李 詠,冶 婷,李衛(wèi)華,高歡歡,林 靜
(石河子大學(xué)農(nóng)學(xué)院/新疆兵團(tuán)綠洲生態(tài)農(nóng)業(yè)重點(diǎn)實(shí)驗(yàn)室,新疆石河子 832003)
?
小麥淀粉粒結(jié)合蛋白與面粉蛋白質(zhì)和淀粉品質(zhì)的關(guān)系
李 詠,冶 婷,李衛(wèi)華,高歡歡,林 靜
(石河子大學(xué)農(nóng)學(xué)院/新疆兵團(tuán)綠洲生態(tài)農(nóng)業(yè)重點(diǎn)實(shí)驗(yàn)室,新疆石河子 832003)
為了解14個(gè)淀粉粒結(jié)合蛋白組合類型出現(xiàn)頻率較高的28份小麥材料淀粉粒結(jié)合蛋白(Starch granule proteins,SGP)組成、品質(zhì)特性,對(duì)其相關(guān)蛋白質(zhì)品質(zhì)性狀、淀粉品質(zhì)性狀進(jìn)行了檢測(cè)分析。結(jié)果表明,不同蛋白組合類型對(duì)蛋白品質(zhì)性狀的效應(yīng)值不同。在蛋白質(zhì)性狀中,濕面筋含量(WGC)和干面筋含量(DGC)效應(yīng)值最高的蛋白組合類型均為SGPa+b+c+d+e+f+g+h+i;面筋指數(shù)(GI)效應(yīng)值最高的為SGPa+c+d+e+f+g+i+j;沉降值(SV)效應(yīng)值最高的為SGPb+c+d+e+f+g+h+j和SGPa+c+d+e+f+g+i+j;蛋白質(zhì)含量(PC)效應(yīng)值最高的為SGPa+d+e+f+g+h+i+j。SGPb對(duì)干、濕面筋含量的效應(yīng)值均最高;SGPi對(duì)蛋白質(zhì)含量和籽粒硬度效應(yīng)值最高,但其對(duì)干、濕面筋含量和面筋指數(shù)的效應(yīng)值最低;SGPa對(duì)沉降值、蛋白質(zhì)含量和籽粒硬度(GH)的效應(yīng)值最低,對(duì)面筋指數(shù)的效應(yīng)值最高。綜合各項(xiàng)蛋白品質(zhì)指標(biāo),貢獻(xiàn)率綜合排序最高的為SGPh,最低的為SGPa。在淀粉性狀中,SGPa+c+d+e+f+g+i+j對(duì)峰值黏度(PV)、低谷黏度(LV)、最終黏度(FV)的效應(yīng)值最高;SGPb+c+d+e+f+g+h+i+j和SGPa+c+e+f+g+h+i+j分別對(duì)直鏈淀粉(Am)和支鏈淀粉(Ap)含量的效應(yīng)值最高;SGPb+c+d+e+f+g+h+j對(duì)直、支鏈淀粉之比的效應(yīng)值最高。對(duì)峰值黏度、低谷黏度和最終黏度效應(yīng)值最大的均是SGPj,SGPb對(duì)被測(cè)指標(biāo)的效應(yīng)值均較低;SGPd對(duì)直鏈淀粉含量和直/支比的效應(yīng)值均最高,對(duì)支鏈淀粉含量效應(yīng)值最低。SGPj對(duì)淀粉品質(zhì)性狀的貢獻(xiàn)率綜合排序最高,SGPb的貢獻(xiàn)率最低。
小麥;淀粉粒結(jié)合蛋白;蛋白質(zhì)性狀;淀粉性狀;效應(yīng)值
小麥淀粉主要以淀粉粒形式存在,淀粉粒根據(jù)粒徑的大小通常分為A-型和B-型兩種,A-型淀粉粒粒徑大于10 μm,呈透鏡狀;B-型淀粉粒粒徑小于10 μm,呈圓形[1]。淀粉粒的表面是進(jìn)行水合作用、酶作用等各種化學(xué)修飾對(duì)淀粉作用的首要屏障,其理化性質(zhì)影響淀粉的理化特性。對(duì)不同作物而言,淀粉粒表面的蛋白,即淀粉粒結(jié)合蛋白(SGP)的結(jié)構(gòu)組成與特性不同[2],不同分子量的SGP可能與淀粉的不同品質(zhì)性狀相關(guān)。
Greenwell等[3]報(bào)道,SGP的相對(duì)分子量在5~97 kDa之間。Schofield等[4]從300個(gè)遺傳背景不同的小麥中提取到5、8、15、19、30、59、77、86、96和149 kDa等10個(gè)多肽。目前已經(jīng)在來(lái)源不同的植物淀粉里發(fā)現(xiàn)很多不同的SGP。一般而言,用SDS-PAGE法分離的SGP會(huì)有10個(gè)明顯的多肽條帶,其分子量在5~149 kDa之間,這些條帶里已知與淀粉生物合成相關(guān)的有3個(gè)條帶,分子質(zhì)量最大的是SBEⅡb,其次是SSⅠ和GBSSⅠ[5-7]。分子量為100 kDa和105 kDa的兩種SGP可以從小麥淀粉粒中很好的分離出來(lái), 且他們特異的出現(xiàn)于小麥屬植物當(dāng)中[7]。目前小麥中研究較多的是15 kDa 和60 kDa兩種SGP,其中分子量為15 kDa的蛋白被命名為Friabilin,其表達(dá)量與籽粒的硬度顯著負(fù)相關(guān)[8];分子量為60 kDa的結(jié)合淀粉合成酶(GBSS)是直鏈淀粉合成過(guò)程中的關(guān)鍵酶,可以調(diào)節(jié)控制籽粒中的直鏈淀粉合成,影響淀粉的糊化特性[5]。Han等[9]也證明SGP,尤其是GBSS,對(duì)淀粉流變學(xué)特性有明顯影響。Grimaud等[10]發(fā)現(xiàn),除了GBSS外,淀粉粒上還結(jié)合有一定量的蔗糖合成酶(SS)和淀粉分支酶(BE)。小麥籽粒的胚乳質(zhì)地與SGP含量和類型關(guān)系密切。曹雯梅等[11]將研究得到的5個(gè)新籽粒硬度基因與已報(bào)道的野生型小麥 Pina-D1a和 Pinb-D1a基因序列進(jìn)行比對(duì),發(fā)現(xiàn)5個(gè)新基因均含有多個(gè)核苷酸變異位點(diǎn)。卞 科等[12]研究表明,小麥籽粒中相對(duì)分子量為15 000的淀粉粒結(jié)合蛋白與籽粒硬度極顯著相關(guān),用該蛋白質(zhì)來(lái)評(píng)測(cè)小麥籽粒硬度是可行的。因此,研究不同類型小麥品種的淀粉粒結(jié)合蛋白的類型和表達(dá)、淀粉粒結(jié)合蛋白與蛋白質(zhì)和淀粉品質(zhì)的關(guān)系,對(duì)篩選優(yōu)良小麥品種和優(yōu)質(zhì)專用小麥具有重要意義。
本研究在149份來(lái)自不同國(guó)家和地區(qū)的春小麥品種(系)SGP多態(tài)性鑒定的基礎(chǔ)上[13],選擇14個(gè)SGP組合類型出現(xiàn)頻率較高的28份材料為供試材料,通過(guò)對(duì)小麥蛋白質(zhì)品質(zhì)和淀粉品質(zhì)性狀的測(cè)定,進(jìn)一步揭示不同SGP組合與小麥品質(zhì)的關(guān)系,為篩選和培育優(yōu)質(zhì)小麥品種提供理論依據(jù)。
1.1試驗(yàn)材料
選擇14個(gè)淀粉粒結(jié)合蛋白組合類型出現(xiàn)頻率較高的小麥品種28份,于2012年4月播種于石河子大學(xué)農(nóng)學(xué)院試驗(yàn)站,實(shí)驗(yàn)地前茬為油葵,直接作為綠肥還田。每份材料種植8行,行長(zhǎng)1.5 m,行距0.2 m,2次重復(fù);稀條播,滴灌,田間管理同大田,7月中旬收獲。
1.2測(cè)定項(xiàng)目與方法
制粉:按照Quadrumat Junior試驗(yàn)?zāi)ゲ僮饕?guī)程磨粉。
淀粉粒結(jié)合蛋白的提取及分離: 采用卞 科等[12]的方法提取淀粉粒結(jié)合蛋白,參考馬冬云等[14]的方法進(jìn)行SDS-PAGE 電泳檢測(cè)。部分小麥品種(系)SGP的電泳圖譜及主要的SGP組合帶譜模式圖見(jiàn)前期工作[13]。
面筋指標(biāo)測(cè)定:用瑞典波通公司的面筋測(cè)定儀(Perten 2200型)測(cè)定干、濕面筋含量和總面筋含量。干面筋含量(14%濕基)=(100-14)/(100-面粉水分含量)×未矯正濕面筋含量;根據(jù)GB/T5506-2008計(jì)算面筋指數(shù),面筋指數(shù)=留存在篩板上的濕面筋重量/全部濕面筋重量×100%。
沉降值測(cè)定:按照AACC(美國(guó)谷物化學(xué)師協(xié)會(huì)標(biāo)準(zhǔn))56-61A方法用BAU-A 型沉淀值測(cè)定儀進(jìn)行測(cè)定。
蛋白質(zhì)含量及籽粒硬度測(cè)定:用近紅外谷物成分測(cè)定儀(FOSS-1241)測(cè)定。
黏度儀指標(biāo)測(cè)定:用德國(guó)Brabender 803202型黏度測(cè)試儀,根據(jù)GB/T 14490-2008測(cè)定小麥的峰值黏度、低谷黏度、最終黏度。
直鏈淀粉和支鏈淀粉含量:參考汪連愛(ài)[15]的雙波長(zhǎng)方法進(jìn)行測(cè)定。
1.3數(shù)據(jù)處理
利用Excel對(duì)數(shù)據(jù)進(jìn)行匯總和計(jì)算,用SPSS軟件對(duì)數(shù)據(jù)進(jìn)行差異性分析。
2.1SGP及組合與小麥蛋白質(zhì)品質(zhì)性狀的關(guān)系
2.1.128個(gè)供試材料的蛋白質(zhì)性狀
從表1可以看出,28個(gè)供試小麥品種(系)的蛋白質(zhì)含量和沉降值的變異系數(shù)均較小,變化范圍分別為13.2%~16.9%和36.9~52.4 mL;面筋指數(shù)和籽粒硬度的變異系數(shù)均較大,變化范圍分別為30.0%~99.0%和37.2%~79.7%;其他品質(zhì)性狀的變異系數(shù)居中。
2.1.2不同SGP組合類型對(duì)小麥蛋白質(zhì)各項(xiàng)指標(biāo)的效應(yīng)
由不同SGP組合類型對(duì)28份材料蛋白質(zhì)各項(xiàng)指標(biāo)的效應(yīng)值(表2)可知,SGPa+b+c+d+e+f+g+h+i對(duì)濕、干面筋含量的效應(yīng)值最高,分別為38.6%和13.2%;SGPa+c+d+e+f+g+i+j對(duì)濕、干面筋含量的效應(yīng)值最低,分別為27.6%和10.0%,二者間差異顯著,其他組合類型間差異不顯著。SGPa+c+d+e+f+g+i+j對(duì)面筋指數(shù)的效應(yīng)值最高,為96.4%;SGPb+c+d+e+f+g+h+i+j對(duì)面筋指數(shù)的效應(yīng)值最低,為30.0%,二者差異顯著。SGPb+c+d+e+f+g+h+j和SGPa+c+d+e+f+g+i+j 對(duì)沉降值的效應(yīng)值最高(47.9 mL),SGPa+b+c+d+e+f+g+h+i+j對(duì)沉淀值的效應(yīng)值最低(36.9 mL),二者差異顯著。SGPa+d+e+f+g+h+i+j對(duì)蛋白質(zhì)含量的效應(yīng)值最高(16.9%);SGPa+c+e+f+g+h+i+j對(duì)蛋白質(zhì)含量的效應(yīng)值最低(13.2%),二者間差異顯著。各個(gè)組合類型對(duì)籽粒硬度的效應(yīng)差異較大,其中,SGPb+c+d+e+f+g+i+j對(duì)籽粒硬度有顯著的正效應(yīng), SGPa+c+d+e+f+g+i+j對(duì)籽粒硬度有顯著負(fù)效應(yīng),這兩個(gè)組合中僅SGPa和SGPb結(jié)合蛋白存在差異,說(shuō)明小麥籽粒硬度主要與SGPa和SGPb有關(guān)。
表1 28個(gè)小麥品種的蛋白質(zhì)性狀Table 1 Protein characters of 28 wheat varieties
WGC:Wet gluten content;DGC:Dry gluten content;GI:Gluten index;SV:Sedimen tation value;PC:Protein content;GH:Grain hardness.The same as table 2-4
表2 不同SGP組合類型的各蛋白質(zhì)指標(biāo)均值及差異顯著性檢測(cè)Table 2 Quality indices and the mean differences significant test of different composition types of grain protein
數(shù)據(jù)后不同字母表示5%水平上差異顯著。下同
Different letters following the dates indicate the significant difference at 5% level.The same as below
2.1.3不同SGP對(duì)不同蛋白質(zhì)指標(biāo)的效應(yīng)與貢獻(xiàn)
比較僅一個(gè)SGP不同的SGP組合,以此來(lái)比較不同的SGP對(duì)蛋白質(zhì)品質(zhì)性狀的效應(yīng),結(jié)果如表3。由于條帶SGPe、SGPf、SGPg在每種條帶組合中都同時(shí)出現(xiàn),故無(wú)法估算其效應(yīng)值。對(duì)干、濕面筋含量,不同SGP效應(yīng)值間無(wú)顯著差異,但效應(yīng)最高的為SGPb,其次是SGPh,且二者對(duì)提高干、濕面筋含量有正效應(yīng);對(duì)面筋指數(shù),效應(yīng)最高的為SGPa,其次是SGPj,兩者差異不顯著,但均對(duì)提高面筋指數(shù)有正效應(yīng)。其余SGP對(duì)面筋指數(shù)均有負(fù)效應(yīng),其中SGPi的效應(yīng)顯著,且與SGPa和SGPj效應(yīng)差異顯著;SGPd對(duì)沉降值有正效應(yīng),其余蛋白對(duì)沉降值均有負(fù)效應(yīng),不同SGP間效應(yīng)差異不顯著;對(duì)蛋白質(zhì)含量和籽粒硬度,效應(yīng)最高的均為SGPi,SGPh次之,而最低的均為SGPa,不同SGP對(duì)蛋白質(zhì)含量的效應(yīng)差異均不顯著,SGPa對(duì)籽粒硬度有顯著負(fù)效應(yīng)。
表3 不同SGP對(duì)不同蛋白質(zhì)指標(biāo)的效應(yīng)Table 3 Effect values of different SGP to the protein indicators
從表4中不同SGP對(duì)蛋白質(zhì)品質(zhì)指標(biāo)的貢獻(xiàn)大小排序中可以看出,SGPa 對(duì)面筋指數(shù)的貢獻(xiàn)最大,SGPb對(duì)干、濕面筋含量的貢獻(xiàn)最大,SGPd對(duì)沉降值的的貢獻(xiàn)最大,SGPi對(duì)蛋白質(zhì)含量和籽粒硬度的貢獻(xiàn)最大。綜合各項(xiàng)蛋白質(zhì)指標(biāo),SGPh的綜合排名第一,說(shuō)明其對(duì)提高蛋白質(zhì)品質(zhì)性狀的貢獻(xiàn)最大,SGPa的最小,其余SGP介于二者之間。
2.2SGP及組合與小麥淀粉品質(zhì)性狀的關(guān)系
2.2.128個(gè)供試材料的淀粉性狀
檢測(cè)不同SGP組合類型與28個(gè)小麥品種(系)的峰值黏度、最終黏度及直支鏈淀粉含量等主要淀粉性狀關(guān)系(數(shù)據(jù)略),并進(jìn)一步分析各性狀的變異情況發(fā)現(xiàn)(表5),低谷黏度的變異系數(shù)最大(15.7%),變化范圍為198~511 BU,支鏈淀粉含量的變異系數(shù)最小(9.2%),變化范圍為67.73%~98.02%;其他指標(biāo)變異系數(shù)居中,其中,峰值黏度、最終黏度、直鏈淀粉含量的變異系數(shù)分別為10.1%、12.6%、10.6%,變化范圍分別為487~827 BU、490~1 027 BU和13.44%~26.41%。2.2.2不同SGP組合類型對(duì)小麥淀粉指標(biāo)的效應(yīng)
以不同SGP組合類型各項(xiàng)指標(biāo)的均值作為其效應(yīng)值。從表6中可以看出,SGPa+c+d+e+f+g+i+j對(duì)峰值黏度的效應(yīng)最高(825 BU),效應(yīng)最低的為SGPa+b+c+d+e+f+g+h+i(636 BU),這兩種組合類型差異顯著,其他組合類型與其差異不顯著。SGPa+c+d+e+f+g+i+j對(duì)低谷黏度的效應(yīng)最高(503 BU),效應(yīng)最低的為SGPa+b+c+d+e+f+g+h+i+j(337 BU),不同SGP組合類型間差異均不顯著。SGPa+c+d+e+f+g+i+j對(duì)最終黏度的效應(yīng)最高,為1 019 BU,效應(yīng)最低的為SGPa+b+c+d+e+f+g+h+i(734 BU),不同SGP組合類型間差異不顯著。SGPb+c+d+e+f+g+h+i+j對(duì)直鏈淀粉含量的效應(yīng)值最高(24.08%),效應(yīng)值最低的為SGPb+c+d+e+f+g+h+i+j(19.01%),不同SGP組合類型間差異不顯著。SGPa+c+e+f+g+h+i+j對(duì)支鏈淀粉含量的效應(yīng)最高(98.02%),效應(yīng)最低的為SGPa+b+d+e+f+g+h+i+j(71.67%),其中SGPa+c+e+f+g+h+i+j與其他組合類型間差異均顯著。SGPb+c+d+e+f+g+h+j對(duì)直/支鏈淀粉之比的效應(yīng)最高(0.323),效應(yīng)最低的為SGPa+c+e+f+g+h+i+j(0.200),且這兩種SGP組合類型間差異顯著。
表5 28個(gè)小麥品種的淀粉性狀Table 5 Starch properties of 28 wheat varieties
PV:Peak viscosity;LV:Low viscosity;FV:Final riscosity;Am:Amylose content;AP:Amylopectin content.The same as table 6-8
表6 不同SGP組合類型淀粉指標(biāo)均值及差異顯著性檢測(cè)Table 6 Quality indices and the mean differences significant test of different composition types of grain starch
表7 不同SGP對(duì)不同淀粉指標(biāo)值的效應(yīng)Table 7 Effect values of different SGP to the starch indicators
2.2.3不同SGP對(duì)淀粉指標(biāo)的效應(yīng)值及貢獻(xiàn)
由表7可知,對(duì)峰值黏度,效應(yīng)最高的為SGPj,其次是SGPd和SGPa,且均對(duì)峰值黏度有正效應(yīng)。對(duì)低谷黏度,效應(yīng)最高的為SGPj,最低的為SGPb,不同SGP之間無(wú)顯著差異,且除了SGPj外的其他SGP均對(duì)低谷黏度有負(fù)效應(yīng),對(duì)最終黏度。效應(yīng)最高的為SGPj,最低的為SGPb,二者間呈顯著性差異,僅有SGPj是正效應(yīng)。對(duì)直鏈淀粉含量,效應(yīng)最高的為SGPd,最低的為SGPa,各個(gè)蛋白間無(wú)顯著性差異。對(duì)支鏈淀粉含量,效應(yīng)最高的為SGPi,其次是SGPh,二者對(duì)支鏈淀粉含量有正效應(yīng)。而對(duì)直/支鏈淀粉含量之比,效應(yīng)最高和最低的分別為SGPd和SGPi,且這兩種蛋白之間呈現(xiàn)顯著性差異,除SGPi外,所有SGP均對(duì)直/支有正效應(yīng)。
從不同SGP對(duì)淀粉品質(zhì)指標(biāo)貢獻(xiàn)可以看出(表8),SGPj對(duì)峰值黏度、低谷黏度、最終黏度的貢獻(xiàn)均最大,SGPd對(duì)直鏈淀粉含量和直/支比的貢獻(xiàn)最大,而SGPi則對(duì)支鏈淀粉含量的貢獻(xiàn)最大。綜合各項(xiàng)淀粉指標(biāo)排名第一的是SGPj,而貢獻(xiàn)最低的為SGPb,其他的SGP對(duì)淀粉品質(zhì)性狀的貢獻(xiàn)介于二者之間。
本試驗(yàn)中,不同SGP組合類型小麥品種間的筋度差異顯著,但不同SGP之間的筋度無(wú)顯著差異。蛋白質(zhì)含量與小麥籽粒硬度極顯著正相關(guān),故不同SGP組合類型與不同SGP對(duì)籽粒硬度的影響與蛋白質(zhì)含量一致。黃 曼等[16]關(guān)于小麥籽粒硬度與SGP關(guān)系的研究表明,不同硬度小麥的淀粉粒的承壓能力基本相同;胚乳蛋白不同則承壓能力不同。本研究結(jié)果表明,SGPb對(duì)小麥籽粒硬度的效應(yīng)值最大,是影響籽粒硬度的關(guān)鍵蛋白。
鄭青煥等[17]的研究表明,不同小麥品種的濕面筋含量、硬質(zhì)率、沉降值的變異系數(shù)比較大;干、濕面筋含量及面筋指數(shù)對(duì)面包加工品質(zhì)有較大影響。趙乃新等[18]研究發(fā)現(xiàn),濕面筋含量與面包體積呈極顯著相關(guān);而干面筋含量對(duì)面包體積的評(píng)分影響顯著[19];面筋指數(shù)與面包體積的評(píng)分呈顯著正相關(guān)[20]。本試驗(yàn)中,干、濕面筋含量最高的組合類型為SGPa+b+c+d+e+f+g+h+i,說(shuō)明具有此組合類型的小麥品種在面包生產(chǎn)加工品質(zhì)上優(yōu)于其他組合類型;相反,SGPa+c+d+e+f+g+i+j組合類型的干、濕面筋含量均最小,即此組合類型的小麥品種對(duì)面包體積增大具有反向作用。干、濕面筋含量最高的均是SGPb,干、濕面筋含量最低的均是SGPj,說(shuō)明SGPb對(duì)小麥面包品質(zhì)有促進(jìn)作用,而SGPj則作用相反。SGPa和SGPb對(duì)面筋指數(shù)的貢獻(xiàn)率明顯大于和小于其他SGP,在篩選彈性和韌性等面筋強(qiáng)度指標(biāo)時(shí)應(yīng)考慮這兩種基因的作用。
沉降值的遺傳力高,其廣義遺傳力達(dá)84%~90%[21],故可作為育種家對(duì)早代材料篩選的重要指標(biāo)。研究表明,沉降值與面包體積的評(píng)分呈顯著或極顯著相關(guān)[18,22]。本試驗(yàn)中,SGPb+c+d+e+f+g+h+j、SGPa+c+d+e+f+g+i+j和SGPd都有助于提高小麥沉降值,而SGPa+b+c+d+e+f+g+h+i+j和SGPa則反之。
淀粉糊化特性是反映淀粉品質(zhì)的重要指標(biāo),對(duì)小麥蒸煮食用品質(zhì)有重要影響[23]。王美芳等[24]的研究表明,峰值黏度是衡量小麥品種淀粉特性的最重要的指標(biāo)。本試驗(yàn)中SGPa+c+d+e+f+g+i+j組合類型和SGPj的峰值黏度最高,說(shuō)明這種組合類型面粉的使用品質(zhì)比較好。
直鏈淀粉含量對(duì)面條品質(zhì)有較大影響,小麥直鏈淀粉含量越低,越適合做優(yōu)質(zhì)面條。因此,直鏈淀粉含量已被育種學(xué)家列為優(yōu)質(zhì)面條小麥選育的重要指標(biāo)[25]。本試驗(yàn)不同SGP組合類型小麥的直鏈淀粉含量無(wú)明顯差異,支鏈淀粉含量差異顯著,應(yīng)在生產(chǎn)中盡量選擇支鏈淀粉含量高的組合類型,如SGPa+c+e+f+g+h+i+j和SGP a+b+c+e+f+g+h+i+j這兩種組合類型及SGPa和SGPh。另外,不同組合類型的直/支比有顯著的差異,可為食品加工等提供參考。
[1]Soulaka A B,Merrison W R.The amylose and lipid contents,dimensions,and gelatinization characteristics of some wheat starches and their A- and B-type granules fractions [J].JournalofFoodandAgricultureScienee,1985,36(1):709-718.
[2]Yomiko Y,Hayashi M,Seguchi M.Presence and amounts of starch granule surface proteins in various starches [J].CerealChemistry,2005,82(6):739-742.
[3]Greenwell L P,Evers A D,Gough B M,etal.Amyloglucosidase-catalysted erosion of native,surface-modified and chlorinetreated wheat starch granule.The influence of surface protein [J].JournalofCerealScience,1985,3:279-283.
[4]Schofield J D,Greenwel P.Wheat starch granule proteins and their technology significance [C]//Morton I D(ed).Cereals in a European Context.Eilis Horwood,Chichester,1987:407-420.
[5]Muforster C,Huang R,Powers J R,etal.Physical association of starch biosynthetic enzymes with starch granules of maize endosperm [J].PlantPhysiology,1996,11(1):821-829.
[6]Ying Y,Helen H M,Chen M F,etal.Polypeptides of the maize amyloplast stroma [J].PlantPhysiology,1998,116(4):1451-1460.
[7]王曉麗,茍 琳.生物化學(xué)實(shí)驗(yàn)教程[M].成都:四川科學(xué)技術(shù)出版社,2005:65-68.
Wang X L,Xun L.Bio-chemical Experiment Course [M].Chengdu:Sichuan Science and Technology Press,2005:65-68.
[8]郭世華,何中虎,王洪剛,等.Friabilin 蛋白表達(dá)量與小麥籽粒硬度的關(guān)系[J].中國(guó)農(nóng)業(yè)科學(xué),2003,36(9):991-995.
Guo S H,He Z H,Wang H G,etal.Association between Friabilin protein and grain hardness in common wheat [J].ScientiaAgriculturaSinica,2003,36(9):991-995.
[9]Han X Z,Benmoussa M,Jonathan A,etal.Detection of proteins in starch granule channels [J].CerealChemistry,2005,82(4):351-355.
[10]Grimaud F,Rogniaus H,James M G,etal.Proteome and phosphoproteome analysis of starch granule associated proteins from normal maize and mutants affected in starch biosynthesis [J].JournalofExperimentalBotany,2008,59(12):3395-3406.
[11]曹雯梅,劉述忠,張亞菲,等.粗山羊草新型硬度等位基因的克隆及分析[J].麥類作物學(xué)報(bào),2015,35(9):1202-1207.
Cao W M,Liu S Z,Zhang Y F,etal.Molecular cloning and sequence analysis of the novel puroindoline genes fromAegilopstauschii[J].JournalofTriticeaeCrops,2015,35(9):1202-1207.
[12]卞 科,袁小平.普通小麥淀粉粒蛋白與籽粒硬度的關(guān)系[J].河南工業(yè)大學(xué)學(xué)報(bào):自然科學(xué)報(bào),2005,26(1):126.
Bian K,Yuan X P.The relationship between starch granule proteins and wheat hardness [J].JournalofHenanUniversityofTechnology:NaturalScienceEdition,2005,26(1):126.
[13]冶 婷,李衛(wèi)華,高歡歡,等.小麥淀粉粒結(jié)合蛋白多態(tài)性及蛋白表達(dá)差異的研究[J].麥類作物學(xué)報(bào),2012,32(2):349-355.
Ye T,Li W H,Gao H H,etal.Polymorphisms and protein expression differences of starch granule protein in wheat [J].JournalofTriticeaeCrops,2012,32(2):349-355.
[14]馬冬云,張 劍,郭天財(cái),等.小麥淀粉粒蛋白表達(dá)差異及其與淀粉糊化特性的關(guān)系[J].麥類作物學(xué)報(bào),2009,29(1):52-57.
Ma D Y,Zhang J,Guo T C,etal.Expression difference of starch granule proteins in wheat and its relationship with starch paste characteristic [J].JournalofTriticeaeCrops,2009,29(1):52-57.
[15]汪連愛(ài).雙光束雙波長(zhǎng)分光光度計(jì)測(cè)定稻米中直鏈淀粉的方法[J].糧食與飼料工業(yè),1999(3):1-3.
Wang L A.Test method of amylose with double beam dual wavelength spectrophotometer in rice [J].FoodandFeedIndustry,1999(3):1-3.
[16]黃 曼,黃 斌,劉 丹,等.小麥籽粒硬度與淀粉粒蛋白關(guān)系的研究和應(yīng)用[J].糧食加工,2005(4):10-14.
Huang M,Huang B,Liu D,etal.Research and application on the relationship of wheat hardness and starch granule proteins [J].GrainProcessing,2005(4):10-14.
[17]鄭青煥.21份印度小麥高分子谷蛋白亞基、醇溶蛋白及品質(zhì)分析[J].麥類作物學(xué)報(bào),2015,35(12):1-7.
Zheng Q H.Identification of HMW-GS,gliadin and quality property analysis of twenty-one indian wheats [J].JournalofTriticeaeCrops,2015,35(12):1-7.
[18]趙乃新,王樂(lè)凱,陳愛(ài)華,等.面包烘烤品質(zhì)與小麥品質(zhì)的相關(guān)性[J].麥類作物學(xué)報(bào),2003,23(3):33-36.
Zhao N X,Wang L K,Chen A H,etal.Correlation between baking quality and wheat quality parameters [J].JournalofTriticeaeCrops,2003,23(3):33-36.
[19]胡 琳,董鈞益,許為鋼,等.小麥品質(zhì)特性的分類及相對(duì)重要性[J].麥類作物學(xué)報(bào),2006,26(5):60-64.
Hu L,Dong J Y,Xu W G,etal.Study on the classification and relative importance of quality properties in wheat [J].JournalofTriticeaeCrops,2006,26(5):60-64.
[20]時(shí)俠清,孫家柱,郭小麗,等.北京市售小麥面粉的品質(zhì)性狀評(píng)價(jià)[J].麥類作物學(xué)報(bào),2006,26(3):102-106.
Shi X Q,Sun J Z,Guo X L,etal.Quality evaluation on wheat flour of different brand sold in Beijing market [J].JournalofTriticeaeCrops,2006,26(3):102-106.
[21]林作楫,周希丹,揭聲慧,等.冬小麥烘烤品質(zhì)與其它一些品質(zhì)性狀及產(chǎn)量性狀間的相互關(guān)系[J].作物學(xué)報(bào),1989,15(2):151-157.
Lin Z J,Zhou X D,Jie S H,etal.Interrelation among baking quality and other quality characteristics and yield traits in winter wheat [J].ActaAgronomicaSinica,1989,15(2):151-157.
[22]楊 金,張 艷,何中虎,等.小麥品質(zhì)性狀與面包和面條品質(zhì)關(guān)系[J].作物學(xué)報(bào),2004,30(8):739-744.
Yang J,Zhang Y,He Z H,etal.Association between wheat quality traits and performance of pan bread and dry white Chinese noodle [J].ActaAgronomicaSinica,2004,30(8):739-744.
[23]張 軍,許 軻,張洪程,等.氮肥施用時(shí)期對(duì)弱筋小麥寧麥9號(hào)品質(zhì)的影響[J].揚(yáng)州大學(xué)學(xué)報(bào):農(nóng)業(yè)與生命科學(xué)版,2004,25(2):39-42.
Zhang J,Xu K,Zhang H C,etal.Effects of nitrogen topdressing stage on quality of week gluten wheat variety ningmai 9 [J].JournalofYangzhouUnversity:AgriculturalandLifeScienceEdition,2004,25(2):39-42.
[24]王美芳,趙石磊,雷振生,等.小麥蛋白淀粉品質(zhì)指標(biāo)與面包品質(zhì)關(guān)系的研究[J].核農(nóng)學(xué)報(bào),2013(6):792-799.
Wang M F,Zhao S L,Li W,etal.The relationship between protein quality and starch pasting parameters and bread baking quality in common wheat [J].JournalofNuclearAgriculturalSciences,2013(6):792-799.
[25]劉建軍,何中虎,趙振東,等.小麥面條加工品質(zhì)研究進(jìn)展[J].麥類作物學(xué)報(bào),2001,21(2):81-84.
Liu J Z,He Z H,Zhao Z D,etal.Review of noodle industrial quality of wheat [J].JournalofTriticeaeCrops,2001,21(2):81-84.
Relationship Between Wheat Starch Granule Protein with Flour Protein and Starch Qualities
LI Yong,YE Ting,LI Weihua,GAO Huanhuan,LIN Jing
(College of Agriculture,Shihezi University/Key Laboratory of Oasis Eco-agriculture of Xinjiang Bingtuan,Shihezi,Xinjiang 832003,China)
In order to characterise the starch granule-bound protein (SGP) and quality of 14 SGP composition types with high frequency in 28 wheat accessions, significant difference between associated protein and starch quality traits were analyzed in this test.The results showed that there were significantly different effect value among different protein composition types and protein quality traits.For protein properties,combination type SGPa+b+c+d+e+f+g+h+i has the highest effect value for wet and dry gluten content,and SGPa+c+d+e+f+g+i+j has the highest effect value for the gluten index; SGPb+c+d+e+f+g+h+j and SGPa+b+c+d+e+f+g+i+j have the highest effect value for Zeleny sedimentation value;The effect value of SGPa+d+e+f+g+h+i+j was maximum for the protein content.The maximum effect value of SGPb protein was discovered in both dry and wet gluten content; SGPi had the highest effect value for both protein content and grain hardness,but had the lowest effect value for the dry and wet gluten content and gluten index; SGPa had the minimum effect value for sedimentation value,protein content and grain hardness,but had the maximum effect value for gluten index.Based on the comprehensive quality indices,SGPh protein has the highest contribution rate and SGPa has the lowest contribution rate to the protein quality.For starch properties,SGPa+c+d+e+f+g+i+j has the highest effect value for peak viscosity,low viscosity and final viscosity; SGPb+c+d+e+f+g+h+i+j and SGPa+c+e+f+g+h+i+j have the highest effect value for amylose and amylopectin content,respectively.SGPb+c+d+e+f+g+h+j has highest effect value for the amylose to amylopectin ratio.SGPj has maximum effect values for the peak viscosity,low viscosity and final viscosity.However,SGPb has lower effect value for the starch parameters.SGPd has the highest effect values for amylose content and the amylose to amylopectin ratio,but has the lowest effect value for amylopectin content.SGPj has the highest contribution rate and SGPb has the lowest contribution rate to the starch quality.
Wheat; Starch granule proteins; Protein properties; Starch properties; Effect value
時(shí)間:2016-05-10
2015-12-01
2015-12-25
國(guó)家自然科學(xué)基金項(xiàng)目(30860145);新疆兵團(tuán)科技局重點(diǎn)科技項(xiàng)目(2011BA002)
E-mail:1298528319@qq.com(李 詠);yeting8706@sina.com(冶 婷,與第一作者同等貢獻(xiàn))
李衛(wèi)華(E-mail: lwh_agr@shzu.edu.cn)
S512.1;S330
A
1009-1041(2016)05-0603-08
網(wǎng)絡(luò)出版地址:http://www.cnki.net/kcms/detail/61.1359.S.20160510.1623.018.html