王凱,李天慶,陳陽,丁禮君,雷玉成
超級雙相不銹鋼2507焊接工藝研究現(xiàn)狀
王凱,李天慶,陳陽,丁禮君,雷玉成
(江蘇大學(xué) 材料科學(xué)與工程學(xué)院,江蘇 鎮(zhèn)江 212013)
主要梳理和綜述了超級雙相不銹鋼2507焊接方面的研究工作,從而對超級雙相不銹鋼2507焊接工藝進(jìn)行指導(dǎo)。從超級雙相不銹鋼2507焊接工藝、焊接接頭兩相比例調(diào)節(jié)兩個維度進(jìn)行綜述,其中,超級雙相不銹鋼2507焊接工藝部分從鎢極氬弧焊、埋弧焊、等離子弧焊、激光焊、電子束焊、激光-電弧復(fù)合焊這6種焊接工藝開展評述,焊接接頭兩相比例調(diào)節(jié)部分從調(diào)整焊接熱輸入、焊后熱處理、添加合金元素鎳或氮3個方面進(jìn)行評述。結(jié)合國內(nèi)外研究現(xiàn)狀,探討了超級雙相不銹鋼焊接如何控制接頭兩相比例這一關(guān)鍵問題。研究現(xiàn)狀表明:鎢極氬弧焊、等離子弧焊和激光焊可以較好地實現(xiàn)超級雙相不銹鋼優(yōu)質(zhì)焊接;添加合金元素鎳或氮是調(diào)控焊接接頭兩相比例的重要手段。開展超級雙相不銹鋼2507焊接工藝研究現(xiàn)狀的綜述具有重要意義,向熔池過渡合金元素的高能量密度焊接工藝可能是超級雙相不銹鋼焊接的優(yōu)選技術(shù)。
焊接;雙相不銹鋼;奧氏體;鐵素體
雙相不銹鋼(Duplex Stainless Steel,DSS)具有良好的力學(xué)性能和耐腐蝕性能,在海洋工程、化學(xué)化工、能源等領(lǐng)域被廣泛應(yīng)用[1-3]。雙相不銹鋼室溫組織由鐵素體相(α)和奧氏體相(γ)組成,兩相比例接近1∶1。與鐵素體不銹鋼相比,雙相不銹鋼具有更高的塑性和韌性、更好的焊接性和耐晶間腐蝕性;與奧氏體不銹鋼相比,其強(qiáng)度更高,耐氯化物應(yīng)力腐蝕能力更好[4-5]。雙相不銹鋼兼具了鐵素體不銹鋼和奧氏體不銹鋼的優(yōu)點,超級雙相不銹鋼(Super Duplex Stainless Steel,SDSS)是雙相不銹鋼發(fā)展的第三代產(chǎn)物,相比于前兩代的普通雙相不銹鋼,超級雙相不銹鋼的合金元素含量更加豐富,碳含量更低,鉬、氮含量更高[6-7],具有卓越的耐點蝕性能和耐氯化物應(yīng)力腐蝕性能,廣泛應(yīng)用于極其惡劣的腐蝕環(huán)境中。目前,超級雙相不銹鋼2507是超級雙相不銹鋼中使用最廣泛的一類鋼種。
焊接是超級雙相不銹鋼工業(yè)使用中一種重要且普遍的加工成形手段[8-9]。在進(jìn)行焊接時,母材(Base Metal,BM)局部會經(jīng)歷先快速加熱、隨后快速冷卻的過程,在此過程中會形成焊縫(Weld Metal,WM)和熱影響區(qū)(Heat Affected Zone,HAZ)。超級雙相不銹鋼性能優(yōu)良與否很大程度上取決于其兩相比例,兩相比例接近1:1時可以較好地展現(xiàn)其優(yōu)異的綜合性能,一般來說,兩相中含量較少的一相其含量也需達(dá)到30%以上才能夠滿足工業(yè)使用的需要[10]。超級雙相不銹鋼焊接時,焊縫和熱影響區(qū)冷卻過程中鐵素體首先從液相析出,奧氏體隨后從鐵素體中析出[11-12],因此,在經(jīng)歷焊接這個快速加熱與冷卻的過程后,超級雙相不銹鋼焊縫和熱影響區(qū)中的組織會發(fā)生不均勻變化。由于快速冷卻作用,奧氏體沒有足夠時間從鐵素體中析出,焊縫和熱影響區(qū)中鐵素體含量增多而奧氏體含量減少,兩相含量很難達(dá)到平衡,這會給工件的實際工業(yè)使用帶來不良影響[13-14]。如何調(diào)節(jié)焊縫和熱影響區(qū)中的兩相比例是獲得優(yōu)質(zhì)超級雙相不銹鋼2507焊接接頭的關(guān)鍵。國內(nèi)外焊接工作者針對超級雙相不銹鋼2507已經(jīng)開展了一系列的研究工作,取得了一些研究結(jié)果。梳理超級雙相不銹鋼2507焊接方面的研究工作,對于指導(dǎo)超級雙相不銹鋼2507焊接工藝具有重要意義。
文中主要從超級雙相不銹鋼2507焊接工藝、兩相比例調(diào)節(jié)兩個維度進(jìn)行綜述,其中,超級雙相不銹鋼2507焊接工藝部分從鎢極氬弧焊、埋弧焊、等離子弧焊、激光焊、電子束焊、激光-電弧復(fù)合焊這6種焊接工藝開展評述;兩相比例調(diào)節(jié)部分從調(diào)整焊接熱輸入、焊后熱處理、添加合金元素鎳或氮3個方面進(jìn)行評述?;诔夒p相不銹鋼2507焊接現(xiàn)狀的分析,對超級雙相不銹鋼焊接關(guān)鍵問題進(jìn)行探討,并對超級雙相不銹鋼焊接工藝進(jìn)行總結(jié)和展望。
學(xué)者們在超級雙相不銹鋼2507熔焊工藝方面做了大量的研究工作,本節(jié)主要總結(jié)鎢極氬弧焊、埋弧焊、等離子弧焊、激光焊、電子束焊、激光-電弧復(fù)合焊這6種超級雙相不銹鋼的焊接工藝。
鎢極氬弧焊是指在惰性氣體(一般為氬氣)保護(hù)下,通過鎢電極和工件之間產(chǎn)生的電弧熔化工件的熔焊方法[15-16]。鎢極氬弧焊是目前超級雙相不銹鋼焊接常用的一種焊接方法。Muthupandi等[12]發(fā)現(xiàn),焊接熱輸入的提高可以降低焊縫鐵素體含量。李國平等[17]研究了鎢極氬弧焊時,焊接熱輸入對超級雙相不銹鋼2507焊接接頭的影響,研究結(jié)果表明,焊接熱輸入的增加可以在一定程度上提高焊縫的奧氏體含量;較小的熱輸入會導(dǎo)致熱影響區(qū)出現(xiàn)氮化物,影響焊接接頭的耐腐蝕性能,而較大的熱輸入則會導(dǎo)致焊縫晶粒粗大,影響焊接接頭的力學(xué)性能。Ramkumar等[18]采用1.17 kJ/mm的焊接熱輸入對5 mm的超級雙相不銹鋼2507板進(jìn)行了鎢極氬弧焊接,發(fā)現(xiàn)焊接接頭在此熱輸入下成形良好且熔深最深,焊縫兩相比例接近1:1,焊接接頭中沒有氮化物等有害相生成,且焊接接頭的力學(xué)性能與母材相當(dāng)。Ramkumar等[19]在焊接時使用了NiO、MoO3和SiO23種焊劑,發(fā)現(xiàn)NiO提高了焊縫中奧氏體的含量。Du等[20]采用氮?dú)寤旌蠚庾鳛楸Wo(hù)氣體,對超級雙相不銹鋼2507進(jìn)行了鎢極氬弧焊,研究發(fā)現(xiàn),焊縫中奧氏體含量隨著保護(hù)氣中氮?dú)獗壤脑黾佣黾?,?dāng)?shù)獨(dú)獗壤秊?.0%~3.0%時,奧氏體含量達(dá)到51%~53%,此時焊接接頭的力學(xué)性能最好。Kim等[21]發(fā)現(xiàn),保護(hù)氣中氮?dú)獾募尤氩粌H可以提高焊縫的奧氏體含量,還可以顯著提高焊接接頭的耐點蝕性能[21]。Zhang等[22]使用98% Ar+2% N2作為焊接保護(hù)氣,發(fā)現(xiàn)氮?dú)獾奶砑与m然可以提高焊縫的奧氏體含量,但對熱影響區(qū)的微觀組織演變沒有顯著影響。Zhang等[23-24]在不同溫度下對超級雙相不銹鋼2507鎢極氬弧焊接接頭進(jìn)行了焊后熱處理,研究發(fā)現(xiàn),焊后熱處理可以顯著降低焊縫和熱影響區(qū)中鐵素體的含量,在1 080 ℃保溫3 min后,焊縫和熱影響區(qū)中鐵素體含量最少,兩相比例接近1∶1,此時焊接接頭的沖擊韌性和耐點蝕性能最好。
使用鎢極氬弧焊對超級雙相不銹鋼進(jìn)行焊接時,熱影響區(qū)的組織與性能總是難以調(diào)控,是焊接接頭的薄弱區(qū)域。Mourad等[25]對比了鎢極氬弧焊和激光焊的焊接接頭,發(fā)現(xiàn)激光焊的焊縫和熱影響區(qū)更窄,如圖1所示,但是激光焊接接頭中奧氏體含量較少。焊接超級雙相不銹鋼時既要考慮調(diào)節(jié)兩相比例,又要考慮減小焊縫和焊接熱影響區(qū)寬度,從而提高焊接接頭的整體性能。
圖1 鎢極氬弧焊和激光焊接接頭微觀組織[25]
埋弧焊是一種熱輸入高的弧焊工藝,焊接時需要在工件待焊位置添加填充金屬及焊劑,電弧在焊劑層下燃燒[26-27]。目前,超級雙相不銹鋼埋弧焊的相關(guān)研究較少。Cervo等[28-29]采用埋弧焊對超級雙相不銹鋼2507進(jìn)行了焊接和焊后熱處理,研究了退火溫度對焊接接頭的影響。研究結(jié)果表明,未焊后熱處理的焊縫中奧氏體含量低于母材,且由于元素的不均勻分配,焊縫的耐腐蝕性能低于母材。焊后進(jìn)行1 100 ℃退火后,焊縫兩相比例較為合理,且此時焊縫的耐腐蝕性能最好。然而,埋弧焊時熱輸入較大,冷卻速度慢,會導(dǎo)致焊縫和熱影響區(qū)的晶粒長大,焊接接頭沖擊韌性降低。另外,Stützer等[30]發(fā)現(xiàn),采用埋弧焊對超級雙相不銹鋼進(jìn)行焊接時,較大的熱輸入會導(dǎo)致焊縫出現(xiàn)凝固裂紋。?wierczyńska等[31]也發(fā)現(xiàn),較大的熱輸入會導(dǎo)致焊接接頭力學(xué)性能的降低。
埋弧焊時需要同時使用焊絲及焊劑,焊接過程復(fù)雜,焊接適用位置受到限制,靈活性較差,且焊接接頭的力學(xué)性能較差,因此,采用埋弧焊焊接超級雙相不銹鋼不是一個好的選擇。
等離子弧焊是一種高能量密度的弧焊技術(shù),與其他自由電弧焊接工藝相比,等離子弧焊時電弧受到壓縮,從而具有更高的能量密度及更強(qiáng)的穿透能力[32],因此,等離子弧焊可以在不開坡口的情況下一次性焊透較厚板材,且對工件的熱影響較小[33]。洪巨鋒等[34]發(fā)現(xiàn),采用等離子弧焊接雙相不銹鋼時,焊縫和熱影響區(qū)中鐵素體含量超過了70%,兩相比例嚴(yán)重失衡。Taban等[35-36]采用了1.90和2.25 kJ/mm 2種不同熱輸入對超級雙相不銹鋼2507進(jìn)行了等離子弧焊接,研究了焊接熱輸入對焊接接頭微觀組織和低溫韌性的影響,研究結(jié)果表明,各個焊接接頭在不同溫度下均表現(xiàn)出良好的低溫韌性,增加熱輸入使得焊縫鐵素體含量降低了5%。Migiakis等[37]采用98%Ar+2%N2作為離子氣和保護(hù)氣對超級雙相不銹鋼進(jìn)行等離子弧焊接,研究結(jié)果表明,等離子弧焊接時可以獲得寬度較窄且沒有明顯缺陷的焊縫以及熱影響區(qū),氮?dú)獾募尤胧沟煤缚p氮質(zhì)量分?jǐn)?shù)提高了0.06%,焊縫奧氏體含量提高了15%,奧氏體形貌發(fā)生明顯變化,從魏氏奧氏體轉(zhuǎn)變?yōu)榍驙願W氏體,如圖2所示。氮?dú)獾募尤朊黠@提高了焊縫的顯微硬度和低溫沖擊韌性,以及焊接接頭的耐點蝕性能。Migiakis等[38-39]還發(fā)現(xiàn),焊接時使用富鎳焊絲也可以提高超級雙相不銹鋼等離子弧焊縫中的奧氏體含量和焊接接頭的抗拉強(qiáng)度,Kirik等[40]通過在等離子弧焊接時添加鎳中間層也得到了相似的研究結(jié)果。
圖2 超級雙相不銹鋼等離子弧焊縫微觀組織[37]
采用等離子弧焊接超級雙相不銹鋼時,通過改變焊接熱輸入或者添加合金元素的方式可以獲得具有合理的兩相比例及良好的使用性能的焊接接頭。與鎢極氬弧焊等自由電弧焊接工藝相比,等離子弧焊的焊縫及熱影響區(qū)的寬度更窄,且焊接效率更高,因此,等離子弧焊將會成為超級雙相不銹鋼焊接中一種值得考慮的焊接方法。
激光焊是一種以高能量密度激光束作為熱源的熔焊工藝[41]。與上述鎢極氬弧焊、埋弧焊和等離子弧焊等電弧焊工藝相比,激光焊可以以更低的熱輸入和更高的焊接速度完全焊透工件,激光焊接接頭的焊接變形小,熱影響區(qū)很窄[42],因此,國內(nèi)外學(xué)者對超級雙相不銹鋼的激光焊接進(jìn)行了相關(guān)研究。李港志等[43-44]發(fā)現(xiàn),由于激光焊接時的快速冷卻作用,超級雙相不銹鋼2507激光焊縫中鐵素體含量過高,接近70%,這將導(dǎo)致焊接接頭的強(qiáng)度、硬度升高,而韌性和耐腐蝕性能降低。Qi等[45]發(fā)現(xiàn),超級雙相不銹鋼2507焊縫中奧氏體含量與形貌和熱輸入密切相關(guān),激光焊接時熱輸入較低,因此,與熱輸入較高的鎢極氬弧焊相比,焊縫中奧氏體含量也較低。Kolenic等[46]采用不同的熱輸入對超級雙相不銹鋼2507進(jìn)行了激光焊接,發(fā)現(xiàn)熱輸入的提高可以降低焊縫中鐵素體含量,調(diào)整焊接熱輸入可以獲得兩相比例合理的激光焊接接頭。Saravanan等[47]對不同熱輸入的超級雙相不銹鋼2507焊接接頭進(jìn)行了焊后熱處理,研究發(fā)現(xiàn),隨著熱輸入的提高,焊縫中奧氏體含量增加。焊后熱處理可以顯著降低焊縫中鐵素體含量,平衡兩相比例并改善焊接接頭的耐點蝕性能。為了通過焊接直接得到理想的焊接接頭,Cruz Junior等[48]嘗試在激光焊接超級雙相不銹鋼2507時使用鎳箔作為填充金屬,研究發(fā)現(xiàn),添加鎳箔后焊縫中奧氏體含量從7.3%增加到了53.2%,且奧氏體形貌發(fā)生改變,出現(xiàn)大量針狀魏氏奧氏體,如圖3所示。Lai等[49]研究了保護(hù)氣中氮分壓對焊接接頭的影響及氮元素從保護(hù)氣向焊縫擴(kuò)散的機(jī)制,如圖4所示。研究結(jié)果表明,隨著氮分壓的增大,大部分氮元素從保護(hù)氣擴(kuò)散到焊縫上部,少部分氮元素通過匙孔擴(kuò)散到焊縫中部,由于熔池流動,焊縫中整體氮含量隨之增加并變得均勻,因此,焊縫中奧氏體含量也表現(xiàn)出明顯的提高。與純氬氣保護(hù)的焊接接頭相比,純氮?dú)獗Wo(hù)的焊接接頭表現(xiàn)出更好的耐腐蝕性能。
與等離子弧焊相似,激光焊接時也可通過調(diào)整熱輸入、添加合金元素等方法來調(diào)節(jié)焊縫兩相比例及焊接接頭的性能,且激光焊接速度快、焊縫和熱影響區(qū)寬度小,因此,采用激光焊對超級雙相不銹鋼進(jìn)行焊接也是一個較好的選擇。
圖3 鎳對激光焊縫奧氏體的影響[48]
圖4 不同保護(hù)氣條件下的氮元素行為示意圖[49]
電子束焊是一種高能量密度焊接工藝,電子槍產(chǎn)生的電子束由高加速電壓加速和光學(xué)系統(tǒng)聚焦后快速轟擊到工件上,使金屬快速熔化并蒸發(fā),蒸發(fā)反應(yīng)是形成小孔并實現(xiàn)穿透的主要因素[50]。電子束焊接的速度快,焊接變形小,焊縫及熱影響區(qū)窄,但電子束焊大多需要在真空環(huán)境下進(jìn)行,焊接條件較為嚴(yán)格,因此,目前關(guān)于超級雙相不銹鋼電子束焊的相關(guān)研究較少。Ramkumar等[51]研究發(fā)現(xiàn),采用電子束焊可以實現(xiàn)6 mm超級雙相不銹鋼板的一次性焊透。焊縫中兩相比例可以控制在合理范圍內(nèi),但與母材相比,焊縫中鐵素體含量偏高,焊接接頭的顯微硬度和抗拉強(qiáng)度提高。Zhang等[52]研究發(fā)現(xiàn),電子束焊時焊接熱輸入的提高并不能顯著增加焊縫中奧氏體含量,當(dāng)鐵素體含量達(dá)到90%以上,焊接接頭的顯微硬度明顯提高,但耐腐蝕性能降低。Krasnorutskyi等[53]發(fā)現(xiàn),電子束焊接時熱輸入的增加會導(dǎo)致焊縫中氮含量的降低,盡管冷卻時間更長,但焊縫中鐵素體的含量仍然達(dá)到70%以上。
電子束焊與等離子弧焊、激光焊同為高能束焊接工藝,都可以以很快的焊接速度獲得成形良好且焊縫和熱影響區(qū)較窄的焊接接頭,但電子束焊大多需要真空條件,焊接設(shè)備復(fù)雜且焊接所需環(huán)境要求更加苛刻,限制了電子束焊在大型構(gòu)件超級雙相不銹鋼中的應(yīng)用。
激光-電弧復(fù)合焊接工藝是一種融合了激光與電弧的熔焊工藝。與單一熱源焊接方法相比,激光-電弧復(fù)合焊接可以將激光束焊接與電弧焊接的優(yōu)點結(jié)合起來[54-55]。目前,超級雙相不銹鋼焊接中使用較多的復(fù)合焊接工藝是激光-MIG復(fù)合焊接。Qi等[56]使用激光-MIG復(fù)合焊接工藝對超級雙相不銹鋼2507進(jìn)行了焊接試驗,研究了焊接參數(shù)對焊縫成形、金相組織和力學(xué)性能的影響。研究結(jié)果表明,激光光束與MIG焊絲間距為2 mm的電弧引導(dǎo)模式可以使激光與電弧的耦合作用適當(dāng),焊縫中奧氏體的含量隨熱輸入的增加而增加。同時,還將超級雙相不銹鋼2507激光焊接接頭與激光-MIG復(fù)合焊接接頭進(jìn)行了比較,發(fā)現(xiàn)激光-MIG復(fù)合焊接接頭中的鐵素體含量低于激光焊接接頭,激光-MIG復(fù)合焊接接頭的耐點蝕性能更好[57]。
激光-電弧復(fù)合焊接可以獲得高深寬比、表面成形良好的焊接接頭,但是與單一的激光焊和電弧焊相比,激光-電弧復(fù)合焊接不僅需要考慮焊接電流、激光功率、焊接速度等工藝參數(shù),還需要考慮光絲間距、引導(dǎo)模式等參數(shù),焊接時影響因素較多且過程較復(fù)雜,激光-電弧復(fù)合焊接超級雙相不銹鋼有優(yōu)勢,也有一定的局限性。
超級雙相不銹鋼焊接接頭中鐵素體-奧氏體的比例很大程度上影響了其使用性能,一般兩相比例接近1∶1時焊接接頭具有良好的力學(xué)性能和耐腐蝕性能??偨Y(jié)上述超級雙相不銹鋼的焊接工藝相關(guān)研究可知,為了調(diào)節(jié)超級雙相不銹鋼焊接接頭兩相比例,學(xué)者們使用了調(diào)整焊接熱輸入、焊后熱處理及在焊接過程中添加合金元素鎳或氮3種方法,下面將從這3個方面進(jìn)行評述。
在焊接超級雙相不銹鋼時,提高焊接熱輸入可以降低焊接接頭的冷卻速度,使得奧氏體有更多的時間從鐵素體中析出,從而提高焊縫中奧氏體含量,調(diào)節(jié)焊縫兩相比例。但是提高焊接熱輸入的同時也存在一些不可避免的問題,如可能會導(dǎo)致焊縫和熱影響區(qū)的晶粒粗大、焊縫中氮含量降低、焊縫成形差等。Hosseini等[58-60]采用2種不同的焊接熱輸入對超級雙相不銹鋼2507進(jìn)行了多道次鎢極氬弧焊,研究發(fā)現(xiàn),隨著焊接道次的增加,焊縫鐵素體晶粒尺寸增大,且高熱輸入的焊縫中晶粒更為粗大,如圖5所示。在第4道焊接完成后,低熱輸入的焊縫中鐵素體晶粒尺寸為85 μm,而高熱輸入的焊縫中鐵素體晶粒尺寸達(dá)到133 μm。焊接熱輸入的提高同時也導(dǎo)致了焊縫中氮含量的降低。焊接完成后,低熱輸入焊縫中氮的質(zhì)量分?jǐn)?shù)降低了0.11%,而高熱輸入焊縫的質(zhì)量分?jǐn)?shù)降低了0.17%。氮含量的降低將導(dǎo)致鐵素體含量的增加,因此,高熱輸入焊縫中鐵素體含量更高,高熱輸入焊接接頭的耐腐蝕性能也相應(yīng)更低。Varbai等[61]的研究也得到了類似結(jié)果,認(rèn)為影響焊縫中兩相比例的一個很重要的因素是焊接過程中的氮損失,高熱輸入會使得熔池的尺寸更大且存在的時間更長,從而導(dǎo)致更多的氮從熔池中逸出。另外,焊接熱輸入的增加還會導(dǎo)致焊縫成形不好,Saravanan等[62]使用不同的熱輸入對超級雙相不銹鋼2507進(jìn)行了激光焊接,發(fā)現(xiàn)隨著熱輸入的增加,焊縫的成形開始出現(xiàn)明顯缺陷,如圖6所示,當(dāng)焊接熱輸入達(dá)到330 J/mm時,焊縫上部和下部都出現(xiàn)明顯的凹陷,且此時焊縫中奧氏體含量明顯低于其他焊縫,焊接接頭明顯不能達(dá)到使用要求。Saravanan等[63]還發(fā)現(xiàn),高焊接熱輸入會導(dǎo)致熱影響區(qū)的寬度增大,同時還會導(dǎo)致焊接接頭中出現(xiàn)對其力學(xué)性能和耐腐蝕性能有害的金屬間化合物[63]。
圖5 焊縫鐵素體晶粒[58]
圖6 不同熱輸入激光焊接接頭宏觀形貌[62]
采用不合適的焊接熱輸入對超級雙相不銹鋼進(jìn)行焊接時,其給焊接接頭帶來的損害可能遠(yuǎn)高于收益,因此,如果需要通過調(diào)整焊接熱輸入來調(diào)節(jié)焊接接頭的兩相比例和性能,需充分考慮其對焊接接頭的成形、焊縫氮含量等方面的影響,謹(jǐn)慎選擇焊接工藝參數(shù)。
在對超級雙相不銹鋼進(jìn)行焊接時,熱影響區(qū)的組織總是難以在焊接過程中直接調(diào)控,對焊接接頭進(jìn)行焊后熱處理可以同時調(diào)控焊縫及熱影響區(qū)中兩相比例,但也可能會導(dǎo)致焊接接頭中產(chǎn)生有害的金屬間化合物,從而影響焊接接頭的使用性能。Moon等[64]在不同溫度下對超級雙相不銹鋼2507鎢極氬弧焊接接頭進(jìn)行了焊后熱處理,研究發(fā)現(xiàn),在930 ℃保溫1 h并水冷后,焊縫中出現(xiàn)σ相。σ相是一種脆硬相,且會對焊縫的耐腐蝕性能產(chǎn)生影響[65]。腐蝕結(jié)果表明,點蝕大多發(fā)生在σ/α和σ/γ的相界處。熱處理溫度為1 080和1 230 ℃時,焊縫中沒有發(fā)現(xiàn)σ相的生成。馮玉蘭等[66-67]發(fā)現(xiàn),對超級雙相不銹鋼2507在1 050 ℃保溫15 min并水冷后不能消除σ相,σ相的存在導(dǎo)致焊接接頭的塑性和韌性較差。而溫度為1 100 ℃時,σ相消失且焊接接頭中兩相比例合理。
超級雙相不銹鋼焊接接頭中微觀組織的演變對溫度和冷卻速度較為敏感,不合理的熱處理工藝參數(shù)可能會導(dǎo)致焊接接頭中產(chǎn)生有害相,因此,采用焊后熱處理對超級雙相不銹鋼焊接接頭的微觀組織與性能進(jìn)行調(diào)控時,應(yīng)該合理選擇工藝參數(shù),避免焊接接頭中有害相的產(chǎn)生。
鎳和氮均為奧氏體形成元素,在焊接過程中添加鎳或氮可以有效增加焊縫中奧氏體含量,平衡兩相比例。與鎳相比,氮除了可以調(diào)控兩相比例,還可以提高焊縫區(qū)域的強(qiáng)度、硬度、韌性及耐腐蝕性能。另外,氮資源豐富且價格更低,在調(diào)節(jié)超級雙相不銹鋼兩相比例中具有潛在的應(yīng)用前景。Li等[68]研究發(fā)現(xiàn),超級雙相不銹鋼中氮的加入有效促進(jìn)了奧氏體的形成,同時使材料產(chǎn)生了間隙固溶強(qiáng)化和晶界強(qiáng)化,從而使得材料的屈服強(qiáng)度、抗拉強(qiáng)度及延展性得到提高,此外,氮的加入還提高了奧氏體的耐腐蝕性能。Zhang等[69]使用98% Ar+2% N2作為焊接保護(hù)氣進(jìn)行了鎢極氬弧焊,也得到了類似的研究結(jié)果[69]。雖然氮具有上述優(yōu)點,但是在實際焊接過程中也需要注意控制其用量,過量的氮可能會對焊接過程及焊接接頭的微觀組織與性能產(chǎn)生不良影響。Du等[20]發(fā)現(xiàn),保護(hù)氣中氮的質(zhì)量分?jǐn)?shù)達(dá)到5%以上時會影響電弧穩(wěn)定性。Paulraj等[70]指出,過量的氮可能會使超級雙相不銹鋼焊接接頭在冷卻過程中析出對耐腐蝕性能有害的氮化物。因此,在實際焊接時需要合理選擇氮的用量。
雖然焊接過程中氮的加入可以調(diào)控超級雙相不銹鋼焊縫區(qū)域的兩相比例和性能,但熱影響區(qū)的組織與性能并不能通過該方法來調(diào)控。焊接過程中影響熱影響區(qū)微觀組織的主要因素是焊接熱輸入,熱影響區(qū)的組織仍需通過改變焊接熱輸入來調(diào)控。
超級雙相不銹鋼優(yōu)異的力學(xué)性能和耐腐蝕性能來源于其特殊的鐵素體-奧氏體兩相組織,一般來說,當(dāng)兩相比例接近1∶1時,超級雙相不銹鋼的綜合使用性能最好。然而,不合適的焊接方法或焊接工藝參數(shù)會導(dǎo)致焊接接頭中鐵素體含量增加,兩相比例失衡,從而影響焊接接頭的使用性能。因此,如何保證焊接接頭中兩相比例的合理性是超級雙相不銹鋼焊接的關(guān)鍵問題。調(diào)整焊接熱輸入、焊后熱處理及添加合金元素鎳或氮這3種方法都旨在改善超級雙相不銹鋼焊接接頭的兩相比例和性能。上述方法都可以提高焊縫的奧氏體含量,調(diào)節(jié)焊縫兩相比例。焊后熱處理可以調(diào)整熱影響區(qū)的兩相比例,但焊后熱處理可能會導(dǎo)致焊接接頭中生成有害相。提高焊接熱輸入雖然也可提高熱影響區(qū)的奧氏體含量,但是效果并不顯著,同時還有可能會導(dǎo)致焊接接頭出現(xiàn)焊縫成形差、有害相析出、熱影響區(qū)范圍擴(kuò)大等問題,反而使得焊接接頭的性能變差。因此,在熱影響區(qū)組織難以調(diào)控的情況下,盡量減小熱影響區(qū)的寬度并同時保證焊縫區(qū)域的兩相比例也許是一個較好的選擇,可以選擇高能量密度焊接工藝對超級雙相不銹鋼進(jìn)行焊接。采用高能量密度焊接工藝并在焊接過程中添加合金元素鎳或氮,既可以有效調(diào)控焊縫中兩相比例,也能夠降低熱影響區(qū)寬度,改善熱影響區(qū)的兩相分布,因此,高能量密度焊接工藝配合向熔池過渡合金元素鎳或氮是超級雙相不銹鋼焊接的優(yōu)選技術(shù)。
1)從超級雙相不銹鋼2507焊接工藝、焊接接頭兩相比例調(diào)節(jié)兩個維度進(jìn)行了綜述,其中,超級雙相不銹鋼2507焊接工藝部分從鎢極氬弧焊、埋弧焊、等離子弧焊、激光焊、電子束焊、激光-電弧復(fù)合焊這6種焊接工藝開展評述;焊接接頭兩相比例調(diào)節(jié)部分從調(diào)整焊接熱輸入、焊后熱處理、添加合金元素鎳或氮3個方面進(jìn)行評述。
2)鎢極氬弧焊、等離子弧焊和激光焊可以較好地實現(xiàn)超級雙相不銹鋼優(yōu)質(zhì)焊接;添加合金元素鎳或氮是調(diào)控焊接接頭兩相比例的重要手段。
3)對超級雙相不銹鋼焊接中的關(guān)鍵問題——接頭兩相比例調(diào)控進(jìn)行了分析,對超級雙相不銹鋼焊接工藝進(jìn)行了展望,向熔池過渡合金元素的高能量密度焊接工藝可能是超級雙相不銹鋼焊接的優(yōu)選技術(shù)。
[1] PRAMANIK A, LITTLEFAIR G, BASAK A K. Weldability of Duplex Stainless Steel[J]. Materials and Manufacturing Processes, 2015, 30(9): 1053-1068.
[2] GOWTHAMAN P S, JEYAKUMAR S, SARAVANAN B A. Machinability and Tool Wear Mechanism of Duplex Stainless Steel–A Review[J]. Materials Today: Proceedings, 2020, 26: 1423-1429.
[3] CUI Zhong-yu, WANG Li-wei, NI Hong-tao, et al. Influence of Temperature on the Electrochemical and Passivation Behavior of 2507 Super Duplex Stainless Steel in Simulated Desulfurized Flue Gas Condensates[J]. Corrosion Science, 2017, 118: 31-48.
[4] 高娃, 羅建民, 楊建君. 雙相不銹鋼的研究進(jìn)展及其應(yīng)用[J]. 兵器材料科學(xué)與工程, 2005, 28(3): 61-64.
GAO Wa, LUO Jian-min, YANG Jian-jun. Research Progress and Application of Double Phase Stainless Steel[J]. Ordnance Material Science and Engineering, 2005, 28(3): 61-64.
[5] PATEL M N, DUTTA S K, LELE A B. Duplex Stainless Steel: Its Properties and Applications[J]. Transactions of the Indian Institute of Metals, 2003, 56(1): 53-59.
[6] 李志軍, 陳湘茹, 孫卿卿, 等. 雙相不銹鋼的研究與發(fā)展[J]. 鑄造技術(shù), 2011, 32(9): 1320-1323.
LI Zhi-jun, CHEN Xiang-ru, SUN Qing-qing, et al. Recent Research and Prospect of Duplex Stainless Steel[J]. Foundry Technology, 2011, 32(9): 1320-1323.
[7] 孫俊峰, 任澤良, 占國平, 等. S22053雙相不銹鋼接頭組織和性能研究[J]. 精密成形工程, 2020, 12(2): 72-76.
SUN Jun-feng, REN Ze-liang, ZHAN Guo-ping, et al. Microstructure and Properties of S22053 Duplex Stainless Steel Joint[J]. Journal of Netshape Forming Engineering, 2020, 12(2): 72-76.
[8] 查小琴, 任永峰, 黑鵬輝, 等. 雙相不銹鋼焊接性問題原因及控制[J]. 材料開發(fā)與應(yīng)用, 2019, 34(5): 59-65.
ZHA Xiao-qin, REN Yong-feng, HEI Peng-hui, et al. Causes and Control of Welding Problems of Duplex Stainless Steel[J]. Development and Application of Materials, 2019, 34(5): 59-65.
[9] PATRA S, AGRAWAL A, MANDAL A, et al. Characteristics and Manufacturability of Duplex Stainless Steel: A Review[J]. Transactions of the Indian Institute of Metals, 2021, 74(5): 1089-1098.
[10] LIOU H Y, HSIEH R I, TSAI W T. Microstructure and Stress Corrosion Cracking in Simulated Heat-Affected Zones of Duplex Stainless Steels[J]. Corrosion Science, 2002, 44(12): 2841-2856.
[11] 孫咸. 雙相不銹鋼焊縫金屬中的δ-鐵素體[J]. 電焊機(jī), 2019, 49(8): 14-22.
SUN Xian. Delta Ferrite in Weld Metal for Duplex Stainless Steel[J]. Electric Welding Machine, 2019, 49(8): 14-22.
[12] MUTHUPANDI V, SRINIVASAN P B, SESHADRI S K, et al. Effect of Weld Metal Chemistry and Heat Input on the Structure and Properties of Duplex Stainless Steel Welds[J]. Materials Science and Engineering: A, 2003, 358(1/2): 9-16.
[13] MESSER B, OPREA V, WRIGHT A. Duplex Stainless Steel Welding: Best Practices[J]. Stainless Steel World, 2007, 53: 53-63.
[14] TAVARES S S M, PARDAL J M, LIMA L D, et al. Characterization of Microstructure, Chemical Composition, Corrosion Resistance and Toughness of a Multipass Weld Joint of Superduplex Stainless Steel UNS S32750[J]. Materials Characterization, 2007, 58(7): 610-616.
[15] DARJI R, BADHEKA V, MEHTA K, et al. Investigation on Stability of Weld Morphology, Microstructure of Processed Zones, and Weld Quality Assessment for Hot Wire Gas Tungsten Arc Welding of Electrolytic Tough Pitch Copper[J]. Materials and Manufacturing Processes, 2022, 37(8): 908-920.
[16] TATHGIR S, BHATTACHARYA A. Activated-TIG Welding of Different Steels: Influence of Various Flux and Shielding Gas[J]. Materials and Manufacturing Processes, 2016, 31(3): 335-342.
[17] 李國平, 柳陽, 王立新, 等. 熱輸入對S32750超級雙相不銹鋼TIG焊接接頭腐蝕性能的影響[J]. 焊接, 2018(9): 43-46, 67.
LI Guo-ping, LIU Yang, WANG Li-xin, et al. Influence of Heat Input on Corrosion Property of TIG Welded S32750 Super Duplex Stainless Steel Joints[J]. Welding & Joining, 2018(9): 43-46, 67.
[18] RAMKUMAR K D, MISHRA D, RAJ B G, et al. Effect of Optimal Weld Parameters in the Microstructure and Mechanical Properties of Autogeneous Gas Tungsten Arc Weldments of Super-Duplex Stainless Steel UNS S32750[J]. Materials & Design (1980-2015), 2015, 66: 356-365.
[19] RAMKUMAR K D, GOUTHAM P S, RADHAKRISHNA V S, et al. Studies on the Structure-Property Relationships and Corrosion Behaviour of the Activated Flux TIG Welding of UNS S32750[J]. Journal of Manufacturing Processes, 2016, 23: 231-241.
[20] DU Dong-fang, LIU Jie, LI Guo-ping, et al. Effect of N2Addition on Microstructure and Properties of SAF 2507 Duplex Stainless Steels GTAW Welded Joint[J]. Materials Science Forum, 2012, 724: 127-130.
[21] KIM S T, JANG S H, LEE I S, et al. Effects of Solution Heat-Treatment and Nitrogen in shielding Gas on the Resistance to Pitting Corrosion of Hyper Duplex Stainless Steel Welds[J]. Corrosion Science, 2011, 53(5): 1939-1947.
[22] ZHANG Zhi-qiang, JING Hong-yang, XU Lian-yong, et al. Investigation on Microstructure Evolution and Properties of Duplex Stainless Steel Joint Multi-Pass Welded by Using Different Methods[J]. Materials & Design, 2016, 109: 670-685.
[23] ZHANG Zi-ying, ZHAO Hui, ZHANG Hui-zhen, et al. Microstructure Evolution and Pitting Corrosion Behavior of UNS S32750 Super Duplex Stainless Steel Welds after Short-Time Heat Treatment[J]. Corrosion Science, 2017, 121: 22-31.
[24] ZHANG Zi-ying, ZHANG Hui-zhen, HU Jun, et al. Microstructure Evolution and Mechanical Properties of Briefly Heat-Treated SAF 2507 Super Duplex Stainless Steel Welds[J]. Construction and Building Materials, 2018, 168: 338-345.
[25] MOURAD A H I, KHOURSHID A, SHAREF T. Gas Tungsten Arc and Laser Beam Welding Processes Effects on Duplex Stainless Steel 2205 Properties[J]. Materials Science and Engineering: A, 2012, 549: 105-113.
[26] CHO D W, SONG W H, CHO M H, et al. Analysis of Submerged Arc Welding Process by Three-Dimensional Computational Fluid Dynamics Simulations[J]. Journal of Materials Processing Technology, 2013, 213(12): 2278-2291.
[27] SINGH A, SINGH R P. A Review of Effect of Welding Parameters on the Mechanical Properties of Weld in Submerged Arc Welding Process[J]. Materials Today: Proceedings, 2020, 26: 1714-1717.
[28] CERVO R, FERRO P, TIZIANI A. Annealing Temperature Effects on Super Duplex Stainless Steel UNS s32750 Welded Joints. I: Microstructure and Partitioning of Elements[J]. Journal of Materials Science, 2010, 45(16): 4369-4377.
[29] CERVO R, FERRO P, TIZIANI A, et al. Annealing Temperature Effects on Superduplex Stainless Steel UNS S32750 Welded Joints. II: Pitting Corrosion Resistance Evaluation[J]. Journal of Materials Science, 2010, 45(16): 4378-4389.
[30] STüTZER J, ZINKE M, JüTTNER S. Studies on the Pore Formation in Super Duplex Stainless Steel Welds[J]. Welding in the World, 2017, 61(2): 351-359.
[31] ?WIERCZY?SKA A, FYDRYCH D, LANDOWSKI M, et al. Hydrogen Embrittlement of X2CrNiMoCuN25-6-3 Super Duplex Stainless Steel Welded Joints under Cathodic Protection[J]. Construction and Building Materials, 2020, 238: 117697.
[32] 王儀, 劉艷, 牛靖, 等. 35SiMn鋼等離子堆焊不銹鋼粉的組織及性能研究[J]. 精密成形工程, 2020, 12(1): 7-13.
WANG Yi, LIU Yan, NIU Jing, et al. Microstructure and Properties of 35SiMn Steel Plasma Surfacing Welding Stainless Steel Powder[J]. Journal of Netshape Forming Engineering, 2020, 12(1): 7-13.
[33] PRAGATHESWARAN T, RAJAKUMAR S, BALAS-U-B-RAMANIAN V. Optimization of the Weld Characteristics of Plasma-Arc Welded Titanium Alloy Joints: An Experimental Study[J]. Materials and Manufacturing Processes, 2022, 37(8): 896-907.
[34] 洪巨鋒, 譚華, 陳林豆, 等. UNS S32304雙相不銹鋼等離子弧焊接頭的組織及其耐點蝕性能[J]. 金屬學(xué)報, 2011, 47(11): 1445-1449.
HONG Ju-feng, TAN Hua, CHEN Lin-dou, et al. Microstructure and Pitting Corrosion Resistance of UNS S32304 Duplex Stainless Steels Welded Joint with Plasma-Arc Welding[J]. Acta Metallurgica Sinica, 2011, 47(11): 1445-1449.
[35] TABAN E. Toughness and Microstructural Analysis of Superduplex Stainless Steel Joined by Plasma Arc Welding[J]. Journal of Materials Science, 2008, 43(12): 4309-4315.
[36] TABAN E, KALUC E. Welding Behaviour of Duplex and Superduplex Stainless Steels Using Laser and Plasma ARC Welding Processes[J]. Welding in the World, 2011, 55(7/8): 48-57.
[37] MIGIAKIS K, DANIOLOS N, PAPADIMITRIOU G D. Plasma Keyhole Welding of UNS S32760 Super Duplex Stainless Steel: Microstructure and Mechanical Properties[J]. Materials and Manufacturing Processes, 2010, 25(7): 598-605.
[38] MIGIAKIS K, PAPADIMITRIOU G D. Effect of Nitrogen and Nickel on the Microstructure and Mechanical Properties of Plasma Welded UNS S32760 Super-Duplex Stainless Steels[J]. Journal of Materials Science, 2009, 44(23): 6372-6383.
[39] MIGIAKIS K, PAPADIMITRIOU G D. Addition of Nitrogen and Nickel in the Fusion Zone of Plasma Transferred are Weldments in UNS 32760 Super Duplex Stainless Steel: Effect on the Microstructure and on the Pitting Corrosion Resistance[C]// TMS 2009 138th Annual Meeting & Exhibition-Supplemental Proceedings, Vol 3: General Paper Selections. 2009: 493-500.
[40] KIRIK I, OZDEMIR N, GULUMSER M, et al. Weldability of Duplex Stainless Steels with and without Cu/Ni Interlayer Using Plasma Arc Welding[J]. Materials Testing, 2016, 58(9): 717-724.
[41] 李蘇, 張占輝, 韓善果, 等. 激光技術(shù)在材料加工領(lǐng)域的應(yīng)用與發(fā)展[J]. 精密成形工程, 2020, 12(4): 76-85.
LI Su, LI Zhan-hui, HAN Shan-guo, et al. Application and Development of Laser Technology in the Field of Material Processing[J]. Journal of Netshape Forming Engineering, 2020, 12(4): 76-85.
[42] MARIMUTHU P, DINESH BABU P, RAM PRABHU T. Laser Welding of ZE41 Mg Alloy: Experimental Investigations on the Effect of Parameters and Nondestructive Testing[J]. Transactions of the Indian Institute of Metals, 2020, 73(6): 1587-1593.
[43] 李港志, 祁凱, 朱永飛, 等. 2507超級雙相不銹鋼激光焊接接頭組織和力學(xué)性能研究[J]. 江蘇科技大學(xué)學(xué)報(自然科學(xué)版), 2017, 31(2): 148-152.
LI Gang-zhi, QI Kai, ZHU Yong-fei, et al. Study of Microstructure and Mechanical Properties of 2507 Super Duplex Stainless Steel Welded Joint by Laser Welding[J]. Journal of Jiangsu University of Science and Technology (Natural Science Edition), 2017, 31(2): 148-152.
[44] 李港志, 李瑞峰, 葉昕寧, 等. 2507超級雙相不銹鋼激光焊接接頭組織及耐蝕性研究[J]. 焊接技術(shù), 2017, 46(12): 8-11.
LI Gang-zhi, LI Rui-feng, YE Xin-ning, et al. Study of Microstructure and Corrosion Resistance of 2507 Super Duplex Stainless Steel Welded Joint by Laser Welding[J]. Welding Technology, 2017, 46(12): 8-11.
[45] QI Kai, WU Ming-fang, GU Jia-yang, et al. Effect of Welding on Microstructure and Corrosion Properties of SAF 2507 Super-Duplex Stainless-Steel Joints[J]. Materiali in Tehnologije, 2020, 54(6): 853-859.
[46] KOLENI? F, KOVAC L, DRIMAL D. Effect of Laser Welding Conditions on Austenite/Ferrite Ratio in Duplex Stainless Steel 2507 Welds[J]. Welding in the World, 2011, 55(5/6): 19-25.
[47] SARAVANAN S, RAGHUKANDAN K, SIVAGURU-M-A-NIKANDAN N. Pulsed Nd: YAG Laser Welding and Subsequent Post-Weld Heat Treatment on Super Duplex Stainless Steel[J]. Journal of Manufacturing Processes, 2017, 25: 284-289.
[48] CRUZ JUNIOR E J, FRANZINI O D, CALLIARI I, et al. Effects of Nickel Addition on the Microstructure of Laser-Welded UNS S32750 Duplex Stainless Steel[J]. Metallurgical and Materials Transactions A, 2019, 50(4): 1616-1618.
[49] LAI Rui, CAI Yan, WU Yue, et al. Influence of Absorbed Nitrogen on Microstructure and Corrosion Resistance of 2205 Duplex Stainless Steel Joint Processed by Fiber Laser Welding[J]. Journal of Materials Processing Technology, 2016, 231: 397-405.
[50] CHOUDHURY B, CHANDRASEKARAN M. Microstructural Investigation and Integrated Optimization of Weld Bead Characteristics in Electron Beam Welding of Inconel 825[J]. Transactions of the Indian Institute of Metals, 2021, 74(11): 2681-2701.
[51] RAMKUMAR K D, MISHRA D, VIGNESH M K, et al. Metallurgical and Mechanical Characterization of Electron Beam Welded Super-Duplex Stainless Steel UNS 32750[J]. Journal of Manufacturing Processes, 2014, 16(4): 527-534.
[52] ZHANG Zhi-qiang, JING Hong-yang, XU Lian-yong, et al. Influence of Heat Input in Electron Beam Process on Microstructure and Properties of Duplex Stainless Steel Welded Interface[J]. Applied Surface Science, 2018, 435: 352-366.
[53] KRASNORUTSKYI S, KEIL D, SCHMIGALLA S, et al. Metallurgical Investigations on Electron Beam Welded Duplex Stainless Steels[J]. Welding in the World, 2012, 56(11/12): 34-40.
[54] ACHERJEE B. Hybrid Laser Arc Welding: State-of-Art Review[J]. Optics & Laser Technology, 2018, 99: 60-71.
[55] 胡子鑫, 曾敏, 袁松, 等. 等離子-MIG焊在有色金屬焊接中的應(yīng)用研究現(xiàn)狀及展望[J]. 精密成形工程, 2020, 12(4): 37-46.
HU Zi-xin, ZENG Min, YUAN Song, et al. Current Status and Prospect of Applying Plasma-MIG Welding in Nonferrous Metals[J]. Journal of Netshape Forming Engineering, 2020, 12(4): 37-46.
[56] QI Kai, LI Rui-feng, WANG Guang-jin, et al. Structure and Mechanical Properties of Laser-MIG Hybrid Welded SAF 2507 Super Duplex Stainless Steel Joints[J]. International Journal of Modern Physics B, 2019, 33(01n03): 1940037.
[57] QI Kai, LI Rui-feng, WANG Guang-jin, et al. Microstructure and Corrosion Properties of Laser-Welded SAF 2507 Super Duplex Stainless Steel Joints[J]. Journal of Materials Engineering and Performance, 2019, 28(1): 287-295.
[58] HOSSEINI V A, WESSMAN S, HURTIG K, et al. Nitrogen Loss and Effects on Microstructure in Multipass TIG Welding of a Super Duplex Stainless Steel[J]. Materials & Design, 2016, 98: 88-97.
[59] HOSSEINI V A, VALIENTE BERMEJO M A, G?RDSTAM J, et al. Influence of Multiple Thermal Cycles on Microstructure of Heat-Affected Zone in TIG-Welded Super Duplex Stainless Steel[J]. Welding in the World, 2016, 60(2): 233-245.
[60] HOSSEINI V A, HURTIG K, KARLSSON L. Effect of Multipass TIG Welding on the Corrosion Resistance and Microstructure of a Super Duplex Stainless Steel[J]. Materials and Corrosion, 2017, 68(4): 405-415.
[61] VARBAI B, PICKLE T, MáJLINGER K. Effect of Heat Input and Role of Nitrogen on the Phase Evolution of 2205 Duplex Stainless Steel Weldment[J]. International Journal of Pressure Vessels and Piping, 2019, 176: 103952.
[62] SARAVANAN S, SIVAGURUMANIKANDAN N, RAGHUKANDAN K. Effect of Process Parameters in Microstructural and Mechanical Properties of Nd: YAG Laser Welded Super Duplex Stainless Steel[J]. Materials Today: Proceedings, 2021, 39: 1248-1253.
[63] SARAVANAN S, SIVAGURUMANIKANDAN N, RAGHUKANDAN K. Effect of Heat Input on Microstructure and Mechanical Properties of Nd: YAG Laser Welded Super Duplex Stainless Steel-Numerical and Experimental Approach[J]. Optik, 2019, 185: 447-455.
[64] MOON I J, JANG B S, KOH J H. Heat Treatment Effect on Pitting Corrosion of Super Duplex Stainless Steel UNS S32750 GTA Welds[J]. Advanced Materials Research, 2013, 746: 467-472.
[65] HAN Ying, ZOU De-ning, ZHANG Wei, et al. Influence of Sigma Phase Precipitation on Pitting Corrosion of 2507 Super-Duplex Stainless Steel[J]. Materials Science Forum, 2010, 658: 380-383.
[66] 馮玉蘭, 吳志生, 李巖, 等. 固溶處理溫度對2507不銹鋼焊接接頭組織與性能的影響[J]. 焊管, 2021, 44(4): 42-46.
FENG Yu-lan, WU Zhi-sheng, LI Yan, et al. Effect of Solution Treatment Temperature on Microstructure and Properties of 2507 Stainless Steel Welded Joint[J]. Welded Pipe and Tube, 2021, 44(4): 42-46.
[67] 馮玉蘭, 李睿. 2507超級雙相不銹鋼焊接及熱處理工藝研究[J]. 焊管, 2018, 41(5): 14-19.
FENG Yu-lan, LI Rui. Study on Welding and Heat Treatment Process of 2507 Super Duplex Stainless Steel[J]. Welded Pipe and Tube, 2018, 41(5): 14-19.
[68] LI Jun, MA Zheng-huan, XIAO Xue-shan, et al. On the Behavior of Nitrogen in a Low-Ni High-Mn Super Duplex Stainless Steel[J]. Materials & Design, 2011, 32(4): 2199-2205.
[69] ZHANG Zhi-qiang, JING Hong-yang, XU Lian-yong, et al. Effects of Nitrogen in Shielding Gas on Microstructure Evolution and Localized Corrosion Behavior of Duplex Stainless Steel Welding Joint[J]. Applied Surface Science, 2017, 404: 110-128.
[70] PAULRAJ P, GARG R. Effect of Intermetallic Phases on Corrosion Behavior and Mechanical Properties of Duplex Stainless Steel and Super-Duplex Stainless Steel[J]. Advances in Science and Technology Research Journal, 2015, 9: 87-105.
Research Status of Welding Process on Super Duplex Stainless Steel 2507
WANG Kai, LI Tian-qing, CHEN Yang, DING Li-jun, LEI Yu-cheng
(School of Material Science and Engineering, Jiangsu University, Jiangsu Zhenjiang 212013, China)
The research work on welding of super duplex stainless steel 2507 was summarized, so as to guide the welding process of super duplex stainless steel 2507. The welding process of super duplex stainless steel 2507 and the two-phase proportion adjustment of welded joint were reviewed. The welding process of super duplex stainless steel 2507 was reviewed from six welding processes including argon tungsten arc welding, submerged arc welding, plasma arc welding, laser welding, electron beam welding and laser-arc composite welding. The two-phase proportion regulation of welded joint was reviewed from three aspects: adjusting welding heat input, post-welding heat treatment, adding alloying elements nickel or nitrogen.Combining with the research status at home and abroad, the key problem of how to control the two-phase ratio of super duplex stainless steel joints was discussed.The research status shows that argon tungsten arc welding, plasma arc welding and laser welding can achieve excellent welding quality of super duplex stainless steel; adding alloying elements nickel or nitrogen is an important means to regulate the two-phase ratio of welded joints.It is of great significance to review the research status of the welding process of super duplex stainless steel 2507. The high energy density welding process of the transition alloying elements to the molten pool may be the optimal welding technology of super duplex stainless steel.
welding; duplex stainless steel; austenite phase; ferrite phase
10.3969/j.issn.1674-6457.2022.12.018
TG47;TG44
A
1674-6457(2022)12-0160-10
2022?03?22
國家自然科學(xué)基金(51605201);江蘇省博士后科研資助計劃(1601048C);江蘇大學(xué)大學(xué)生創(chuàng)新創(chuàng)業(yè)訓(xùn)練計劃(2020692,2020705)
王凱(1997—),男,碩士生,主要研究方向為不銹鋼焊接。
李天慶(1987—),男,博士,副教授,主要研究方向為焊接工藝。