy-andx-polarized components will be reflected by it and participate in the round trips within the PCM.

    Based on the analysis of the interactions between waves and metasurface (see Appendix for details), we derived the condition for the PCM achieving LTC polarization conversion as follows:

    Fig.3. Schematic diagram of the x–y and u–v coordinate systems.

    2.2. Design of geometric configuration for each layer

    The unit cells of layer A and B are shown in Fig. 4.The dielectric substrates are FR4 with relative permittivityεr=4.3. Several metal stripes alongx-axis are etched on front side of layer A, which form a grating. For filtering out thex-polarized incident waves, the geometry parameters of layer A are chosen asw1=2.5 mm,g1=3.5 mm,the thickness of substrate in layer A ist1=0.5 mm. The metal stripes and successive lines are orthogonal,they are etched on the front side of layer B.The thickness of substrate in layer B ist2=1.6 mm.The equivalent circuits of layer B atu-andv-polarization are illustrated in Fig.5,whereLuandLvdenote the inductance introduced by the metal strips alongu-andv-axis,Cvdenotes the capacitance of the gap between two strips aligned withvaxis.Zsubrepresents the equivalent impedance of the substrate.TheABCDmatrix of layer B can be expressed as[29]

    Fig.4. The geometric configuration of unit cell: (a)layer A,(b)layer B.

    whereMpandMsrepresent the transmission matrix of metal patterns and substrate of layer B.Zidenotes the impedance of metal patterns withi=uori=vdepending on the polarization direction. The impedance can be derived asZu= jωLuandZv= j(2ωLv ?2/ωCv). The circuit parameters can be obtained as follows:[14,30]

    Then,the co-polarized transmission and reflection coefficients of layer B can be calculated by

    Via adjusting thew2andg2, the co-polarization transmission and reflection coefficients aligned withu- andv-axis can be independently tuned. The value selections ofw2andg2according to performance of layer B will be described in the following section.

    Fig.5. The equivalent circuit model of layer B.The incident wave is(a)u-polarized(b)v-polarized.

    The periodic structure of layer C is presented in Figs.6(a)and 6(b), the rectangular metal patches are arranged on the front side. The PIN diodes are embedded into the gaps between adjacent patches. The orthogonal metal lines are etched on the back side of layer C. The PIN diode is Skyworks SMP1345-079LF. For the on state, it can be equivalent to a resistor of 2 ? in series with an inductor of 0.7 nH. For the off state, it can be equivalent to a capacitor of 0.15 pF in series with an inductor of 0.7 nH. The dielectric substrate employed in layer C is same as in layer B.The geometric parameters of layer C are taken asl2=5.13 mm,g3=2.19 mm,w4=3.14 mm,w5=0.5 mm,w6=0.8 mm,w7=0.4 mm,andp1=16 mm. For describing the operational principle of layer C, the lumped circuit elements introduced by the metal patterns are illustrating in Fig. 6(a). HereL1andL3denote the equivalent inductance of the metal patch atyandxdirections, respectively,C1is the capacitor introduced by the gap between patches alongx-axis. The inductances of metal wires on back side are denoted byL2andL4,respectively. When the PIN diodes are switched off, the front-side structures exhibit capacitive responses alongxandydirections,after cascading with the inductive branches on the backside, layer C will exhibit band-pass response for incident waves. While the PIN diodes are switched on, layer C can be equivalent to a metal grating parallel toy-axis for blocking they-polarized waves.The simulated results of layer C are shown in Fig.6(c). With the changing of PIN states,there is obvious discrepancy for the transmission ofy-polarized wave. For the off state,the|tyy|is consistent with|txx|,which are higher than?1 dB within 2.42–3.80 GHz,for the on state,the|tyy|is less than?20.3 dB below 3.80 GHz.

    Fig.6. The geometric configuration of periodic structures in layer C:(a)front side, (b)back side. (c)Simulated transmission coefficients of layer C.

    2.3. Integrated design of the PCM

    By cascading the proposed three layers, as shown in Fig. 7, the PCM is constructed. Then, several geometric parameters need to be determined according to performance of the PCM, including the configuration of the layer B and the distances between adjacent layers. The optimization target for the PCM is to realize LTC and LTL polarization conversions within S-band,and the performances of LTC conversion are set as priority. Based on Eq. (1) and related discussions,the optimizations can follow the principles mentioned below.First, the periodic dimensionpand line widthw2should be determined,which mainly depend on the predetermined transmittance and operational frequency. The increase ofpand the decrease ofw2are conducive to improve the transmittancetBuubecause the equivalent inductances of successive metal lines are raised. However,pshould not exceed half a wavelength in order to suppress the gating lobes.[30]Next, we can optimize the performances of LTC conversion by adjustingg2andd.The frequency responses of the AR with differentg2anddare shown in Fig.8 withp=48 mm andw2=0.1 mm. The AR of PCM is obtained as follows:

    It can be found that the minimal value of AR is mainly determined byg2, and the operational frequency is mainly determined byd. We can select the value ofg2first to guarantee the LTC polarization conversion, and then optimize the overlapping bandwidth and conversion coefficients of LTC and LTL polarization conversions by adjustingd. Finally, the performances of PCM can be finely tuned by adjustingd1.The optimized geometric parameters are taken asp=48 mm,w2=1.5 mm,g2=9 mm,d=7 mm,d1=7 mm.

    Fig.7. Configuration of unit cell of the proposed PCM.

    Fig.8. The comparison of AR with different g2 and d: (a)d=5 mm,(b)d=7 mm,(c)d=9 mm.

    3. Simulation and measurement results

    The model of proposed PCM is simulated by the CST Microwave Studio, and the prototype of PCM is fabricated and measured. The experimental setups are illustrated in Fig. 9,two horn antennas are placed on different sides of prototype,which are connected to the Keysight N5227B vector network analyzer (VNA) through RF cables. The size of prototype is 330 mm×330 mm×17.7 mm,and the thickness is 0.2λ0(λ0is wavelength corresponding to the central frequency). The simulation and measurement results are shown in Fig. 10, wheret?yandt+ydenote the transmission fromy-polarized to lifthanded and right-handed circular polarizations, respectively.They can be obtained as follows:

    The PCR at LTC and LTL mode is defined as|t?y|2/(|t?y|2+|t+y|2) and|txy|2/(|txy|2+|tyy|2).[10,30]As shown in the measurement results, when the PIN diodes are switched off, the PCM can achieve LTC polarization conversion with the AR less than 3 dB from 3.31 GHz to 3.56 GHz. Meanwhile, the PCR of LTC polarization conversion is higher than 0.95.

    Fig.9. The measurement setup and prototype.

    When the PIN diodes are switched on, the PCM can rotatey-polarized wave tox-polarization with the PCR higher than 0.95 within 2.76–4.24 GHz. The fractional bandwidths at LTC and LTL modes are 7.3%and 42.3%,respectively. In the overlapping frequency band, the magnitudes of transmissions of both functions are higher than?1.84 dB.In Fig.10,the measurement results show agreement with the simulation ones, there are some discrepancies which may be caused by the deviations in fabrication of prototype and instrument alignment. Moreover, we obtain the analytic transmission coefficients of PCM according to the discussions in Appendix,which are basically consistent with the simulation and measurement results. Even if there are deviations,the comparison in Fig.10 indicates that the proposed expressions in Appendix can effectively represent the transmission coefficient of PCM.In Appendix,it is assumed that the magnitude of transmittance of layer A toy-polarized wave (the same as the magnitude of reflectivity tox-polarized wave)is 1,whereas the transmittance of layer A in fact will be slightly smaller, which may cause the deviations of the analytic results.

    Fig.10. The measurement and simulation results of the PCM:(a)magnitude of transmission and AR for LTC polarization conversion,(b)magnitude of transmission for LTL polarization conversion,(c)PCR for LTC and LTL polarization conversions.

    The transmission coefficients of layer B are shown in Fig. 11, where the shadow area indicates the operational frequency band of LTC polarization conversion. It can be found that the magnitude oftBvvrapidly declines with frequency increasing in the operational band. Although the condition of polarization conversion can be satisfied near 3.43 GHz, the sharp change of parameters will limit the functionality to a narrow band. If a metasurface with stable response against frequency is used as layer B, the frequency band will be expanded, such as the multi-resonant structures[31]and multilayer surface,[32]while the profile or insertion loss may be higher than the proposed design. Moreover, if the proposed layer B is replaced by a reconfigurable metasurface with appropriate configuration, the PCM may integrate more functions,such as co-polarized transmission and linear-to-elliptical polarization conversions.

    Fig.11. The simulated magnitude and phase of transmission for layer B.

    4. Conclusion

    In summary, we have proposed a transmission-type reconfigurable PCM as well as detailed procedure,which has the reconfigurable functions of LTC and LTL polarization conversions. The reconfigurable functions are obtained by changing the states of PIN diodes embedded on the PCM. The operation of PCM is based on F–P resonances which have been illustrated. Moreover, to guide the design, the conditions for achieving LTC polarization conversion have been derived.From the measurement results of prototype, the overlapping frequency band of two functions is from 3.31 GHz to 3.56 GHz with the transmission higher than?1.84 dB.The thickness of the proposed PCM is 0.2λ0. Because the transmission-type metasurfaces can be loaded on aperture of the feeding antenna, the proposed design is more suitable for compact system than reflector arrays. It can also quickly switch states due to its electronic adjustment. These advantages make the proposed PCM have the application prospects in S-band radar and satellite communication,meanwhile it also has the potential to merge more functionalities of EM wave manipulation.

    Appendix A

    To analyze the propagation of incident waves in the PCM,we divide PCM into two parts at first. As shown in Fig. A1,layer A is named as part I,the layers B and C are regarded as a whole and indicated as part II.Thex-andy-polarized electric field components are denoted byEt/rxnorEt/ryn, wherenin the subscript indicates the component experiencedntimes roundtrips within the space between adjacent layers.We assume that the Jones matrixes describing layer A satisfy

    In this paper,the near-field coupling excited between layers is not considered in the analysis of wave transmissions. Next,we present the propagation of waves in part II.The schematic diagram is given in Fig. A1(b). For simplifying analysis, the transmission coefficients in theu–vcoordinate system is discussed first. As mentioned above, the responses of layer B aligned withuandvaxes are independent of each other.Therefore,u-polarized transmitted components can calculated as

    Substituting Eqs.(A8)–(A11)into Eq.(A18),the condition for achieving LTC polarization conversion based on coefficients of each layer can be derived as follows:

    Acknowledgement

    Project supported by the Fundamental Research Funds for Central Universities(Grant No. 2682020GF03).

    猜你喜歡
    王平
    Modification of streamer-to-leader transition model based on radial thermal expansion in the sphere-plane gap discharge at high altitude
    篆刻作品欣賞
    我眼中的太陽(yáng)
    Steady-state and transient electronic transport properties of β-(AlxGa1-x)2O3/Ga2O3 heterostructures:An ensemble Monte Carlo simulation
    篆刻作品欣賞
    Regulation of the intermittent release of giant unilamellar vesicles under osmotic pressure
    陰差陽(yáng)錯(cuò)
    故事林(2017年17期)2017-09-12 18:13:28
    耍臉
    咱去機(jī)場(chǎng)接個(gè)人
    咱去機(jī)場(chǎng)接個(gè)人
    国产色婷婷99| 爱豆传媒免费全集在线观看| 亚洲精品视频女| 国产一级毛片在线| 黄片播放在线免费| 亚洲精品视频女| 香蕉精品网在线| 亚洲精品乱久久久久久| 男女啪啪激烈高潮av片| 日本91视频免费播放| 国产精品女同一区二区软件| 99国产综合亚洲精品| 一区二区三区精品91| 国产在线视频一区二区| 国产av精品麻豆| 制服丝袜香蕉在线| 伊人亚洲综合成人网| 精品一区在线观看国产| 国产成人免费观看mmmm| 精品国产一区二区久久| 一区二区av电影网| 在线看a的网站| 久久久欧美国产精品| 韩国av在线不卡| 亚洲av国产av综合av卡| 美女福利国产在线| 亚洲精品,欧美精品| 国产激情久久老熟女| videos熟女内射| 一区二区三区激情视频| 久久久久久久久免费视频了| 男女无遮挡免费网站观看| 咕卡用的链子| 久久久国产欧美日韩av| 最黄视频免费看| 五月开心婷婷网| 久久精品国产a三级三级三级| 丝袜美足系列| 爱豆传媒免费全集在线观看| 亚洲国产精品一区二区三区在线| 久久久久久久亚洲中文字幕| 亚洲欧美日韩另类电影网站| 校园人妻丝袜中文字幕| 夫妻午夜视频| 国产精品三级大全| 精品午夜福利在线看| 在线看a的网站| 熟女av电影| 日韩一区二区视频免费看| 最近中文字幕2019免费版| 国产日韩一区二区三区精品不卡| 两性夫妻黄色片| 成人亚洲精品一区在线观看| 一个人免费看片子| 麻豆精品久久久久久蜜桃| 午夜久久久在线观看| 在线观看免费日韩欧美大片| 日韩av在线免费看完整版不卡| 永久网站在线| 中文字幕人妻丝袜制服| 色婷婷久久久亚洲欧美| 欧美少妇被猛烈插入视频| 哪个播放器可以免费观看大片| 这个男人来自地球电影免费观看 | 亚洲色图综合在线观看| 美女主播在线视频| 国产成人精品久久二区二区91 | 色婷婷久久久亚洲欧美| 免费观看无遮挡的男女| a级毛片在线看网站| 日韩人妻精品一区2区三区| 91aial.com中文字幕在线观看| 极品人妻少妇av视频| 性少妇av在线| 日韩中文字幕视频在线看片| 国产成人免费观看mmmm| 国产男人的电影天堂91| 中文欧美无线码| 春色校园在线视频观看| 综合色丁香网| 国语对白做爰xxxⅹ性视频网站| 亚洲伊人久久精品综合| 夜夜骑夜夜射夜夜干| 中文天堂在线官网| 亚洲精品av麻豆狂野| 亚洲美女搞黄在线观看| 18+在线观看网站| 国产乱人偷精品视频| tube8黄色片| 精品一品国产午夜福利视频| 午夜福利乱码中文字幕| 久久狼人影院| 久久精品aⅴ一区二区三区四区 | 美女福利国产在线| 亚洲av福利一区| 日本色播在线视频| 免费女性裸体啪啪无遮挡网站| 日韩,欧美,国产一区二区三区| 丁香六月天网| 久久国产亚洲av麻豆专区| 精品久久蜜臀av无| 一区二区三区精品91| 只有这里有精品99| 免费观看a级毛片全部| 人人妻人人澡人人看| 日韩av在线免费看完整版不卡| 狂野欧美激情性bbbbbb| 国产无遮挡羞羞视频在线观看| 国产精品久久久av美女十八| 999久久久国产精品视频| av天堂久久9| 亚洲内射少妇av| a级毛片在线看网站| 亚洲欧美一区二区三区国产| 色哟哟·www| 91国产中文字幕| 亚洲av日韩在线播放| 叶爱在线成人免费视频播放| 99精国产麻豆久久婷婷| 国产成人午夜福利电影在线观看| 亚洲伊人色综图| 欧美成人午夜精品| 一本大道久久a久久精品| 午夜激情久久久久久久| 国产 一区精品| 久久久久久伊人网av| 成年女人毛片免费观看观看9 | 国产精品嫩草影院av在线观看| 人妻人人澡人人爽人人| 多毛熟女@视频| 伦理电影免费视频| 免费久久久久久久精品成人欧美视频| 看非洲黑人一级黄片| 久久久亚洲精品成人影院| 欧美日韩综合久久久久久| av视频免费观看在线观看| 在线观看人妻少妇| 中文字幕制服av| 飞空精品影院首页| 韩国高清视频一区二区三区| 国产亚洲av片在线观看秒播厂| 美女午夜性视频免费| 免费少妇av软件| 亚洲欧洲精品一区二区精品久久久 | 夫妻性生交免费视频一级片| 免费观看在线日韩| 成人亚洲欧美一区二区av| 欧美黄色片欧美黄色片| 国产免费一区二区三区四区乱码| 精品国产国语对白av| 亚洲欧美一区二区三区国产| 黄色怎么调成土黄色| 丝袜美足系列| 亚洲综合精品二区| 最近手机中文字幕大全| 又黄又粗又硬又大视频| 在线观看www视频免费| 涩涩av久久男人的天堂| 一个人免费看片子| 国产亚洲av片在线观看秒播厂| 亚洲精品国产av蜜桃| 妹子高潮喷水视频| 97精品久久久久久久久久精品| 欧美 亚洲 国产 日韩一| 大片免费播放器 马上看| 久久青草综合色| 国产高清国产精品国产三级| 欧美日韩亚洲国产一区二区在线观看 | 自线自在国产av| 国产在视频线精品| av卡一久久| 免费观看性生交大片5| 热99国产精品久久久久久7| 国产一级毛片在线| 亚洲五月色婷婷综合| 国产在视频线精品| 久久精品国产综合久久久| 精品少妇内射三级| 91在线精品国自产拍蜜月| 国产高清国产精品国产三级| 青春草亚洲视频在线观看| 亚洲内射少妇av| 综合色丁香网| 中文乱码字字幕精品一区二区三区| 女人被躁到高潮嗷嗷叫费观| 国产野战对白在线观看| av视频免费观看在线观看| 伦理电影大哥的女人| 中文精品一卡2卡3卡4更新| 亚洲欧洲国产日韩| 久久久久国产一级毛片高清牌| 亚洲av电影在线进入| 亚洲第一区二区三区不卡| 亚洲精品一二三| 一本大道久久a久久精品| 下体分泌物呈黄色| a 毛片基地| av电影中文网址| 男人爽女人下面视频在线观看| 人妻少妇偷人精品九色| 激情视频va一区二区三区| 新久久久久国产一级毛片| 热99久久久久精品小说推荐| 午夜福利乱码中文字幕| 秋霞伦理黄片| 人妻 亚洲 视频| 国产不卡av网站在线观看| 久久久欧美国产精品| 18+在线观看网站| 免费在线观看完整版高清| 尾随美女入室| 亚洲第一青青草原| 国产成人一区二区在线| 久久精品国产亚洲av涩爱| 欧美激情极品国产一区二区三区| 精品酒店卫生间| 亚洲成色77777| 亚洲av综合色区一区| 国产亚洲一区二区精品| 妹子高潮喷水视频| 久久久久久人人人人人| 在线观看人妻少妇| 美女中出高潮动态图| 1024香蕉在线观看| 永久网站在线| 成人国语在线视频| 91在线精品国自产拍蜜月| a级毛片黄视频| 自线自在国产av| 欧美在线黄色| 人人妻人人爽人人添夜夜欢视频| 亚洲成人av在线免费| av在线观看视频网站免费| 免费人妻精品一区二区三区视频| 国产极品天堂在线| 91国产中文字幕| 国产国语露脸激情在线看| 中文字幕最新亚洲高清| 国产精品久久久久久精品电影小说| 巨乳人妻的诱惑在线观看| 欧美日韩精品网址| 一级片'在线观看视频| 最近2019中文字幕mv第一页| 国产又色又爽无遮挡免| 91国产中文字幕| 在线观看国产h片| 久久久精品区二区三区| 捣出白浆h1v1| 国产成人91sexporn| 丰满少妇做爰视频| 中文字幕制服av| 秋霞伦理黄片| 最近最新中文字幕大全免费视频 | 久久久精品94久久精品| 成年人午夜在线观看视频| 欧美97在线视频| 欧美日韩综合久久久久久| 国产高清不卡午夜福利| 国产成人精品婷婷| 婷婷成人精品国产| 欧美日韩一区二区视频在线观看视频在线| 日韩人妻精品一区2区三区| 亚洲国产av新网站| 亚洲欧美中文字幕日韩二区| 一级爰片在线观看| 久久精品国产亚洲av涩爱| 欧美日韩成人在线一区二区| 搡老乐熟女国产| 天堂俺去俺来也www色官网| 久久久久久人妻| 高清不卡的av网站| 丝袜在线中文字幕| 国产在线视频一区二区| 18在线观看网站| 日本av免费视频播放| 亚洲色图综合在线观看| av在线老鸭窝| 久久久久久久久久人人人人人人| 一区二区三区精品91| √禁漫天堂资源中文www| 麻豆精品久久久久久蜜桃| 国产精品99久久99久久久不卡 | av一本久久久久| 一级片'在线观看视频| 天堂8中文在线网| 999精品在线视频| 亚洲第一av免费看| 久热这里只有精品99| 美女大奶头黄色视频| 免费观看无遮挡的男女| av线在线观看网站| 久久精品国产亚洲av高清一级| 亚洲国产欧美在线一区| 下体分泌物呈黄色| 91精品三级在线观看| 精品一区二区免费观看| av国产久精品久网站免费入址| 青春草国产在线视频| 亚洲美女搞黄在线观看| 日韩,欧美,国产一区二区三区| 十分钟在线观看高清视频www| 日本欧美国产在线视频| 伊人久久大香线蕉亚洲五| 熟女电影av网| 久久精品久久久久久噜噜老黄| 久久久精品94久久精品| 久久久精品区二区三区| 国产一区二区激情短视频 | 精品久久蜜臀av无| 狂野欧美激情性bbbbbb| 伦精品一区二区三区| 国产国语露脸激情在线看| 人妻人人澡人人爽人人| 国产又爽黄色视频| 亚洲激情五月婷婷啪啪| 日本爱情动作片www.在线观看| 亚洲美女搞黄在线观看| 黄频高清免费视频| 高清av免费在线| 黄网站色视频无遮挡免费观看| 在线天堂中文资源库| 桃花免费在线播放| 久久久久精品性色| 亚洲第一青青草原| 可以免费在线观看a视频的电影网站 | 亚洲国产成人一精品久久久| 国产又爽黄色视频| 日本免费在线观看一区| 青春草亚洲视频在线观看| 亚洲情色 制服丝袜| 欧美 亚洲 国产 日韩一| 日韩在线高清观看一区二区三区| 一级毛片我不卡| 成年女人在线观看亚洲视频| 免费在线观看黄色视频的| av电影中文网址| 国产成人午夜福利电影在线观看| 亚洲av成人精品一二三区| 热re99久久国产66热| 波多野结衣av一区二区av| 午夜日本视频在线| 久久韩国三级中文字幕| 巨乳人妻的诱惑在线观看| 国产成人精品久久久久久| 国产精品免费大片| av视频免费观看在线观看| 亚洲中文av在线| 国产97色在线日韩免费| xxxhd国产人妻xxx| 国产片内射在线| 国产无遮挡羞羞视频在线观看| 色94色欧美一区二区| 777米奇影视久久| 一二三四在线观看免费中文在| 在线天堂中文资源库| 国产亚洲欧美精品永久| 久久精品久久久久久久性| 亚洲第一青青草原| 免费看不卡的av| 99热国产这里只有精品6| av不卡在线播放| 午夜福利,免费看| 日韩一卡2卡3卡4卡2021年| 中文乱码字字幕精品一区二区三区| 午夜福利,免费看| 国产97色在线日韩免费| 一边摸一边做爽爽视频免费| 亚洲成色77777| 欧美另类一区| 亚洲精品国产av蜜桃| 边亲边吃奶的免费视频| 精品少妇久久久久久888优播| 丝袜喷水一区| 国产黄频视频在线观看| av电影中文网址| 欧美黄色片欧美黄色片| 久久这里只有精品19| 国产精品免费视频内射| 看十八女毛片水多多多| 欧美日韩亚洲国产一区二区在线观看 | 99久久中文字幕三级久久日本| 97精品久久久久久久久久精品| 性高湖久久久久久久久免费观看| 亚洲综合色网址| 啦啦啦啦在线视频资源| 中文字幕另类日韩欧美亚洲嫩草| 美女xxoo啪啪120秒动态图| 亚洲av在线观看美女高潮| 国产精品 国内视频| 免费观看无遮挡的男女| 精品一品国产午夜福利视频| 国产极品粉嫩免费观看在线| 丝袜脚勾引网站| 久久精品人人爽人人爽视色| 国产精品免费大片| www.自偷自拍.com| 1024视频免费在线观看| 国产免费一区二区三区四区乱码| 国产午夜精品一二区理论片| 日韩一卡2卡3卡4卡2021年| 少妇熟女欧美另类| 在线天堂最新版资源| 欧美日韩视频高清一区二区三区二| av在线老鸭窝| 国产熟女午夜一区二区三区| 亚洲精品日本国产第一区| 黄色配什么色好看| 国产精品三级大全| 国产在线一区二区三区精| av在线观看视频网站免费| 99久国产av精品国产电影| 在线天堂中文资源库| 国产国语露脸激情在线看| 国产熟女午夜一区二区三区| 久久午夜福利片| 十八禁高潮呻吟视频| 1024视频免费在线观看| 亚洲婷婷狠狠爱综合网| 欧美激情极品国产一区二区三区| 亚洲情色 制服丝袜| 日韩中文字幕欧美一区二区 | 欧美人与性动交α欧美软件| 国产一区二区三区综合在线观看| 国产片内射在线| 在线观看一区二区三区激情| 亚洲国产av影院在线观看| 激情视频va一区二区三区| 亚洲在久久综合| 欧美中文综合在线视频| 纯流量卡能插随身wifi吗| 欧美日韩综合久久久久久| 久久久久久久久免费视频了| 少妇的逼水好多| 一级片'在线观看视频| 亚洲精品一区蜜桃| 国产精品国产三级专区第一集| 国产 精品1| 免费观看在线日韩| 天天躁日日躁夜夜躁夜夜| 久久久久国产网址| 激情五月婷婷亚洲| 日本91视频免费播放| 亚洲国产精品一区二区三区在线| 校园人妻丝袜中文字幕| 欧美黄色片欧美黄色片| 国产亚洲最大av| 久久久精品免费免费高清| 亚洲综合色网址| 亚洲国产毛片av蜜桃av| 亚洲国产av新网站| 纯流量卡能插随身wifi吗| 男女啪啪激烈高潮av片| 久久国内精品自在自线图片| 十八禁网站网址无遮挡| 国产精品亚洲av一区麻豆 | 少妇熟女欧美另类| 2022亚洲国产成人精品| 人妻人人澡人人爽人人| 色网站视频免费| 在线观看免费高清a一片| 看免费成人av毛片| 黄色怎么调成土黄色| 国产成人一区二区在线| 两个人看的免费小视频| 亚洲综合精品二区| 久久国产精品男人的天堂亚洲| 欧美日韩一级在线毛片| 精品少妇一区二区三区视频日本电影 | 国产精品久久久久久精品古装| 亚洲国产精品一区三区| 韩国精品一区二区三区| 国产国语露脸激情在线看| 久久久久久人妻| 少妇人妻 视频| 精品国产超薄肉色丝袜足j| 1024视频免费在线观看| 国产精品熟女久久久久浪| 精品国产露脸久久av麻豆| 9色porny在线观看| 国产又色又爽无遮挡免| 国产视频首页在线观看| 国产色婷婷99| 欧美人与性动交α欧美精品济南到 | 久久久久人妻精品一区果冻| 久久久久久免费高清国产稀缺| 精品人妻偷拍中文字幕| 国产精品三级大全| 国产亚洲最大av| 丁香六月天网| 又大又黄又爽视频免费| 超碰97精品在线观看| 午夜福利在线观看免费完整高清在| 亚洲成国产人片在线观看| 国产亚洲av片在线观看秒播厂| 18禁裸乳无遮挡动漫免费视频| 午夜精品国产一区二区电影| 一区二区三区精品91| 欧美亚洲日本最大视频资源| 免费人妻精品一区二区三区视频| 亚洲欧美中文字幕日韩二区| 久久久久久久久久人人人人人人| 久久青草综合色| 九草在线视频观看| 久久 成人 亚洲| 久久久国产精品麻豆| 校园人妻丝袜中文字幕| 久久久久视频综合| 国产 精品1| 亚洲激情五月婷婷啪啪| 国产黄色视频一区二区在线观看| 国产又色又爽无遮挡免| av网站在线播放免费| 女人被躁到高潮嗷嗷叫费观| 亚洲激情五月婷婷啪啪| 一区二区三区激情视频| 国产精品成人在线| 丝袜在线中文字幕| 精品国产乱码久久久久久小说| 国产爽快片一区二区三区| 人人妻人人澡人人看| 黑人巨大精品欧美一区二区蜜桃| 男人操女人黄网站| 韩国av在线不卡| 肉色欧美久久久久久久蜜桃| 黑人欧美特级aaaaaa片| 免费看不卡的av| 伦理电影免费视频| 18+在线观看网站| 黑人欧美特级aaaaaa片| 亚洲精品久久成人aⅴ小说| 欧美中文综合在线视频| 国产精品香港三级国产av潘金莲 | 色婷婷久久久亚洲欧美| 亚洲成人av在线免费| 日韩欧美精品免费久久| 国产毛片在线视频| 国产一区二区 视频在线| 午夜福利一区二区在线看| 中国三级夫妇交换| 精品亚洲成国产av| av免费观看日本| 韩国av在线不卡| 91国产中文字幕| 中文字幕制服av| 国产成人91sexporn| 亚洲欧美色中文字幕在线| 国产黄色免费在线视频| 下体分泌物呈黄色| 中文天堂在线官网| av国产久精品久网站免费入址| 中文字幕另类日韩欧美亚洲嫩草| 王馨瑶露胸无遮挡在线观看| 一级毛片黄色毛片免费观看视频| 9191精品国产免费久久| 九草在线视频观看| 激情五月婷婷亚洲| 精品人妻熟女毛片av久久网站| 亚洲一码二码三码区别大吗| 欧美日韩av久久| 日韩av在线免费看完整版不卡| 妹子高潮喷水视频| 一区二区av电影网| 免费少妇av软件| 一级毛片电影观看| 不卡视频在线观看欧美| 丝袜美足系列| 黄频高清免费视频| 最近的中文字幕免费完整| 天天躁夜夜躁狠狠久久av| 少妇熟女欧美另类| 91国产中文字幕| 男人舔女人的私密视频| 国产精品秋霞免费鲁丝片| 一个人免费看片子| www.精华液| 欧美激情 高清一区二区三区| 国产av国产精品国产| 欧美日韩综合久久久久久| 国产老妇伦熟女老妇高清| 最近最新中文字幕大全免费视频 | 18在线观看网站| 久久久久久人人人人人| 日韩中字成人| 熟妇人妻不卡中文字幕| av又黄又爽大尺度在线免费看| 赤兔流量卡办理| av在线播放精品| 精品国产露脸久久av麻豆| 下体分泌物呈黄色| 亚洲激情五月婷婷啪啪| 久热久热在线精品观看| 69精品国产乱码久久久| 亚洲国产精品国产精品| 一级毛片 在线播放| 美女中出高潮动态图| 久久久久人妻精品一区果冻| 亚洲国产精品成人久久小说| 伦理电影大哥的女人| 大片免费播放器 马上看| 巨乳人妻的诱惑在线观看| 日韩,欧美,国产一区二区三区| 美女福利国产在线| 国产欧美亚洲国产| 大片免费播放器 马上看| 亚洲国产精品一区二区三区在线| 久久国内精品自在自线图片| 午夜日本视频在线| 亚洲三区欧美一区| 国产熟女午夜一区二区三区| 免费黄频网站在线观看国产| 多毛熟女@视频| 成年女人在线观看亚洲视频| av免费在线看不卡| 老女人水多毛片| 欧美中文综合在线视频|