• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Large positive magnetoresistance in photocarrier-doped potassium tantalites

    2022-12-28 09:54:32RuiShuYang楊睿姝DingBangWang王定邦YangZhao趙陽ShuanHuWang王拴虎andKeXinJin金克新
    Chinese Physics B 2022年12期
    關(guān)鍵詞:趙陽

    Rui-Shu Yang(楊睿姝), Ding-Bang Wang(王定邦), Yang Zhao(趙陽), Shuan-Hu Wang(王拴虎), and Ke-Xin Jin(金克新)

    Shaanxi Key Laboratory of Condensed Matter Structures and Properties and MOE Key Laboratory of Materials Physics and Chemistry under Extraordinary Conditions,School of Physical Science and Technology,Northwestern Polytechnical University,Xi’an 710072,China

    Keywords: photocarriers,large positive magnetoresistance,extreme quantum limit

    1. Introduction

    The magnetoresistance(MR)effect has been extensively studied since its discovery in 1856. This effect can be used in sensors, memory devices, and the emergent physics of complex interactions. Many different MRs, such as ordinary MR,[1,2]anisotropic MR,[3,4]tunnel MR,[5]giant MR,[6]and colossal MR[7,8]have been investigated in magnetic and multilayer materials. Generally,the positive and conventional MR has a magnitude of only a few percent. It is even negligible in some nonmagnetic materials due to the curving of the carrier trajectory by the Lorentz force. Nevertheless, a large and linear MR effect breaks this familiar rule. It has been observed in several non-magnetic semiconductors,such as Si,[9]Bi,[10,11]PtBi2,[12]and graphene,[13]raising many lively discussions in the fields of condensed physics and functional materials. Moreover, the kind of MR in nonmagnetic materials can avoid Barkhausen noise in magnetic recording and sensor devices.

    Complex oxides have extraordinary and multifunctional properties, including colossal MR in manganites, high-temperature superconductivity in cuprates, and multiferroics.[14–19]Among these materials, KTaO3(KTO)exhibits a cubic structure with a lattice constant of 0.3989 nm and a high dielectric constant(~4500). These characteristics make it a promising material for the extreme quantum limit(EQL)under a high magnetic field and at low temperatures.[20]In particular, such a material could integrate its functions in the emerging electronics for all-oxide devices.[21,22]Due to ionic liquid gating or Ar+bombardment, the surface of KTO possesses a spectrum of emergent phenomena, such as electrostatic superconductivity,the topological Hall effect(THE),and de-Haas oscillation.[23–26]Recently,KTO has been used in the engineering design of two-dimensional electronic systems.Many heterointerfaces based on KTO have been studied, involving EuO/KTO,[27,28]LaTiO3/KTO,[29]LaVO3/KTO,[30]amorphous-LaAlO3/KTO,[31]and LaAlO3/KTO.[32,33]They show intriguing properties,such as two-dimensional superconductivity,high-mobility spin-polarized electron gas,the THE,and the anomalous Hall effect. However,the MR in these systems is usually small,with a value less than 10%.[34–37]And a reliable large MR effect in complex oxides has not been found so far.

    In this work,we find,for the first time,a significant positive MR effect in KTO single crystals with photocarrier doping under high magnetic fields(about 12 T).Under 360 nm illumination with different light intensities at different temperatures,KTOs come into the EQL state, where the electrons are confined in the lowest Landau levels. In the temperature range of 2 K–50 K, KTOs exhibit metallic behavior and their Hall coefficient vanishes as the magnetic field increases.[38]

    2. Experiment details

    KTO(100)and(111)single crystals(3 mm×3 mm)with different thicknesses are commercially available. The electrical connections were realized at their surface using the ultrasonically wire-bonded aluminum wires. Both the resistivity and the Hall effect were measured with a van de Pauw geometry under 360 nm illumination with different light intensities.We used a physical property measurement system (CFMS-14T) that was equipped with an optical fiber. This apparatus is shown in the inset of Fig. 1(a). The bandgap (Eg) of KTO is 3.4 eV, and the wavelength of light is 360 nm (3.44 eV).Thus,the electrons can be promoted from the valence band to the conduction band under 360 nm light. Although the light illumination generates non-equilibrium carriers,a steady-state quasi-equilibrium can be achieved because the carrier lifetime is close to 0.15 ms.[39]This lifetime is much larger than thermalization. The holes are straightforward to trap, and thus the transport is dominated by electrons.[20,39,40]Furthermore,Hall measurements confirm that electrons mainly determine the conduction. More importantly, the interaction between light and matter depends on the optical properties of matter and the wavelength of light. The optical penetration depth is deduced from the absorption coefficient (α) of KTO, as shown in the supplementary material in Fig. S1(a), which is taken from Ref.[39],from which the depth profile of the electronic distribution can be estimated. From the absorption coefficient, we can obtain that the thickness of the conductive layer is larger than 1 mm atλ=360 nm. At this wavelength,the carrier density distribution, which is perpendicular to the surface of the samples, is uniform. Here, we define MR=[ρxx(H)?ρxx(H=0)]×100%/ρxx(H=0). The supplementary material in Fig.S1(b)shows the relationship between MR andHwhen the magnetic field is perpendicular and parallel to the current at 20 K, indicating that the samples exhibit isotropic properties. Considering the thickness of the conductive layer, the electric conduction of KTO under 360 nm light is quasi-three-dimensional. Additionally, LaAlO3/KTO heterointerfaces were prepared using pulsed laser deposition at 800?C and 1×10?3Pa of O2with a KrF excimer laser(λ=248 nm)that operated at 1 Hz.

    3. Results and discussion

    The temperature dependences of the electrical resistivity of KTO (100) and (111) are shown in Fig. 1(a). The inset shows a schematic diagram of the measured resistivity and Hall resistivity. We observe that the KTOs show metallic behavior at low temperatures. The temperature dependence of the electrical resistivity can typically be described by a power law,ρ=ρ0+ATn.[41]Whenn=2, the expected behavior is a Fermi liquid, while a ‘non-Fermi liquid’ is identified with 1

    To analyze the electronic transport of KTO(100)by photo doping, we measure the Hall resistivity (ρxy) under the magnetic field (H). Figure 1(b) shows this behavior at different temperatures. Strikingly, theρxy–His nonlinear below 20 K. The carrier density (n) and mobility (μ) can be obtained from the Hall coefficient at a zero magnetic field. As shown in Fig. 1(c), the carrier density slightly decreases as the temperature decreases, while the mobility increases and reaches 1200 cm2/V·s at 2 K. More importantly, the KTOs still exhibit metallic behavior, even at very low electron densityn=1.4×1012cm?3.We also measured the carrier density and mobility of KTO single crystals with various light intensities at 2 K. Figure S2 demonstrates that the carrier density increases with the light intensity,which is consistent with previous research of STO single crystals.[42]

    Fig.1. (a)The temperature dependence of the resistivity of KTO(100)and(111) under illumination at λ =360 nm and 33 mW/cm2. The inset of (a)shows a sketch for the measurements of resistivity and Hall resistivity. (b)Hall resistivity(ρxy)of KTO(100)under the illumination as a function of the magnetic field at different temperatures. (c)Carrier density(n)and mobility(μ)of KTO(100)as a function of temperature.

    The Hall resistivity of KTO (111) as a function of the magnetic field in the temperature range of 2 K–20 K is shown in Fig. 2(a). The Hall resistivity (ρxy) favors a nonlinear dependence at low temperatures. The mobilities of KTO (111)as a function of thicknesses and temperatures are shown in Figs.2(b)and 2(c),respectively. The mobility is enhanced as the temperature decreases and the thicknesses increase. Generally, the nonlinear Hall effect has two origins: one is the abnormal Hall effect caused by magnetism, and the other is caused by the coexistence of two or more types of carriers.The abnormal Hall effect can be determined by the derivative relationship betweenρxyandHif the derivation curve has a peak near 0 T.[43]We exclude the abnormal Hall effect according to the curves of dρxy/dH(Fig.S3). To further investigate the nonlinear Hall effect,the two-channel conduction from the electronic bands is taken into account. It is found that the fitting result cannot explain the nonlinear Hall effect (Fig. S4 and Table S1). Thereby, the relationship between the magnetic field and the normalized Hall coefficient is analyzed, as shown in Fig.2(d). The normalized Hall coefficient decreases with the increasing magnetic field, which is consistent with reports by Kozukaet al.[38]The decreasing Hall coefficient is probably caused by the low level of scattering under a high magnetic field in the EQL.

    Fig. 2. (a) Hall resistivity (ρxy) of KTO (111) under the illumination as a function of the magnetic field in the temperature range of 2 K–20 K.(b)and(c)The mobility of KTO(111)as a function of temperatures and thicknesses at 0 T under the illumination with λ =360 nm and 33 mW/cm2,respectively.(d)The normalized Hall coefficient of KTO under illumination as a function of the magnetic field at 2 K.

    The requirements to realize the EQL state areωcτ>1 and ˉhωc>kBT,EF, whereωc=eH/m?is the cyclotron frequency (eis the elementary charge,His the magnetic field,andm?is the electron effective mass),τis the carrier relaxation time,kBTis the thermal energy, andEFis the Fermi energy. In this work, the dielectric constant (εr) of KTO is~4500(2 K)[20]andm?is 0.8m0.[20,40]Thus,theˉhωcof KTO is estimated about 2.78 meV,which is far larger thankBT(2 K)(0.18 meV). TheEFof KTO is about 5.4×10?4meV according to ˉh2k2F/2m?. In addition, if we apply the Mott criterion to ˉhωc>kBT,EF, the EQL state can be realized by satisfying the following conditions:εr/mr>1.3×103,whereεr=ε/ε0(ε0is the vacuum permittivity)andmr=m?/m0(m0is the bare electron mass). For the KTOs,the value ofωcτis~1.44 at a high magnetic field because of the high mobility(>103cm2/V·s). Further,theεr/mris about 5.6×103,which is larger than 1.3×103. Therefore,KTO is likely to come into an EQL state. Electronic wave functions are highly localized and the small gyration radius of electrons in the perpendicular direction reduces the probability of scattering between electrons. Hence, the Hall coefficient decreases as the magnetic field increases.

    Figure 3(a) shows the relationship between the MR of KTO(100)and the magnetic field. The results for KTO(111)are shown in Fig. S5. The MR displays giant positive linear non-saturating features. As shown in Fig. 3(b), the MR increases nonlinearly when decreasing the temperature.The MR values with a thickness of 500μm under the magnetic field of 12 T are 256%,340%,433%,367%,263%,and 119%at 2 K,5 K, 10 K, 20 K, 30 K, and 50 K, respectively. These values are far greater than that of the ordinary MR effect. The reduction of MR below 10 K might be attributed to the localization of electrons due to the ferroelectric phase of KTO.[44]This phenomenon is consistent with the drop in carrier density. Furthermore,we measured the MR of KTOs with different thicknesses and light intensities at 2 K.Figure 3(c)shows that the MR of KTO (111) reaches~200% (12 T) with different thicknesses and~20%(2 T)at various light intensities(25 mW/cm2–35 mW/cm2). These values are far greater than those of oxide interfaces.[24,29]

    Fig.3. (a)MR of KTO(100)as a function of the magnetic field at different temperatures. (b) MR of as a function of temperatures with KTO (100) at 12 T.(c)The MR of KTO(111)dependence of different thicknesses(12 T)and light intensities(2 T)at 2 K;the solid lines are linear fitting curves. (d)A schematic diagram of the energy level under H =0 T and H /=0 T. All the electrons occupy only the lowest Landau level and other levels are empty when ˉhωc ?EF.

    Early in 1959,Lifshits and Peschansky[45]proposed that the linear MR effect could be caused when the Larmor radius of electrons was smaller than their mean free path for a metal in a high magnetic field. Further, Abrikosov declared[46,47]that the system would reach the EQL state for a material with a smallm?if the magnetic field was very high.This conjecture assumes that all of the electrons would occupy only the lowest Landau energy level in a gapless semiconductor with a linear energy spectrum. This will produce a linear MR with a magnetic field,ρxx∝H.Following this,various theories have been proposed to explain the positive MR in nonmagnetic materials by mechanisms,including electric field inhomogeneity,[48]density inhomogeneity,[49]density fluctuations,[50]and antiferromagnetic fluctuations.[51]In our work, although the carrier density is very low, the photocarrier-doped KTO favors metallics at low temperatures because a combination of a smallm?and a large dielectric constant can push the insulator–metal transition boundary to low densities.[9]The electrons are distributed below the Fermi surface whenH=0 T, as shown in Fig. 3(d), andEFdecreases asHincreases. At such a low carrier density and high magnetic field, the Fermi energy ofEF= 5.4×10?4meV is very low. Thus, the lowest Landau energy, ˉhωc=2.78 meV, is far larger thanEF. At this time,the electrons occupy the lowest Landau level,and all the other levels are empty. As a result, KTO shows a quantum MR effect.[13,46,52]A non-saturating MR further verifies that the system of photocarrier-doped KTO comes into the EQL state. Another interpretation is the inhomogeneity in bulk or films,[48–51]which might arise from the carrier-density inhomogeneity,mainly caused by the light distribution from an uneven surface. To further analyze our experimental results,we measured the MR of STO single crystals and LaAlO3/KTO heterointerfaces under 360 nm light illumination. Figure S6 shows that single crystal STO and LAO/KTO exhibit no significant and linear MR under the same conditions. Although we cannot rule out the contribution of light inhomogeneity to the large linear MR, the experiment illustrates very interesting results for KTO under 360 nm irradiation, which further proves that KTO is a novel material with large positive MR based on complex materials.

    4. Conclusion

    In summary,KTO single crystals exposed to 360 nm light show metallic behavior at low temperatures with very low carrier density and high mobility. We conclude that these photodoping KTOs reach the EQL state, which therefore provides a new oxide material with EQL. Importantly, we discover a significant positive MR effect and the decreasing of the Hall coefficient at low temperature and a high magnetic field. In particular,the MR value of KTO(100)reaches 433%at 10 K under 12 T. This is caused by all the electrons occupying the lowest Landau level in the EQL state. At the same time, we consider the contribution of light inhomogeneity to the large linear magnetoresistance. This work paves a way to the understanding of the fundamental physics of the interaction between light and complex materials.

    Acknowledgments

    Project supported by the National Natural Science Foundation of China(Grant No.51572222),Key Research Project of the Natural Science Foundation of Shaanxi Province,China(Grant Nos. 2021JZ-08 and 2020JM-088), the Natural Science Basic Research Plan in Shaanxi Province of China(Grant No. 2021JM-041), and the Fundamental Research Funds for the Central Universities (Grant Nos. 3102017OQD074 and 310201911cx044).

    猜你喜歡
    趙陽
    怎樣計(jì)算更簡便
    趙陽美術(shù)作品
    熱門話題 一季報(bào)驚喜不多
    永修縣:“三變?nèi)蛔儭敝旗柟掏卣姑撠毠?jiān)成果同鄉(xiāng)村振興有效銜接
    找規(guī)律擺圖形
    哪種算法簡便
    圖形中的圖形
    巧算撲克牌
    遲到的生日禮物
    上海故事(2020年11期)2020-12-14 04:03:10
    標(biāo)簽人生
    老女人水多毛片| av.在线天堂| 亚洲精品aⅴ在线观看| 国产精品无大码| 亚洲精品乱久久久久久| 久久99热这里只频精品6学生| 久久久久精品性色| 狠狠精品人妻久久久久久综合| 国产在线男女| 在线观看av片永久免费下载| 亚洲自偷自拍三级| 一区在线观看完整版| 97精品久久久久久久久久精品| 三上悠亚av全集在线观看 | 一二三四中文在线观看免费高清| 美女国产视频在线观看| 日本猛色少妇xxxxx猛交久久| 国产精品国产av在线观看| 中文字幕精品免费在线观看视频 | 精品一区二区三卡| 亚洲高清免费不卡视频| 成人无遮挡网站| 中文字幕精品免费在线观看视频 | 天天躁夜夜躁狠狠久久av| 91午夜精品亚洲一区二区三区| 亚洲精品,欧美精品| 亚洲天堂av无毛| 草草在线视频免费看| 国产精品秋霞免费鲁丝片| 日韩人妻高清精品专区| 国产精品秋霞免费鲁丝片| 国产av国产精品国产| 天堂俺去俺来也www色官网| 99久久精品一区二区三区| 午夜福利在线观看免费完整高清在| 人人妻人人澡人人看| 人人妻人人添人人爽欧美一区卜| 妹子高潮喷水视频| 国产成人freesex在线| 2022亚洲国产成人精品| 在线观看美女被高潮喷水网站| 久久精品夜色国产| 亚洲精品一二三| 国内少妇人妻偷人精品xxx网站| 亚洲av福利一区| 精品久久久精品久久久| 午夜影院在线不卡| 我的老师免费观看完整版| 2022亚洲国产成人精品| 久久午夜综合久久蜜桃| 三级国产精品片| 日韩欧美一区视频在线观看 | 成年人午夜在线观看视频| 国产无遮挡羞羞视频在线观看| 18+在线观看网站| 成人毛片a级毛片在线播放| 国产精品国产三级国产av玫瑰| av国产久精品久网站免费入址| 国产爽快片一区二区三区| 十八禁网站网址无遮挡 | 国产亚洲一区二区精品| 欧美+日韩+精品| 亚洲精品乱码久久久久久按摩| 亚洲综合色惰| 亚洲av免费高清在线观看| 中文字幕人妻熟人妻熟丝袜美| 日韩熟女老妇一区二区性免费视频| 日韩熟女老妇一区二区性免费视频| 免费看光身美女| 国内精品宾馆在线| 亚洲国产精品成人久久小说| 啦啦啦在线观看免费高清www| 日韩强制内射视频| 一区二区三区免费毛片| 乱系列少妇在线播放| 久久精品国产亚洲av天美| 精品视频人人做人人爽| 另类亚洲欧美激情| 99精国产麻豆久久婷婷| 国产真实伦视频高清在线观看| 中文精品一卡2卡3卡4更新| 综合色丁香网| 日韩 亚洲 欧美在线| 另类精品久久| 乱人伦中国视频| 99久久人妻综合| 免费黄频网站在线观看国产| 女的被弄到高潮叫床怎么办| 免费黄色在线免费观看| 国产欧美日韩一区二区三区在线 | 免费看日本二区| 男女无遮挡免费网站观看| 精品少妇黑人巨大在线播放| 亚洲欧美一区二区三区黑人 | 91久久精品国产一区二区三区| 热re99久久国产66热| videos熟女内射| 国产欧美亚洲国产| 免费看不卡的av| 婷婷色av中文字幕| 国产淫语在线视频| 人妻少妇偷人精品九色| 91精品国产国语对白视频| 人妻少妇偷人精品九色| 国产成人午夜福利电影在线观看| 久久热精品热| 一区二区三区四区激情视频| 观看免费一级毛片| 国产老妇伦熟女老妇高清| 99热这里只有是精品50| 最近中文字幕2019免费版| 91在线精品国自产拍蜜月| 日日摸夜夜添夜夜添av毛片| 夫妻性生交免费视频一级片| av国产久精品久网站免费入址| 久久久国产精品麻豆| 一本—道久久a久久精品蜜桃钙片| 免费黄频网站在线观看国产| √禁漫天堂资源中文www| 国产伦理片在线播放av一区| 国产免费视频播放在线视频| 国产精品.久久久| 简卡轻食公司| 观看av在线不卡| 国产伦精品一区二区三区四那| 国产成人a∨麻豆精品| 欧美精品人与动牲交sv欧美| 久久精品国产亚洲av天美| 久久人人爽av亚洲精品天堂| 亚洲欧美一区二区三区黑人 | 亚洲精品国产色婷婷电影| av有码第一页| 免费黄色在线免费观看| 七月丁香在线播放| 不卡视频在线观看欧美| 狂野欧美白嫩少妇大欣赏| 最新中文字幕久久久久| 午夜福利,免费看| 国产老妇伦熟女老妇高清| 少妇人妻久久综合中文| 18+在线观看网站| 精品国产国语对白av| av免费观看日本| 亚洲国产精品999| 国产精品熟女久久久久浪| 菩萨蛮人人尽说江南好唐韦庄| 久久精品国产亚洲av涩爱| 国产老妇伦熟女老妇高清| 三级国产精品片| 日日啪夜夜爽| 国产精品一二三区在线看| 高清欧美精品videossex| 成人特级av手机在线观看| 菩萨蛮人人尽说江南好唐韦庄| 精品国产乱码久久久久久小说| 国产精品一区二区三区四区免费观看| 欧美3d第一页| 人人澡人人妻人| 国产午夜精品久久久久久一区二区三区| 国产av一区二区精品久久| 简卡轻食公司| 夫妻午夜视频| 日韩av不卡免费在线播放| 观看免费一级毛片| 六月丁香七月| 一级毛片 在线播放| 91aial.com中文字幕在线观看| 制服丝袜香蕉在线| 人妻制服诱惑在线中文字幕| 亚洲国产毛片av蜜桃av| 久久久久久久国产电影| 女的被弄到高潮叫床怎么办| av在线播放精品| 美女大奶头黄色视频| 建设人人有责人人尽责人人享有的| 精品一区在线观看国产| freevideosex欧美| 在线播放无遮挡| 亚洲精品456在线播放app| 一级二级三级毛片免费看| 一区二区三区精品91| 久久av网站| 男人狂女人下面高潮的视频| 国产精品女同一区二区软件| 日本av免费视频播放| 久久鲁丝午夜福利片| 自线自在国产av| 最近手机中文字幕大全| 97超视频在线观看视频| 国产精品一区二区性色av| 国产淫语在线视频| 久久精品夜色国产| 一级毛片久久久久久久久女| 免费观看a级毛片全部| 国产精品一区二区三区四区免费观看| 久久精品国产a三级三级三级| 日韩欧美精品免费久久| 亚洲国产欧美在线一区| 成人毛片a级毛片在线播放| 国产精品国产av在线观看| 啦啦啦啦在线视频资源| 午夜福利视频精品| 色吧在线观看| 天天躁夜夜躁狠狠久久av| 熟女av电影| 亚洲不卡免费看| 99久国产av精品国产电影| 男女边吃奶边做爰视频| 午夜av观看不卡| 三级经典国产精品| 国产一区有黄有色的免费视频| 丝袜脚勾引网站| 国产精品女同一区二区软件| 国产精品秋霞免费鲁丝片| 日本-黄色视频高清免费观看| av专区在线播放| 亚洲精品中文字幕在线视频 | 国产精品熟女久久久久浪| 搡老乐熟女国产| 一区在线观看完整版| 国产av精品麻豆| a级一级毛片免费在线观看| 妹子高潮喷水视频| 99久久综合免费| 久久久国产一区二区| 午夜av观看不卡| 免费观看av网站的网址| 亚洲精华国产精华液的使用体验| 国产精品蜜桃在线观看| 春色校园在线视频观看| 中国国产av一级| 精品一区二区免费观看| 天天躁夜夜躁狠狠久久av| 伦理电影大哥的女人| 国产日韩欧美在线精品| 亚洲av综合色区一区| 午夜福利影视在线免费观看| 国产亚洲最大av| 精品国产乱码久久久久久小说| 亚洲精品aⅴ在线观看| 日本黄色日本黄色录像| 午夜影院在线不卡| 美女视频免费永久观看网站| 高清欧美精品videossex| 日韩成人av中文字幕在线观看| 亚洲精品乱久久久久久| 哪个播放器可以免费观看大片| 永久网站在线| 亚洲在久久综合| 免费少妇av软件| 丝袜在线中文字幕| 日韩亚洲欧美综合| 一区二区三区四区激情视频| 国产国拍精品亚洲av在线观看| 哪个播放器可以免费观看大片| 纵有疾风起免费观看全集完整版| 男女边吃奶边做爰视频| 最新中文字幕久久久久| 久久久午夜欧美精品| 亚洲成人av在线免费| 91精品一卡2卡3卡4卡| 丁香六月天网| 丝袜在线中文字幕| 国产美女午夜福利| 啦啦啦啦在线视频资源| 午夜免费观看性视频| 国产成人午夜福利电影在线观看| 亚洲精品一二三| 波野结衣二区三区在线| 久久免费观看电影| 99久久中文字幕三级久久日本| 五月伊人婷婷丁香| 日日啪夜夜撸| av网站免费在线观看视频| 99视频精品全部免费 在线| 久久鲁丝午夜福利片| 亚洲国产精品999| 国产伦精品一区二区三区四那| 亚洲国产毛片av蜜桃av| 久久精品国产a三级三级三级| 国产精品伦人一区二区| 日韩 亚洲 欧美在线| 免费观看的影片在线观看| 2021少妇久久久久久久久久久| 精品一区二区三区视频在线| 少妇人妻精品综合一区二区| 午夜精品国产一区二区电影| 欧美97在线视频| 久久女婷五月综合色啪小说| 天天躁夜夜躁狠狠久久av| 七月丁香在线播放| 国产成人免费观看mmmm| 搡女人真爽免费视频火全软件| 少妇人妻一区二区三区视频| 国产黄色免费在线视频| 成人毛片a级毛片在线播放| 寂寞人妻少妇视频99o| 欧美区成人在线视频| 性高湖久久久久久久久免费观看| 免费看不卡的av| 蜜桃在线观看..| 国产伦精品一区二区三区四那| 中文字幕久久专区| 亚洲av成人精品一区久久| 久久精品国产a三级三级三级| 中文字幕免费在线视频6| a级毛色黄片| 亚洲精品第二区| 少妇熟女欧美另类| 熟女人妻精品中文字幕| 国产精品熟女久久久久浪| 日本欧美国产在线视频| 一本大道久久a久久精品| 久久午夜福利片| 嫩草影院入口| 18禁在线无遮挡免费观看视频| 在线观看免费高清a一片| 精品少妇久久久久久888优播| 日本爱情动作片www.在线观看| 校园人妻丝袜中文字幕| 在线观看美女被高潮喷水网站| 在线观看美女被高潮喷水网站| 一级毛片久久久久久久久女| 视频中文字幕在线观看| 美女xxoo啪啪120秒动态图| 我要看日韩黄色一级片| 丰满乱子伦码专区| 久久影院123| 久久影院123| 亚洲精品久久午夜乱码| 嫩草影院新地址| 国产免费视频播放在线视频| 美女内射精品一级片tv| 精品久久久精品久久久| 国内精品宾馆在线| 老司机亚洲免费影院| 国产老妇伦熟女老妇高清| 精品人妻熟女av久视频| 国产美女午夜福利| 国产乱来视频区| 晚上一个人看的免费电影| 纯流量卡能插随身wifi吗| 久久精品国产亚洲av天美| 日本91视频免费播放| 精品亚洲成国产av| 亚洲av成人精品一区久久| 午夜免费观看性视频| 日日摸夜夜添夜夜添av毛片| 国产成人freesex在线| 伦理电影大哥的女人| 一级毛片黄色毛片免费观看视频| 欧美三级亚洲精品| 永久免费av网站大全| 亚洲激情五月婷婷啪啪| 国产一区二区三区av在线| 精品国产乱码久久久久久小说| 99热网站在线观看| 日韩三级伦理在线观看| 最近中文字幕2019免费版| 成年美女黄网站色视频大全免费 | 国产在线男女| 十八禁网站网址无遮挡 | 国产亚洲最大av| 亚洲情色 制服丝袜| 国产高清国产精品国产三级| 丰满人妻一区二区三区视频av| 哪个播放器可以免费观看大片| av播播在线观看一区| 国产一区二区在线观看av| 午夜激情久久久久久久| 丰满迷人的少妇在线观看| 在线观看免费高清a一片| 亚洲av免费高清在线观看| 麻豆乱淫一区二区| 三上悠亚av全集在线观看 | 婷婷色麻豆天堂久久| 国产一区二区在线观看日韩| 亚洲av.av天堂| 久久久国产一区二区| 午夜免费鲁丝| 最后的刺客免费高清国语| 久久精品夜色国产| 99热这里只有精品一区| 久久国产精品男人的天堂亚洲 | 日本色播在线视频| 久久久久视频综合| 成人漫画全彩无遮挡| 一级毛片我不卡| 韩国av在线不卡| 极品少妇高潮喷水抽搐| 国产又色又爽无遮挡免| 夫妻性生交免费视频一级片| a级毛片在线看网站| 亚洲欧洲国产日韩| 亚洲内射少妇av| 国产av国产精品国产| 男人和女人高潮做爰伦理| 超碰97精品在线观看| 免费少妇av软件| 亚洲成人av在线免费| 色哟哟·www| 黄色视频在线播放观看不卡| av专区在线播放| 最新的欧美精品一区二区| 一级毛片久久久久久久久女| 久久久久久久大尺度免费视频| 亚洲成色77777| 久久99精品国语久久久| 亚洲国产欧美在线一区| 国精品久久久久久国模美| 亚洲人与动物交配视频| av在线app专区| 亚洲,欧美,日韩| 国产永久视频网站| 亚洲伊人久久精品综合| 视频中文字幕在线观看| 曰老女人黄片| 久久久久久久久久久丰满| 人妻一区二区av| 寂寞人妻少妇视频99o| 国内揄拍国产精品人妻在线| 国产日韩一区二区三区精品不卡 | 色吧在线观看| av女优亚洲男人天堂| 日韩欧美一区视频在线观看 | 男人爽女人下面视频在线观看| 日韩精品免费视频一区二区三区 | 国产精品国产三级国产av玫瑰| 久久6这里有精品| 少妇熟女欧美另类| 成年女人在线观看亚洲视频| 美女脱内裤让男人舔精品视频| 最黄视频免费看| 久久人人爽av亚洲精品天堂| 欧美精品亚洲一区二区| videos熟女内射| 九草在线视频观看| 久久99蜜桃精品久久| 精品久久国产蜜桃| 一区二区三区乱码不卡18| 国产精品久久久久久精品古装| 久久这里有精品视频免费| 国产黄频视频在线观看| av卡一久久| 午夜视频国产福利| 少妇人妻 视频| 色视频www国产| 欧美成人午夜免费资源| 欧美精品高潮呻吟av久久| 黄色日韩在线| 国产一区二区在线观看日韩| 天堂8中文在线网| 亚洲欧美日韩另类电影网站| 午夜影院在线不卡| 国产av码专区亚洲av| 少妇人妻久久综合中文| 久久韩国三级中文字幕| 亚洲av不卡在线观看| 亚洲在久久综合| 91aial.com中文字幕在线观看| 亚洲欧洲精品一区二区精品久久久 | 日韩一区二区视频免费看| 日本免费在线观看一区| 亚洲美女视频黄频| 国产成人免费无遮挡视频| 亚洲av综合色区一区| 欧美+日韩+精品| 国产亚洲5aaaaa淫片| 丰满乱子伦码专区| 久久精品夜色国产| 久久毛片免费看一区二区三区| 国产女主播在线喷水免费视频网站| av又黄又爽大尺度在线免费看| av国产久精品久网站免费入址| 黑人巨大精品欧美一区二区蜜桃 | 亚洲怡红院男人天堂| 91久久精品国产一区二区成人| 极品教师在线视频| 国产欧美亚洲国产| 视频区图区小说| 黄色毛片三级朝国网站 | 国内少妇人妻偷人精品xxx网站| 国产精品免费大片| a 毛片基地| 国产精品人妻久久久久久| 国产极品天堂在线| 久久人人爽av亚洲精品天堂| 一级av片app| 国产成人精品福利久久| 欧美bdsm另类| videossex国产| 久久久久久久亚洲中文字幕| 国产成人精品无人区| 一级毛片电影观看| 亚洲精品成人av观看孕妇| 午夜福利,免费看| 3wmmmm亚洲av在线观看| 六月丁香七月| 少妇精品久久久久久久| 国产成人精品久久久久久| 一级a做视频免费观看| 狂野欧美白嫩少妇大欣赏| 久久亚洲国产成人精品v| 一区在线观看完整版| 久久午夜福利片| 免费少妇av软件| 亚洲av国产av综合av卡| 日本av手机在线免费观看| 久久久久久久国产电影| 国产有黄有色有爽视频| 日韩av免费高清视频| 夜夜骑夜夜射夜夜干| 久久这里有精品视频免费| 国产精品福利在线免费观看| 日日摸夜夜添夜夜爱| 日本91视频免费播放| 国内少妇人妻偷人精品xxx网站| 久久午夜综合久久蜜桃| 18禁动态无遮挡网站| 国产精品一区二区在线观看99| 爱豆传媒免费全集在线观看| 日韩 亚洲 欧美在线| 不卡视频在线观看欧美| 久久久久久久久大av| 国产精品99久久99久久久不卡 | 亚洲精品久久久久久婷婷小说| 一级毛片久久久久久久久女| 老熟女久久久| 22中文网久久字幕| 免费观看性生交大片5| av黄色大香蕉| 日韩人妻高清精品专区| 视频中文字幕在线观看| 国产亚洲精品久久久com| 免费av不卡在线播放| 国产熟女欧美一区二区| 天天操日日干夜夜撸| 久久久久人妻精品一区果冻| 午夜91福利影院| 女性被躁到高潮视频| 麻豆乱淫一区二区| 亚洲国产成人一精品久久久| 国产精品一二三区在线看| 99久国产av精品国产电影| 人人妻人人看人人澡| 免费播放大片免费观看视频在线观看| 午夜福利在线观看免费完整高清在| 亚洲精品亚洲一区二区| 国产免费视频播放在线视频| 国产色婷婷99| 亚洲美女黄色视频免费看| 性色avwww在线观看| 男女无遮挡免费网站观看| 亚洲美女黄色视频免费看| 亚洲欧美清纯卡通| 国产精品人妻久久久久久| 国产欧美日韩综合在线一区二区 | 亚洲天堂av无毛| 久久 成人 亚洲| 狠狠精品人妻久久久久久综合| 精品久久久噜噜| 日日摸夜夜添夜夜添av毛片| 久久久久国产网址| 亚洲av欧美aⅴ国产| 亚洲av福利一区| 一本久久精品| 婷婷色av中文字幕| 久久久久久久亚洲中文字幕| 亚洲性久久影院| 人妻夜夜爽99麻豆av| 欧美精品一区二区免费开放| 亚洲av.av天堂| 久久国内精品自在自线图片| 久久精品国产亚洲av天美| 亚洲欧美精品自产自拍| av在线播放精品| 国产在线一区二区三区精| 边亲边吃奶的免费视频| 一二三四中文在线观看免费高清| 国产伦理片在线播放av一区| 久久久久久久精品精品| 久热久热在线精品观看| 亚洲av欧美aⅴ国产| 色视频在线一区二区三区| 欧美成人午夜免费资源| 国产女主播在线喷水免费视频网站| 高清av免费在线| 国产淫片久久久久久久久| 九九爱精品视频在线观看| h日本视频在线播放| 又粗又硬又长又爽又黄的视频| 国产免费一区二区三区四区乱码| 热re99久久精品国产66热6| 日韩,欧美,国产一区二区三区| 人体艺术视频欧美日本| 观看av在线不卡| 久久人人爽av亚洲精品天堂| 麻豆乱淫一区二区| 人人妻人人爽人人添夜夜欢视频 | 成人美女网站在线观看视频| 永久网站在线| 大片电影免费在线观看免费| 亚洲四区av| 亚洲在久久综合| 免费观看无遮挡的男女| 免费av不卡在线播放| 国产精品嫩草影院av在线观看| 日本黄大片高清| 亚洲国产最新在线播放| 新久久久久国产一级毛片| 亚洲av二区三区四区| 久久久久视频综合| 亚洲欧美日韩另类电影网站| 精品一区二区三卡| 欧美精品一区二区大全|