• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Precise Segmentation of Choroid Layer in Diabetic Retinopathy Fundus OCT Images by Using SEC-UNet*

    2022-12-22 13:58:40XUXiangCongCHENJunYanWANGXueHuaRuiONGHongLianWANGMingYiZHONGJunPingTANHaiShuZHENGYiXuONGKeHANDingAn

    XU Xiang-Cong,CHEN Jun-Yan,WANG Xue-Hua*,LⅠRui,XⅠONG Hong-Lian,WANG Ming-Yi,ZHONG Jun-Ping,TAN Hai-Shu,ZHENG Yi-Xu,XⅠONG Ke***,HAN Ding-An*

    (1)School of Physics and Optoelectronic Engineering,Foshan University,Foshan 528225,China;2)Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic,Foshan University,Foshan 528225,China;3)School of Mechatronic Engineering and Automation,Foshan University,Foshan 528225,China;4)Department of Ophthalmology,Nanfang Hospital,Southern Medical University,Guangzhou 510515,China)

    Abstract Objective Diabetic retinopathy (DR) is a serious complication of diabetes that may cause vision loss or even blindness in patients. Early examination of the choroid plays an essential role in the diagnosis of DR. However, owing to the fuzzy choroid-sclera interface (CSⅠ) and shadow of retinopathy in the optical coherence tomography (OCT) images of DR, most existing algorithms cannot segment the choroid layer precisely. The present paper aims to improve the accuracy of choroid segmentation in DR OCT images. Methods Ⅰn this paper, we propose an optimized squeeze-excitation-connection (SEC) module integrated with the UNet,called the SEC-UNet,which not only focuses on the target but also jumps out of the local optimum to enhance the overall expressive ability.Results The experimental results show that the area under the ROC curve(AUC)of the SEC-UNet reaches up to 0.993 0, which outperforms that obtained for conventional UNet and SE-UNet models. Ⅰt indicates that the SEC-UNet can obtain accurate and complete segmentation results of the choroid layer. Statistical analysis of choroid parameter changes indicated that compared with normal eyes,the 1 mm adjacent area of choroid fovea increased in 87.1%of DR patients.Ⅰt proved that DR is likely to cause choroid layer thickening.Conclusion Our method may become a useful diagnostic tool for doctors to explore the function of the choroid in the prevention,pathogenesis,and prognosis of diabetic eye disease.

    Key words diabetic retinopathy,choroid segmentation,optical coherence tomography,squeeze-excitation-connection UNet

    Diabetic retinopathy (DR) is a serious complication of diabetes and has become one of the main causes of blindness worldwide[1].Early detection of eye diseases and appropriate treatment can greatly reduce the number of patients with DR[2].The choroid is a vascular plexus layer that lies between the sclera and retina, providing oxygen and nourishment to the eye[3]. Ⅰt performs critical physiological functions and plays a crucial role in determining various diseased conditions[4-8]. Studies have shown that changes in the shape and anatomical structure of the choroid are strongly related to the incidence and severity of DR[9-11]. Figure 1 illustrates the manually segmented boundaries in a fundus optical coherence tomography(OCT) B-scan image of DR. This process is timeconsuming and depends on the experience and subjective judgment of the doctor. Therefore, an automatic and precise segmentation method is urgently needed for future clinical applications.

    Fig.1 Illustration of a manually labeled OCT B-scan of a patient with DRFour boundaries consist of internal limiting membrane (ⅠLM; red curve), inner segment/out segment (ⅠS/OS; blue curve), Bruch's membrane (BM; yellow curve), and choroid-sclera interface (CSⅠ;green curve).

    Ⅰn the past, many algorithms for choroid segmentation have been developed[12-18],such as graph search[19], active contours and Markov random fields[20], and support vector machines (SVM)[21].However, these have not been adopted into the real clinical environment;this is primarily because a.there are too many super parameters that need to be adjusted in the segmentation program, and b. the segmentation results need to be manually corrected and processed.Ⅰn recent years,deep learning has been widely used in medical image processing. Masoodet al.[17]used a convolutional neural network (CNN)Cifar-10 architecture to extract the choroid part of OCT images into patches with or without CSⅠ.However, it needs to deal with a large number of overlapping windows, which can be computationally redundant. Georgeet al.[22]used SegNet to obtain the choroid region and used the morphology for edge detection. Segmentation of pathological choroid images is not ideal because of the inadequate use of shallow features. UNet may be one of the most popular and successful architectures for medical image segmentation to date[23]because its fully CNN structure requires only a small number of samples,the encoding path of coarse-grained context detection,and the decoding path of fine-grained location.However,because the shape,size,or light of the target affects the accuracy of the segmentation results, a single UNet may not perform well. Therefore,multiple UNets are cascaded to increase the model performance. Oktayet al.[24]proposed attention gates,which automatically learn to focus on the target, and integrating them into the conventional UNet model can increase the prediction accuracy without adding additional networks. Another excellent attention mechanism is the squeeze-and-excitation (SE)module[25], which can focus on the target, highlight useful features by channel, and suppress irrelevant features.Rundoet al.[26]incorporated SE modules into UNet to segment the prostate zonal and achieved excellent results.

    However, the SE module in the network can easily fall into the local optimum while ignoring the global features of the target, which results in a decreased accuracy in the DR choroid boundary segmentation task. Ⅰn this paper, we propose an optimized SE module, namely the squeeze-excitationconnection (SEC) module, in which a skip connection between the feature mapping layer and the conversion output was inserted.The SEC module not only retains the attention ability of the original SE module but also enables the current layer to pass its own feature maps to the subsequent layer, thereby enhancing the overall expressive ability of the network. We integrated the SEC module with UNet and compared it with conventional UNet and SE-UNet models for segmentation of the choroid boundary in DR OCT images.The results indicated that SEC-UNet achieved the best performance (i.e., an area under the ROC curve (AUC) value of 0.993 0). The qualitative and quantitative comparisons demonstrated that the SEC module is effective and that the proposed model can achieve precise segmentation of DR choroid images.Ⅰn this paper, we measure the foveal choroidal thickness and the volume of the adjacent area. Ⅰn the future, it may become a useful diagnostic tool for doctors to explore the mechanism for the pathogenesis of DR.

    1 Methods

    Ⅰn this study, the SEC-UNet was developed to segment the choroid boundaries in OCT images of DR, where the UNet structure serves as the backbone and the SEC module serves as an attention mechanism to strengthen the discriminative representation ability,thereby making the network more adaptive to DR choroid segmentation tasks.

    1.1 Network architecture

    SEC-UNet combines an encoder and a decoder path,as shown in Figure 2.The network starts with an input image with dimensions 320×320×3. The first layer of the encoder path is a convolutional layer with a stride of 1.The second layer is the SEC module with a channel size of 128. The third layer comprises maxpooling layers with a stride of 2. We repeated the same steps 3 times, and the channel sizes of these modules were 256, 512, and 1 024, respectively. The decoder path takes the output of the encoder path as the input; the two paths are similar except that the maxpooling layers are replaced by upsampling layers with a stride of 2 in the decoder path. The features obtained through the encoder and decoder paths are combined by the skip connection. At the end of the net, the choroid and background areas are segmented using the SoftMax activation function.

    1.2 SEC module

    The SEC module is an optimized version of the SE module,as shown in Figure 3.The SE module is a lightweight gating mechanism[25]. Ⅰt can enhance the representational power of the network by modeling channel-wise relationships.

    Ⅰn the SE module,the input mapsX'∈RH'×W'×C'are transformed (Ftr) to feature mapsX∈RH×W×C.Before feedingXinto the next transformation, it undergoes 3 successive steps: squeeze, excitation, and connection.The global spatial information is squeezed(Fsq) into a channel descriptor by global average pooling, and the gating mechanism is employed to tackle the issue of exploiting channel dependencies:

    Fig.2 Architecture of the proposed SEC-UNet model

    Fig.3 Squeeze-excitation-connection module

    whereσdenotes the Sigmoid function,δrefers to the rectified linear unit (ReLU)[27]function,W1 ∈andW2 ∈are fully connected layers, andris the reduction rate in the dimensionality reduction layer (set as 16). The transformation output of the SE module is obtained by rescaling(Fscale)ofF(X).

    The SE module recalibrates the features through the internal gating structure to focus the attention of the network on the target. However, it easily falls into the local optimum, ignoring the global features of the target, which results in inaccurate boundary segmentation in the choroid segmentation task. Ⅰn this study, we modified the original structure of the SE module. We took inspiration from the dense connectivity in DenseNet, which takes a feed-forward mode to connect the current layer to the subsequent layer, thus encouraging feature reuse and enhancing feature expression capabilities[28]. We inserted a skip connection (Fconnect)between the feature mapping layer and the transform output:

    This feed-forward connection mode can take advantage of the context information and can effectively enhance the global and local expression capabilities at the same time. Ⅰt also encourages feature reuse throughout the network and makes the module more compact.

    2 Experiments and results

    Ⅰn this section, we introduced the database used to evaluate networks followed by detailed network parameters and training details and displayed the segmentation results and comparison among different networks.

    2.1 Dataset

    The collection and analysis of image data were approved by the Human Research Ethics Committee of Nanfang Hospital of Southern Medical University and adhered to the tenets of the Declaration of Helsinki. The dataset was acquired using Heidelberg OCTSPECTRALⅠS S200 and consisted of EDⅠ-OCT images from 40 DR eyes (25 patients). Each EDⅠ-OCT cube has 128 B-scans, and a given B-scan contains 512 A-scans, each of which comprises 596 pixels. We randomly selected 30 B-scans from each volume and manually annotated them by experienced doctors. For each B-scan, we used the graph search method[29]to obtain the ⅠS/OS boundary, removed the region above it to retain region of interest (ROⅠ) for reducing the choroid-independent information, and then cropped it into 10 patches (320×320) in the horizontal direction to expand the data. The new dataset was divided into training set, validation set,and test set in the ratio 7∶2∶1.

    2.2 Implementation

    The proposed method was built on Keras with TensorFlow as the backend[30]. The experiments were run on a single GPU (NVⅠDⅠA GeForce GTX 2080Ti). The model was trained for 100 epochs. Each convolution layer in the model had a kernel size of 3×3. The weights and biases of SEC-UNet were initialized using the He_normal scheme. We used the Adam optimizer with a mini-batch size of 8 to update the network weights and biases. The learning rate for training the model was 10-5. Ⅰn the training stage, we placed a dropout layer with a probability of 0.2 after the convolution layer to prevent the network from overfitting.

    2.3 Evaluation metrics

    The choroid segmentation results can be evaluated by accuracy (ACC), sensitivity (SE),specificity (SP), andF1-score (F1)[31], which are defined as

    whereTP,TN,FP, andFNrepresent the number of true positive, true negative, false positive, and false negative pixels, respectively. Other evaluation metrics, such as receiver operating characteristic(ROC)curve andAUC,were also used in this study.

    2.4 Comparison between different networks

    To validate the performance of the proposed algorithm, we tested SEC-UNet for DR choroid segmentation and compared it with the conventional UNet[23]and SE-UNet[26]models. These networks were trained on the same parameter settings,including the Adam optimizer, initial learning rate, and maximum epoch number, to ensure a fair comparison.As shown in Figure 4,the ROC curve of the proposed model reaches the upper left corner,and theAUCis(a value of 0.993 0) larger than that of the other two models. Ⅰn contrast, the ROC curves of the UNet and SE-UNet were entangled, which reveals that SE-UNet cannot improve the performance of UNet in this segmentation task. For the complex features of DR choroid images, the SE module overfocuses on the boundary and falls into the local optimum, while ignoring the overall expression of the target.

    Table 1 lists the evaluation metrics of the models.The highlighted numbers represent the best performance. Ⅰt can be observed that despite anSEvalue lower than the SE-UNet model, theACC,SP,andF1 values of the proposed model are higher than those of the other two, indicating its superiority in the segmentation performance. SEC-UNet has the slowest training and prediction speed, which trades computational cost for superior segmentation performance. The higherSEvalue but lowerSPvalue of the SE-UNet model indicates that it tends to oversegment the choroid region. TheF1 values of UNet and SE-UNet are similar, which verifies the drawbacks of over-focus on the boundary in the SE module.

    Fig.4 ROC curve and AUC analysis of different models

    Table 1 Comparison with different models

    Figure 5 shows 4 sample results to visually compare our method with other models. The original images, choroid ROⅠimages, and ground-truth masks are presented in Figure 5a-c. The segmentation results obtained by UNet, SE-UNet, and SEC-UNet are shown in Figure 5d-f. Ⅰt can be observed that BM is better than CSⅠin the segmentation results of each model because of the fuzzy gradient feature of CSⅠ.The shadow of retinopathy in the DR choroid image is projected into the choroid, which makes it difficult to distinguish the features of the choroid internal vessels and the sclera. This leads to the UNet and SE-UNet mistaking the internal vessel pixels as scleral pixels,as shown in Figure 5d, e. Moreover, the CSⅠ in UNet's segmentation results deviate greatly from the correct one; this is because its main purpose is to recover the global information of the target object,ignoring detailed features such as boundaries. The segmentation results of SE-UNet are slightly better compared with UNet's, but the accuracy of boundary segmentation is lower because of its tendency to easily fall into the local optimum, ignoring the global features of the target. SEC-UNet obtained the most accurate and complete segmentation results (Figure 5f) compared with the ground-truth masks (Figure 5c), which proves that the SEC module can not only focus on the target object but also jump out the local optimum to take advantage of the global feature information. The qualitative and quantitative results demonstrate that the proposed SEC module is effective and the SEC-UNet can achieve automatic and precise segmentation of choroid layer in DR OCT images.

    Fig.5 Sample resultsFrom left to right: (a) original choroid OCT images; (b) choroid ROⅠimages: removed the region above choroid to reduce independent information;(c)ground-truth masks;(d-f)results obtained by UNet,SE-UNet,and our proposed method.

    2.5 Statistical analyses of the choroidal parameters variation

    According to clinical findings, DR may cause choroidal changes[10]. Thus the quantitative measurement of choroidal parameters is of great significance for the diagnosis and preventive treatment of DR. This paper calculated 38 sets of choroid foveal thickness (CFT) and volume of adjacent area (CFV) within 1 mm diameter,respectively, from 28 DR patients.The average values of 7 normal people served as the threshold to judge choroidal change.Results showed in Table 2 indicated that mostCFT, 1 mmCFVincreased in DR eyes compared with normal eyes. And the 1 mmCFVperformed the highest correlation with DR. So it can be used to characterize the choroidal changes caused by DR more accurately and comprehensively.

    Table 2 The performance of CFT,1 mm CFV(xˉ± s)

    Statistical analysis of choroid parameter changes indicated that compared with normal eyes, the 1 mm adjacent area of choroid fovea increased in 87.1% of DR patients. Ⅰt proved that DR is likely to cause choroid layer thickening.

    3 Conclusion

    Ⅰn this paper, we presented a new SEC-UNet model to improve the accuracy of choroid segmentation in DR OCT images. Compared with the conventional UNet and SE-UNet models, this model achieved the best performance(AUCvalue of 0.993 0).Our algorithm can obtain automatic and precise segmentation of the choroid layer in DR images,which may be helpful for doctors in diagnosing fundus diseases related to the choroid state. The statistical analysis of choroid parameter presented the 1 mm adjacent area of choroid fovea increased in 87.1% of DR patients, which means DR may thicken the choroid layer. Ⅰn addition, the proposed SEC module can also be incorporated into other network frameworks, such as VGG[32], ResNet[33], and DenseNet[28], to accomplish tasks such as image classification, scene classification, and object detection.

    日日摸夜夜添夜夜添av毛片| 国产精品久久久久久久久免| 少妇猛男粗大的猛烈进出视频 | 尤物成人国产欧美一区二区三区| 插阴视频在线观看视频| 91久久精品国产一区二区三区| 亚洲欧洲国产日韩| 亚洲国产高清在线一区二区三| 桃色一区二区三区在线观看| 久久久成人免费电影| 伦理电影大哥的女人| 国产大屁股一区二区在线视频| 日本欧美国产在线视频| 少妇裸体淫交视频免费看高清| 日韩欧美三级三区| 免费观看在线日韩| 国产成人精品一,二区 | 春色校园在线视频观看| 久久国产乱子免费精品| 免费无遮挡裸体视频| av在线亚洲专区| 又黄又爽又刺激的免费视频.| 国产精品一区www在线观看| av视频在线观看入口| 亚洲自偷自拍三级| 亚洲欧美精品专区久久| 一级黄色大片毛片| 看黄色毛片网站| 国产精品久久久久久久久免| 老司机影院成人| 亚洲国产精品sss在线观看| 色5月婷婷丁香| 人妻系列 视频| 日本撒尿小便嘘嘘汇集6| 一区二区三区免费毛片| 久久久久久大精品| avwww免费| 亚洲精品乱码久久久久久按摩| 在线天堂最新版资源| 内射极品少妇av片p| 97超碰精品成人国产| 中文字幕人妻熟人妻熟丝袜美| 欧美性感艳星| 五月玫瑰六月丁香| 亚洲国产欧美在线一区| 久久国产乱子免费精品| 精品人妻偷拍中文字幕| 99久久九九国产精品国产免费| 欧美变态另类bdsm刘玥| 国产精品永久免费网站| 色视频www国产| 禁无遮挡网站| 久久综合国产亚洲精品| 精品午夜福利在线看| 男女下面进入的视频免费午夜| 日韩人妻高清精品专区| 色综合色国产| 麻豆成人av视频| 国产在视频线在精品| 最近2019中文字幕mv第一页| 一本久久精品| 国产精品久久久久久av不卡| 乱人视频在线观看| 亚洲自偷自拍三级| 天堂√8在线中文| 国国产精品蜜臀av免费| 国产不卡一卡二| 亚洲精品乱码久久久久久按摩| 精品一区二区三区人妻视频| 国产探花极品一区二区| 欧美潮喷喷水| 成人无遮挡网站| 精品久久久久久久末码| 国产高清有码在线观看视频| 听说在线观看完整版免费高清| 国产不卡一卡二| 成人毛片60女人毛片免费| 久久这里有精品视频免费| 国产亚洲欧美98| 九色成人免费人妻av| 国产成人91sexporn| www日本黄色视频网| 亚洲激情五月婷婷啪啪| 2022亚洲国产成人精品| 亚洲精品日韩在线中文字幕 | 3wmmmm亚洲av在线观看| 亚洲精品日韩在线中文字幕 | 最近视频中文字幕2019在线8| 国产高清视频在线观看网站| 在线免费观看的www视频| 国产一区二区在线观看日韩| 天堂av国产一区二区熟女人妻| 欧美成人精品欧美一级黄| 91久久精品国产一区二区成人| 成年女人永久免费观看视频| 国产一区二区在线观看日韩| 自拍偷自拍亚洲精品老妇| 人人妻人人澡欧美一区二区| 午夜福利高清视频| 99视频精品全部免费 在线| 久久精品国产亚洲av涩爱 | 亚洲国产精品国产精品| 热99re8久久精品国产| 99热全是精品| 欧美极品一区二区三区四区| 一卡2卡三卡四卡精品乱码亚洲| 久久精品夜色国产| 亚洲av免费高清在线观看| 亚洲精品国产av成人精品| 免费搜索国产男女视频| 日本av手机在线免费观看| 九九热线精品视视频播放| 哪里可以看免费的av片| 亚洲熟妇中文字幕五十中出| 亚洲av.av天堂| 亚洲美女视频黄频| 久久精品夜夜夜夜夜久久蜜豆| 少妇人妻一区二区三区视频| 亚洲激情五月婷婷啪啪| 日韩av不卡免费在线播放| 三级国产精品欧美在线观看| 日本-黄色视频高清免费观看| 午夜视频国产福利| 国产欧美日韩精品一区二区| 亚洲人成网站在线播| 欧美另类亚洲清纯唯美| 一卡2卡三卡四卡精品乱码亚洲| 亚洲图色成人| 男女那种视频在线观看| 欧美丝袜亚洲另类| 精品99又大又爽又粗少妇毛片| 日韩三级伦理在线观看| www日本黄色视频网| 亚洲成人中文字幕在线播放| 日韩成人av中文字幕在线观看| 悠悠久久av| 在线观看av片永久免费下载| 男人舔奶头视频| 久久久精品大字幕| 真实男女啪啪啪动态图| 中出人妻视频一区二区| 乱系列少妇在线播放| 国产精品无大码| 精品国产三级普通话版| 99热网站在线观看| 日本五十路高清| av.在线天堂| 国产三级在线视频| 又爽又黄a免费视频| 国产在线精品亚洲第一网站| 欧美+日韩+精品| 国产精品人妻久久久久久| 欧美激情国产日韩精品一区| 免费av不卡在线播放| 亚洲无线观看免费| 亚洲无线观看免费| 免费无遮挡裸体视频| 小说图片视频综合网站| 一区二区三区高清视频在线| 亚洲乱码一区二区免费版| 日日啪夜夜撸| 欧美bdsm另类| 美女国产视频在线观看| 有码 亚洲区| 成年女人永久免费观看视频| 欧美性感艳星| 欧美成人a在线观看| 国产视频内射| 国产一级毛片在线| 十八禁国产超污无遮挡网站| 久久久久久久亚洲中文字幕| 蜜桃亚洲精品一区二区三区| 又爽又黄无遮挡网站| 一级av片app| 十八禁国产超污无遮挡网站| 久久久久免费精品人妻一区二区| 免费人成在线观看视频色| 成人欧美大片| 亚洲性久久影院| 黄色配什么色好看| 99视频精品全部免费 在线| 亚洲真实伦在线观看| 大型黄色视频在线免费观看| 欧美又色又爽又黄视频| 成人国产麻豆网| 亚洲国产欧洲综合997久久,| 精品久久久久久久久av| 免费看美女性在线毛片视频| 欧美在线一区亚洲| 亚洲四区av| 如何舔出高潮| 啦啦啦韩国在线观看视频| 亚洲国产日韩欧美精品在线观看| 国产午夜精品论理片| 老熟妇乱子伦视频在线观看| 亚洲成人av在线免费| 久久精品91蜜桃| 亚洲精品久久久久久婷婷小说 | а√天堂www在线а√下载| 国产成人a∨麻豆精品| 日本一二三区视频观看| 一卡2卡三卡四卡精品乱码亚洲| 嘟嘟电影网在线观看| 欧洲精品卡2卡3卡4卡5卡区| 老女人水多毛片| 少妇的逼水好多| 两性午夜刺激爽爽歪歪视频在线观看| 人妻制服诱惑在线中文字幕| 国产亚洲精品久久久久久毛片| 日本免费一区二区三区高清不卡| 日日啪夜夜撸| 亚洲欧美日韩无卡精品| 亚洲精品色激情综合| 久久99热这里只有精品18| 波多野结衣高清作品| eeuss影院久久| 欧美一区二区国产精品久久精品| 国产黄片视频在线免费观看| 成人无遮挡网站| 99热全是精品| 日韩欧美国产在线观看| 天堂av国产一区二区熟女人妻| 亚洲性久久影院| .国产精品久久| 欧美精品一区二区大全| eeuss影院久久| 日韩人妻高清精品专区| 久久精品久久久久久噜噜老黄 | 深夜a级毛片| 亚洲av免费在线观看| 在线观看美女被高潮喷水网站| 久久久久九九精品影院| 日韩 亚洲 欧美在线| 女的被弄到高潮叫床怎么办| 欧美一级a爱片免费观看看| 国内精品一区二区在线观看| 久久久久久久久久久免费av| 久久久午夜欧美精品| 国产成人91sexporn| 我要看日韩黄色一级片| 好男人视频免费观看在线| 一本久久中文字幕| 青青草视频在线视频观看| 欧美性猛交╳xxx乱大交人| 一个人免费在线观看电影| 午夜精品在线福利| 蜜桃亚洲精品一区二区三区| av黄色大香蕉| 精品人妻一区二区三区麻豆| 麻豆一二三区av精品| 日韩,欧美,国产一区二区三区 | 国产白丝娇喘喷水9色精品| 亚洲国产高清在线一区二区三| 大型黄色视频在线免费观看| 日本色播在线视频| 成年女人永久免费观看视频| 春色校园在线视频观看| 特大巨黑吊av在线直播| 99久久精品一区二区三区| 网址你懂的国产日韩在线| 亚洲成人中文字幕在线播放| 欧美一区二区亚洲| 舔av片在线| 在线免费十八禁| 国产又黄又爽又无遮挡在线| 国产精品国产高清国产av| 一区二区三区高清视频在线| 午夜a级毛片| 久久精品综合一区二区三区| 亚洲高清免费不卡视频| a级毛色黄片| 亚洲在线观看片| 亚洲色图av天堂| 亚洲国产精品sss在线观看| 天堂√8在线中文| 一级毛片我不卡| 欧美成人精品欧美一级黄| 国产在线精品亚洲第一网站| 国产av一区在线观看免费| 日韩在线高清观看一区二区三区| 国产免费一级a男人的天堂| 日韩欧美一区二区三区在线观看| 亚洲国产欧洲综合997久久,| 久久韩国三级中文字幕| 在线免费十八禁| 午夜久久久久精精品| 日韩国内少妇激情av| 91久久精品电影网| 久久久成人免费电影| 免费av观看视频| 在线a可以看的网站| 村上凉子中文字幕在线| 国产精品日韩av在线免费观看| 一级毛片我不卡| 成人鲁丝片一二三区免费| 国产精品电影一区二区三区| 亚洲欧美精品自产自拍| 久久99蜜桃精品久久| 日本免费a在线| 美女 人体艺术 gogo| a级一级毛片免费在线观看| 精品熟女少妇av免费看| 久久久久久久久大av| 欧美性猛交黑人性爽| 99热6这里只有精品| 99热精品在线国产| 99视频精品全部免费 在线| 搡女人真爽免费视频火全软件| 国产黄片视频在线免费观看| 亚洲婷婷狠狠爱综合网| 午夜激情欧美在线| 欧美高清性xxxxhd video| 麻豆成人av视频| 少妇人妻一区二区三区视频| 亚洲无线在线观看| 美女cb高潮喷水在线观看| 免费观看的影片在线观看| 成年免费大片在线观看| 亚洲无线观看免费| 免费看a级黄色片| 最近中文字幕高清免费大全6| 日本撒尿小便嘘嘘汇集6| 亚洲人成网站高清观看| 国产高清不卡午夜福利| 国产不卡一卡二| 综合色丁香网| 麻豆乱淫一区二区| 国产av麻豆久久久久久久| 蜜臀久久99精品久久宅男| 亚洲熟妇中文字幕五十中出| 免费在线观看成人毛片| 国产探花在线观看一区二区| 色综合色国产| 五月伊人婷婷丁香| 亚洲av一区综合| 在线免费观看不下载黄p国产| 久久久精品大字幕| 波野结衣二区三区在线| 久久精品国产自在天天线| 校园人妻丝袜中文字幕| 久久精品久久久久久久性| 99久久精品一区二区三区| 麻豆久久精品国产亚洲av| 草草在线视频免费看| av视频在线观看入口| 蜜桃亚洲精品一区二区三区| 国产伦一二天堂av在线观看| 国产av在哪里看| 国产精品精品国产色婷婷| 狂野欧美白嫩少妇大欣赏| 久久久精品大字幕| 国产极品精品免费视频能看的| 亚洲av.av天堂| 亚洲婷婷狠狠爱综合网| 亚洲精品乱码久久久v下载方式| 少妇熟女aⅴ在线视频| 亚洲精品日韩av片在线观看| 偷拍熟女少妇极品色| 人妻系列 视频| 中文字幕av在线有码专区| 日本免费一区二区三区高清不卡| 九色成人免费人妻av| 欧美色视频一区免费| 免费观看精品视频网站| 亚洲中文字幕一区二区三区有码在线看| 变态另类丝袜制服| 久久久国产成人免费| 久久久久久久久中文| 日韩精品青青久久久久久| 噜噜噜噜噜久久久久久91| 国产麻豆成人av免费视频| 国产在线男女| 亚洲成人久久性| АⅤ资源中文在线天堂| 在线免费十八禁| 麻豆一二三区av精品| 此物有八面人人有两片| 一级二级三级毛片免费看| 久久久久性生活片| 搞女人的毛片| 欧美日韩精品成人综合77777| 狠狠狠狠99中文字幕| 午夜精品国产一区二区电影 | 一本一本综合久久| 欧美最黄视频在线播放免费| 亚洲精品自拍成人| 亚洲最大成人av| 日韩一区二区三区影片| 国产伦理片在线播放av一区 | 舔av片在线| 极品教师在线视频| 国产精品一区二区在线观看99 | 亚洲av免费高清在线观看| 国产精品久久电影中文字幕| 日本成人三级电影网站| 亚洲内射少妇av| 欧美丝袜亚洲另类| 亚洲,欧美,日韩| 精品国产三级普通话版| 男插女下体视频免费在线播放| 亚洲欧美日韩高清在线视频| 国产亚洲5aaaaa淫片| 精品免费久久久久久久清纯| 中文在线观看免费www的网站| 午夜福利高清视频| 淫秽高清视频在线观看| 91精品国产九色| 99久久九九国产精品国产免费| 亚洲18禁久久av| 免费看日本二区| 变态另类成人亚洲欧美熟女| 97在线视频观看| 婷婷色av中文字幕| 在线观看免费视频日本深夜| 给我免费播放毛片高清在线观看| 亚洲三级黄色毛片| 久久久久久九九精品二区国产| 少妇裸体淫交视频免费看高清| 成人亚洲精品av一区二区| 人体艺术视频欧美日本| 97在线视频观看| 成人亚洲精品av一区二区| 插逼视频在线观看| 国产男人的电影天堂91| 免费在线观看成人毛片| 一级黄色大片毛片| 舔av片在线| 老师上课跳d突然被开到最大视频| 男女啪啪激烈高潮av片| 国产黄片视频在线免费观看| 亚洲人成网站在线播| 国产一级毛片七仙女欲春2| 久久精品综合一区二区三区| 欧美另类亚洲清纯唯美| 成年女人看的毛片在线观看| 又粗又硬又长又爽又黄的视频 | 欧美另类亚洲清纯唯美| 三级国产精品欧美在线观看| 99九九线精品视频在线观看视频| 成熟少妇高潮喷水视频| 亚洲中文字幕日韩| 噜噜噜噜噜久久久久久91| 亚洲图色成人| 日日啪夜夜撸| 午夜福利在线观看吧| 亚洲av成人精品一区久久| 久久99蜜桃精品久久| 国产精品嫩草影院av在线观看| 桃色一区二区三区在线观看| 国产视频内射| 一级黄色大片毛片| a级毛片免费高清观看在线播放| 国产91av在线免费观看| 精品一区二区三区人妻视频| 免费人成视频x8x8入口观看| 看黄色毛片网站| 亚洲av免费在线观看| 成人亚洲精品av一区二区| 国产三级中文精品| 欧美成人a在线观看| 在线播放无遮挡| 久久久成人免费电影| 人妻系列 视频| 麻豆久久精品国产亚洲av| 亚洲欧美日韩卡通动漫| 成人一区二区视频在线观看| 看非洲黑人一级黄片| 国产精品一二三区在线看| 亚洲欧美精品自产自拍| 亚洲av熟女| 啦啦啦韩国在线观看视频| 欧美日本亚洲视频在线播放| 免费观看的影片在线观看| 欧美+日韩+精品| 哪里可以看免费的av片| 级片在线观看| av在线观看视频网站免费| 男人的好看免费观看在线视频| 色5月婷婷丁香| 亚洲av男天堂| 中文字幕精品亚洲无线码一区| 99久久九九国产精品国产免费| 精品久久久久久久久av| 国产91av在线免费观看| 91久久精品电影网| av卡一久久| 在线播放无遮挡| 在线免费观看的www视频| 国产69精品久久久久777片| 欧美区成人在线视频| 欧美一区二区亚洲| 精品久久久久久久久久免费视频| 97人妻精品一区二区三区麻豆| 亚洲国产精品成人久久小说 | 99久久中文字幕三级久久日本| 青春草国产在线视频 | 久久久成人免费电影| 国产亚洲欧美98| 三级国产精品欧美在线观看| videossex国产| 国产精品国产高清国产av| 乱人视频在线观看| 日韩一区二区视频免费看| av又黄又爽大尺度在线免费看 | 综合色丁香网| 免费一级毛片在线播放高清视频| 国产高清激情床上av| 嘟嘟电影网在线观看| 国产三级中文精品| 国产亚洲av嫩草精品影院| 国产黄片美女视频| 99九九线精品视频在线观看视频| a级一级毛片免费在线观看| 亚洲av免费在线观看| 如何舔出高潮| 自拍偷自拍亚洲精品老妇| 最近的中文字幕免费完整| 亚洲中文字幕日韩| 午夜亚洲福利在线播放| 亚洲精华国产精华液的使用体验 | 成熟少妇高潮喷水视频| 国产亚洲5aaaaa淫片| 免费观看的影片在线观看| 国语自产精品视频在线第100页| 久久久精品欧美日韩精品| 色5月婷婷丁香| 亚洲最大成人av| 欧美最黄视频在线播放免费| 国产私拍福利视频在线观看| 精品久久久久久成人av| av在线观看视频网站免费| 成人性生交大片免费视频hd| 天堂中文最新版在线下载 | 成人毛片60女人毛片免费| av卡一久久| 日韩,欧美,国产一区二区三区 | 免费电影在线观看免费观看| 人妻久久中文字幕网| 黄片无遮挡物在线观看| 亚洲人与动物交配视频| 亚洲一区二区三区色噜噜| 男女视频在线观看网站免费| 一个人看视频在线观看www免费| 欧美性猛交黑人性爽| 啦啦啦韩国在线观看视频| 午夜福利成人在线免费观看| 村上凉子中文字幕在线| 国产成人aa在线观看| 国产免费一级a男人的天堂| 国产成人影院久久av| 国语自产精品视频在线第100页| 亚洲av第一区精品v没综合| 中文资源天堂在线| 九九热线精品视视频播放| 啦啦啦韩国在线观看视频| 99热只有精品国产| 国产又黄又爽又无遮挡在线| 免费av毛片视频| 夫妻性生交免费视频一级片| 午夜福利在线观看吧| 亚洲国产高清在线一区二区三| 久久久久九九精品影院| 国产老妇女一区| 好男人视频免费观看在线| 网址你懂的国产日韩在线| 夜夜爽天天搞| 欧美最新免费一区二区三区| 毛片一级片免费看久久久久| 在线观看66精品国产| 一夜夜www| 久久精品国产亚洲av天美| 精品国产三级普通话版| 高清毛片免费看| 哪个播放器可以免费观看大片| 亚洲成人久久爱视频| 91久久精品电影网| 国产精品久久久久久精品电影小说 | .国产精品久久| 少妇猛男粗大的猛烈进出视频 | 看免费成人av毛片| 精品免费久久久久久久清纯| 欧美+日韩+精品| 少妇裸体淫交视频免费看高清| 亚洲性久久影院| 日本av手机在线免费观看| 国产精品99久久久久久久久| 青青草视频在线视频观看| 特级一级黄色大片| 午夜亚洲福利在线播放| 亚洲在久久综合| 精品免费久久久久久久清纯| 欧美激情国产日韩精品一区| 亚洲av第一区精品v没综合| 亚洲欧美日韩东京热| 毛片一级片免费看久久久久| 全区人妻精品视频| 国产人妻一区二区三区在| 亚洲国产高清在线一区二区三| 午夜爱爱视频在线播放| 中文字幕av成人在线电影| 韩国av在线不卡| 免费看a级黄色片| 亚洲精品456在线播放app| 久久国产乱子免费精品| 内地一区二区视频在线| 国产成人91sexporn| 国产精品麻豆人妻色哟哟久久 | 成人综合一区亚洲| 精品久久国产蜜桃| 国产精品人妻久久久久久| 国产精品爽爽va在线观看网站| 欧美人与善性xxx| 免费人成视频x8x8入口观看| 在线天堂最新版资源| 国内精品宾馆在线|