• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A flexible hard carbon microsphere/MXene film as a high-performance anode for sodium-ion storage

    2022-12-13 08:03:34CAOHailiangYANGLiangtaoZHAOMinLIUPeizhiGUOChunliXUBingsheGUOJunjie
    新型炭材料 2022年6期

    CAO Hai-liang, YANG Liang-tao, ZHAO Min, LIU Pei-zhi,GUO Chun-li, XU Bing-she,3, GUO Jun-jie

    (1.Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education,Taiyuan University of Technology, Taiyuan 030024, China;2.Shenzhen Institute of Advanced Technologies, Chinese Academy of Sciences, Shenzhen 518055, China;3.Materials Institute of Atomic and Molecular Science, Shaanxi University of Science & Technology, Xi'an 710021, China)

    Abstract: Hard carbon is considered the most promising anode material for sodium-ion batteries, but its volume change during sodiation/desodiation limits its cycle life.Hard carbon microspheres (HCSs) with no binder were composited with a MXene film to form an electrode and its sodium storage properties were studied.The microspheres were prepared using Shanxi aged vinegar as a liquid carbon source.Two-dimensional Ti3C2Tx MXene (T is a functional group) was used as a multifunctional conductive binder to fabricate the flexible electrodes.Remarkably, because of the three-dimensional conductive network, the HCS/Ti3C2Tx film electrode has a high capacity of 346 mAh g?1, excellent rate performance and outstanding cycling stability over 1 000 cycles.This remarkable electrochemical performance indicates that the flexible film is a very promising anode for next-generation sodium-ion batteries.

    Key words: Sodium-ion batteries;Hard carbon microspheres;MXene;Anode;Flexibility

    1 Introduction

    Lithium-ion batteries (LIBs) have been the leading chemical power source because of their advantages in energy density, power density, and cycling life[1–2].However, the uneven distribution of lithium resource risks the supply chain of raw materials for LIBs, especially for stationary energy storage[3].Consequently, sodium-ion batteries (SIBs) have been considered as an important complement system to LIBs due to the earth abundant sodium resource and the same rocking-chair storage mechanism[4–6].However,the advanced materials of LIBs are not effectively in accordance with that of SIBs because of the difference in size and local environment between Li+and Na+.The sodium ion (0.102 nm) has a larger radius than that of lithium ion (0.076 nm), resulting in the sluggish diffusion kinetics[7–8].To date, extensive efforts have been devoted to explore cathode materials for SIBs, including layered transition metal oxides,prussian blue analogs, and polyanionic compounds[9–11].However, exploring high-performance anode materials is still challenging.

    Several materials have been studied as negative electrode for SIBs, such as carbonaceous materials, alloys, metal oxides/sulfides and phosphates[12–16].Metal oxide and alloy electrodes usually show poor cycling durability because of their large volume expansion during the sodiation/desodiation processes[17–18].Among various negative electrode materials, hard carbon (HC) has been recognized as a promising negative electrode material for sodium ion storage[19–20].Until now, HCs from different precursors have been reported, including biomass wastes, carbohydrates and polymers[21–23].Our group reported a hard carbon microfiber derived from renewable papers, which showed a specific capacity of 319.6 mAh g?1[24].Tirado et al.reported microspherical carbon particles prepared using mixture precursors of resorcinol and formaldehyde, which showed a capacity of 285 mAh g?1[25].However, the undesirable and inactive impurities derived from these precursors as well as irregular geometric morphologies compromise the sodium ion storage performance of HCs[26].

    In addition, MXenes, a family of two-dimensional transition metal carbides and nitrides, have received attractive attentions in energy storage and conversion[27–28].MXenes are considered as promising candidate materials for supercapacitors and secondary rechargeable batteries because of their tunable surface terminations, metallic conductivity, and surface hydrophilicity[29].Moreover, MXenes flakes can be adopted to fabricate free-standing, flexible electrodes,holding a great promise for fabricating flexible devices.The flexible MXene film electrodes can be easily obtained through rolling or vacuum filtration.Recently, Xu et al.studied MXene as a conductive binder to prepare flexible porous composite electrodes for supercapacitors, which show excellent flexibility and electrochemical performance[30].Therefore,it is reasonable to expect that the combination of MXene and HC can not only fabricate free-standing flexible electrodes, but also promote the electrochemical properties of the electrodes, expanding the application of HC.

    We here chose Shanxi aged vinegar as the liquid carbon source to synthesize hard carbon microspheres(HCS) using hydrothermal method followed by subsequent carbonization treatment.The HCS pyrolyzed at 1 400 °C displays the highest specific capacity and good cycling stability.The Ti3C2TxMXene nanosheets were used as multifunctional binder to fabricate flexible and free-standing HCS/MXene(HCS/MX) film electrode with excellent cycling stability.Compared with the conventional PVDF-bonded HCS electrode, the flexible HCS/MX electrode exhibits superior performances in term of capacity,and long cycling ability for SIBs.The results demonstrate that the as-obtained film electrode is a promising negative electrode of SIBs.

    2 Experimental

    2.1 Materials synthesis

    The Shanxi aged vinegar (Donghu) was purchased and used as liquid carbon precursor.80 mL vinegar was placed in a 100 mL autoclave, and treated hydrothermally at 180 °C for 12 h to obtain a black powder.Then, the powder was washed three times using ethanol and DI water, and dried overnight in a vacuum oven.The obtained powder was pyrolyzed at 1 000, 1 200, 1 400 and 1 600 °C respectively, for 2 h with a ramping rate of 3 °C min?1.The resulting materials were labeled as HCS-X, where X is the carbonization temperature.

    The Ti3C2TxMXene used in this work was synthesized by etching MAX phase following the reported method[31].Firstly, 1.85 g of LiF was dissolved in 40 mL 9 mol L?1mixed acid solution (V(HCl)∶V(HF)=37∶3) during stirring process.Then, 1.85 g of Ti3AlC2powder was gradually added into the acidic solution in 15 min.Secondly, the etching reaction run for 24 h at 35 °C in an oil bath.After the etching procedure, DI water was adopted to wash the obtained resultant at 3 500 r min?1until a pH value of 6 was achieved.Then, the sediment was collected after the last centrifugation cycle and sonicated for 30 mins under Ar bubbling.The MXene aqueous solution was collected through centrifugation of the supernatant at 3 500 r/min for 30 min.Finally, the concentration of the MXene aqueous solution was adjusted to 1 mg mL?1for further use.

    The HCS/MX film electrodes were prepared by a vacuum-assisted filtration of the mixture of HCS-1400 and Ti3C2TxMXenes solution.First of all, the HCS-1400 solution dispersed in N,N-dimethylformamide(DMF) with the concentration of 1 mg mL?1was prepared in advance.Then the Ti3C2Txsolution and HCS dispersion were mixed homogeneously at different ratios through ultrasonic treatment.The HCS/MX films were fabricated by vacuum filtration of the mixed dispersion.The flexible film was obtained after dried overnight.The mass ratio of HCS-1400 and Ti3C2Txsolution is 1∶1, 2∶1, and 4∶1.The corresponding film was labeled as HCS/MX-1, HCS/MX-2 and HCS/MX-4, respectively.

    2.2 Materials characterization

    The microstructure was characterized using a Japanese science Ultima Ⅳ X-ray diffraction (XRD)with a CuKα radiation source (40 kV, 100 mA,λ=0.154 178 nm).Raman spectra were examined on a Thermo Fischer DXR spectrometer with a 532 nm laser excitation.Morphology and microstructure investigations were carried out by using the transmission electron microscopy (TEM, JEOL JEM-2010)and scanning electron microscope (SEM, LYRA3 XMH TESCAN).

    2.3 Electrochemical measurements

    CR2032 coin cells were assembled to test the electrochemical properties of HCS and HCS/MX film electrodes.For electrode preparation, a slurry of 80% HCS samples, 10% Super P, and 10% polyvinylidenefluoride (PVDF) binder in N-methylpyrrolidone was casted on the Cu foil, followed by drying at 100 °C for 12 h in a vacuum oven.The HCS/MX films were cut into 12 mm diameter circles, and directly used as working electrodes.A Na foil and glass fiber were used as the counter electrode and separator,respectively.1 mol L?1NaClO4in a mixture of ethylene carbonate and diethyl carbonate (1∶1 in volume)was employed as the electrolyte.The active material of the electrode is ~1.0 mg cm?2.A LAND CT2001 battery test system was used to conduct the charge and discharge tests.Cyclic voltammetry (CV) measurements were carried out on Princeton Applied Research Versa STAT 3 electrochemical workstation.

    3 Results and discussion

    3.1 Morphology and structure of HCS

    In this work, Shanxi aged vinegar was used as liquid carbon source.The HCS material can be obtained through hydrothermal treatment of aged vinegar solution, followed by carbonization treatment.The scanning electron microscope (SEM) image in Fig.1a displays the spherical morphology of HCS-1400 with the size ranges from 2 to 5 μm.Transmission electron microscope (TEM) image (Fig.1b) demonstrates the microstructure of HCS-1400 is primarily amorphous with a few “graphitic” domains.X-ray diffraction (XRD) and Raman spectra were further carried out to study the crystallinity of the samples.Fig.1c shows 2 broad peaks at about 23° and 43°which are assigned to (002) and (100) reflections of graphite, respectively, indicating the disordered structure characteristic of HC[24,32].It is worth noting that the (002) peak shifts to higher angle with the rise of carbonization temperature, demonstrating the smaller interlayer distance (d002).The calculated interlayer distances (d002) by Scherrer equation are 0.389, 0.378,0.371 and 0.362 nm for HCS-1000, HCS-1200, HCS-1400 and HCS-1600, respectively.The Raman spectra (Fig.1d) of disordered carbons normally exhibits a broad peak at around 1 345 cm?1calledD-band(amorphous carbon) and a hump peak at about 1 590 cm?1referred to theGband (crystalline graphite)[33–34].TheID/IGratios of HCS-1000, HCS-1200, HCS-1400 and HCS-1600 were 1.10, 1.15, 1.25 and 1.35, respectively, showing an increasing trend.Moreover,the half width of the 2 bands decreases with increasing carbonization temperature, indicating that the degree of order of carbon layer rises.These Raman results match well with previous reports.

    Fig.1 (a) A representative SEM image of HCS-1400.(b) TEM image of HCS-1400.(c) XRD patterns and (d) Raman spectra of HCS carbonized at different temperatures

    3.2 Electrochemical performance of HCS

    The electrochemical properties of HCS were tested in half cells.Fig.2a shows the first galvanostatic charge/discharge curves of HCS-1000, HCS-1200,HCS-1400, HCS-1600 at a current density of 30 mA g?1with voltage window of 0.01-3.0 V (vs.Na+/Na).HCS-1000 and HCS-1200 exhibit discharge and charge specific capacities of 318.2 and 218.6 mAh g?1, 318.4 and 241.5 mAh g?1, respectively.However, the specific capacities of HCS-1400 electrode increase to 401.8 and 298.2 mAh g?1, corresponding to an initial coulombic efficiency (ICE) of 74.2%.Nevertheless, the capacity of HCS-1600 electrode is only 259 and 201.8 mAh g?1, despite the ICE increases to 78 %.The irreversible capacity mainly assigned to the formation of a solid-state interface film by the side reactions between the electrolyte and the surface functional groups.The discharge capacity is composed of two parts: the plateau capacity below 0.1 V and slope capacity above 0.1 V.As shown in Fig.2b, the slope capacity of HCS-1000 and HCS-1200 is much higher than the plateau capacity.By contrast, the plateau capacity raises from 71 (HCS-1000) and 86 (HCS-1200) mAh g?1to 171.5 mAh g?1for HCS-1400, and then decreased to 100.4 mAh g?1for HCS-1600.According to the previous research,the slope capacity refers to the adsorption and desorption of sodium ions on surface defects, and plateau capacity corresponds to insertion and desertion of sodium ions into graphitic interlayers[8,24,32].

    Fig.2 Electrochemical performances of the HCS electrodes.(a) The first charge/discharge profiles.(b) Slope and plateau capacity contribution.(c) Rate performance of HCS at different current density.(d) Cycling stability of HCS

    Fig.2c manifests the rate performance to evaluate the kinetic activity of HCS electrodes.Surprisingly, HCS-1400 displays the best average rate capabilities than that of other HCS samples.HCS-1400 delivers charge capacities of 299, 257.5 and 193 mAh g?1at 30, 50 and 100 mA g?1, respectively.It can still delivers 64 mAh g?1when the rate elevates to 1000 mA g?1.Importantly, when the current density recovers to 30 mA g?1, the reversible capacity is as high as 283.2 mAh g?1, implying the outstanding stability of hard carbon.The cycle life of HCS samples is evaluated at the current density of 100 mA g?1for 100 cycles.As shown in Fig.2d, the HCS-1400 demonstrated outstanding cycling durability, and its specific capacity can be retained as 193.5 mAh g?1after 100 cycles, corresponding to a capacity retention of 95.8%.It can be found that the HCS-1400 shows excellent electrochemical properties among the hard carbon anode materials.

    3.3 Characterization of HCS/MX

    In addition, Ti3C2TxMXene as a functional binder was adopted to promote the electrochemical properties of HCS.Fig.3a illustrates the fabrication of the HCS/MX film.The MXene-bonded HCS films can be simply prepared by vacuum filtration of the mixture solution of HCS-1400 and Ti3C2Txnanosheets.As expected, the HCS/MX films are flexible, free-standing and can be used as anode electrode directly without binder and current collector.Three ratios of HCS-1400: Ti3C2Txof 1∶1, 2∶1 and 4∶1 were employed, which are labeled as HCS/MX-1, HCS/MX-2,and HCS/MX-4, respectively.Fig.3b displays the TEM image of Ti3C2Txflakes.Ultrathin MXene sheets with size of several micrometers can be observed.Fig.3c presents the XRD patterns of the Ti3C2Txand HCS/MX films.The XRD pattern of pure Ti3C2TxMXene film exhibits a (002) diffraction peak at 2θ=7.24°, corresponding to an interlayer distance of 1.22 nm[35].For the HCS/MX films show the features of both HCS-1400 and MXene.Importantly, the Ti3C2Tx-bonded HCS films are flexible and free-standing, as shown in the inset in Fig.3d.Fig.3d and e show the top and cross-sectional SEM images of the HCS/MX-2 film, respectively.The HCS-1400 microspheres are evenly embedded in the three-dimensional (3D) networks fabricated by Ti3C2Txsheets.This structure is beneficial for the rapid transportation of electron and boosts the stability of the electrode.

    Fig.3 (a) Schematic for the preparation of HCS/MX film.(b) TEM image of MXene nanosheets.Structure characterization of the HCS/MX electrode.(c) XRD patterns, (d) SEM images from top view and (e) cross-sectional view.The insert in (d) is a photo of the flexible HCS/MX film

    3.4 Electrochemical behaviors of HCS/MX

    To evaluate the electrochemical properties of the HCS/MX films electrodes, the flexible films were directly used as working electrodes.Fig.4a and b show the cyclic voltammetry (CV) curves of the initial three cycles at 0.1 mV s?1for the HCS-1400 and HCS/MX-2 electrode.A pair of cathodic and anodic peaks located at 0-0.2 V, corresponding to the insertion/extraction of Na+in the carbon interlayers[24].The overall peak intensity and the stability of the film electrode is better than that of the HCs electrode.Fig.4c presents the first galvanostatic charge/discharge profiles of HCS/MX film electrodes conducted at a 30 mA g?1.The charge and discharge specific capacity of HCS/MX-1 and HCS/MX-4 is 208.7 and 374.7 mAh g?1, 310.8 and 475 mAh g?1, respectively.However, the discharge and charge capacity of HCS/MX-2 is as high as 596.1 and 346 mAh g?1, corresponding to an ICE of 58%.

    Fig.4 Na-storage behavior of HCS/MX film electrodes.(a) CV curves for initial three cycles of HCS-1400 and (b) HCS/MX-2 film.(c) Charge/discharge performance at 30 mA g?1.(d) Rate capability and (e) cycle performance at 200 mA g?1 for all the film electrodes.(f) Cycling stability of HCS/MX-2 film at 500 mA g?1

    The rate capability of the HCS/MX electrodes was investigated at different current rates ranging from 30 to 2 000 mA g?1( Fig.4d).Apparently,HCS/MX-2 presents the best rate capability compared to other electrodes.It shows capacity of 346,313, 283, 239, 185, 139, and 81 mAh g?1at 30, 50,100, 200, 500, 1 000 and 2 000 mA g?1, respectively.Importantly, when the current density gets back to 30 mA g?1, reversible capacity again reaches to 345 mAh g?1, demonstrating the remarkable reversibility.Subsequently, the cycling stability of HC/MX film electrodes is measured at 200 mA g?1for 200 cycles.As shown in Fig.4e, HCS/MX-2 shows superior cycling stability.The 200.6 mAh g?1reversible capacity can be retained after 200 cycles, corresponding to a capacity retention of 99.3%.More importantly,the HCS/MX-2 can even cycle over 1 000 cycles at a high current density of 500 mA g?1(Fig.4f).The obtained reversible capacity at the end of 100, 200, 500,800 and 1 000 cycles is 185, 177, 162, 156 and 155 mAh g?1, respectively, corresponding to a capacity retention of 83.3%.The outstanding cycling durability of the flexible HCS/MX electrode can be mainly attributed to the 3D conductive networks constructed by MXene nanosheets.Furthermore, the SEM images of HCS/MX-2 after 100 cycles also demonstrate the structural stability of the film electrode during the insertion and extraction of Na+(Fig.5).

    Fig.5 SEM images of HCS/MX-2 film from (a) top view and (b) crosssectional view after 100 charge/discharge cycles

    To investigate the kinetics of the electrodes, the HCS/MX-2 electrode was scanned at different scan rates ranging from 0.1 to 1 mV s?1.As presented in Fig.6a, the CV profiles generally behave a similar shape.The integral capacity includes contribution from two parts, namely, Na+insertion/extraction and pseudo-capacitance.The equationi=avbis employed to determine the dominant mechanism, in whichaandbare 2 adjustable parameters values, andvis a scan rate.According to previous report[36], the value ofbcan be obtained by the slope oflog(i) vs.log(v).A value of b close to 0.5 reveals a diffusion-controlled process, while a value of 1.0 suggests an ideal capacitive behavior.As shown in Fig.6b, the value ofbwas calculated to be 0.50 and 0.56 for anodic and cathodic process, respectively, demonstrating a diffusion-controlled process.Based on the reported results, the ratio of capacitive contribution can be calculated using equation[37–38]:i=k1v+k2v1/2, wherek1vandk2v1/2correspond to capacitive and diffusion-controlled process,respectively.As shown in Fig.6c, the HC/MX-2 electrode shows a 44% capacitive contribution at 0.1 mV s?1.However, the proportion of capacitive contribution gradually increases to a maximum value of 75% at 1.0 mV s?1, implying that the most of capacities are mainly controlled by capacitive process at high current density.

    Fig.6 (a) CV curves of HCS/MX-2 film electrode at different scan rates.(b) Relationship between the scan rates and peak currents in logarithmic format.(c) Diffusion and capacitive- controlled contributions

    4 Conclusion

    Monodispersed hard carbon spherules were successfully prepared using Shanxi aged vinegar as the carbon source.The electrochemical properties of the HCS materials as SIBs negative electrodes were investigated.The results suggest that the carbonization temperature has an impact on the electrochemical performances of HCS electrodes.HCS-1400 showed the best electrochemical performance.In addition, we also successfully fabricated the flexible HCS/MX film electrodes using Ti3C2TxMXene as a multifunctional binder.Notably, HCS/MX-2 film electrode exhibits a high specific capacity of 346 mAh g?1, outstanding rate performance and cycling stability.Encouragingly,it retains 200.6 mAh g?1(99.3% capactiy retention)after 200 cycles at a current density of 200 mA g?1.Importantly, the capacity retention reaches 83.3%after 1 000 cycles even at a high current density of 500 mA g?1.These results indicate that the uniquely structured MXene can be empolyed as a binder and structural stabilizer.Such electrodes can be used for flexible SIBs andenhace of the energy density of the devices.

    Acknowledgements

    This work was supported by the National Natural Science Foundation of China (U1810204,U1910210, U21A20174), Natural Science Foundation of Shanxi Province (201901D211046,20210302123115), Special Foundation for Youth San Jin scholars.

    国产91精品成人一区二区三区| 久久九九热精品免费| 亚洲一卡2卡3卡4卡5卡精品中文| 看免费av毛片| 国产无遮挡羞羞视频在线观看| av视频免费观看在线观看| 久久精品人人爽人人爽视色| 精品国产一区二区久久| 精品高清国产在线一区| 国产深夜福利视频在线观看| 嫩草影院精品99| 国产色视频综合| 高清在线国产一区| 亚洲 欧美 日韩 在线 免费| 日韩欧美一区视频在线观看| 午夜福利在线观看吧| 精品午夜福利视频在线观看一区| 757午夜福利合集在线观看| 乱人伦中国视频| 日本黄色日本黄色录像| 别揉我奶头~嗯~啊~动态视频| 久久热在线av| 老汉色∧v一级毛片| 91麻豆精品激情在线观看国产 | 国产亚洲精品久久久久久毛片| 国产高清激情床上av| 满18在线观看网站| 黑人猛操日本美女一级片| 国产精品国产高清国产av| 天天躁狠狠躁夜夜躁狠狠躁| 在线看a的网站| 亚洲成国产人片在线观看| 亚洲午夜理论影院| 色在线成人网| 电影成人av| 国产单亲对白刺激| 曰老女人黄片| 在线永久观看黄色视频| 国产精品成人在线| 精品国产乱子伦一区二区三区| 夜夜看夜夜爽夜夜摸 | 少妇的丰满在线观看| 在线观看舔阴道视频| 99久久人妻综合| 一个人免费在线观看的高清视频| 亚洲免费av在线视频| 亚洲av成人一区二区三| 午夜影院日韩av| 99精国产麻豆久久婷婷| 老司机午夜福利在线观看视频| 国产成+人综合+亚洲专区| 男女午夜视频在线观看| 天堂中文最新版在线下载| 欧美丝袜亚洲另类 | 国产三级在线视频| 99国产综合亚洲精品| 老司机午夜十八禁免费视频| 免费日韩欧美在线观看| 日韩欧美一区二区三区在线观看| 成人手机av| 黑人欧美特级aaaaaa片| 自线自在国产av| 琪琪午夜伦伦电影理论片6080| 日韩有码中文字幕| 欧美乱码精品一区二区三区| 亚洲国产看品久久| 国产精品久久久久久人妻精品电影| 精品欧美一区二区三区在线| 国产亚洲av高清不卡| 1024香蕉在线观看| 国产极品粉嫩免费观看在线| 成人永久免费在线观看视频| 国产主播在线观看一区二区| 久久性视频一级片| 精品卡一卡二卡四卡免费| 韩国精品一区二区三区| 久久精品国产亚洲av高清一级| 精品欧美一区二区三区在线| 午夜两性在线视频| 久久久国产精品麻豆| 亚洲人成伊人成综合网2020| 免费日韩欧美在线观看| 亚洲,欧美精品.| 一区二区三区精品91| 欧美久久黑人一区二区| 亚洲伊人色综图| 大陆偷拍与自拍| 久久久精品国产亚洲av高清涩受| 一本综合久久免费| 国产蜜桃级精品一区二区三区| 最近最新免费中文字幕在线| 久久青草综合色| 精品电影一区二区在线| 精品免费久久久久久久清纯| 欧美大码av| 国产一区二区三区视频了| 亚洲熟妇熟女久久| 亚洲免费av在线视频| 757午夜福利合集在线观看| 欧美黑人精品巨大| 男人操女人黄网站| 亚洲一区二区三区不卡视频| 国产精品久久久av美女十八| 99riav亚洲国产免费| 91老司机精品| 91成人精品电影| 久久久久久久精品吃奶| 亚洲在线自拍视频| 国产三级在线视频| 中国美女看黄片| 亚洲欧美日韩高清在线视频| 免费看a级黄色片| 一夜夜www| 午夜成年电影在线免费观看| 国产高清视频在线播放一区| 欧美日韩乱码在线| 国产在线精品亚洲第一网站| 最好的美女福利视频网| 亚洲一区二区三区欧美精品| 久久国产亚洲av麻豆专区| 乱人伦中国视频| а√天堂www在线а√下载| 日韩欧美在线二视频| 一边摸一边做爽爽视频免费| 国产精品成人在线| av电影中文网址| 成人三级黄色视频| 中文欧美无线码| 日日夜夜操网爽| 日本五十路高清| 久久精品国产亚洲av高清一级| 国产精品永久免费网站| 三上悠亚av全集在线观看| av在线天堂中文字幕 | 自线自在国产av| 黄频高清免费视频| 精品久久蜜臀av无| 国产99白浆流出| 成人免费观看视频高清| 日韩欧美在线二视频| 国产99白浆流出| 免费高清在线观看日韩| 国产高清国产精品国产三级| 纯流量卡能插随身wifi吗| 国产精品自产拍在线观看55亚洲| 人妻久久中文字幕网| 国产精品亚洲一级av第二区| 俄罗斯特黄特色一大片| 成人影院久久| 亚洲自拍偷在线| 日韩av在线大香蕉| av国产精品久久久久影院| 国产男靠女视频免费网站| 免费搜索国产男女视频| 亚洲情色 制服丝袜| ponron亚洲| 国内毛片毛片毛片毛片毛片| 淫妇啪啪啪对白视频| 97碰自拍视频| 久久久久久久久久久久大奶| 久久 成人 亚洲| 亚洲国产毛片av蜜桃av| 后天国语完整版免费观看| 国产亚洲精品综合一区在线观看 | 欧洲精品卡2卡3卡4卡5卡区| 欧美日韩亚洲高清精品| cao死你这个sao货| 看黄色毛片网站| 亚洲国产看品久久| 欧美成狂野欧美在线观看| 在线观看免费高清a一片| 国产三级在线视频| 国产精品成人在线| 欧美性长视频在线观看| 啦啦啦 在线观看视频| 性欧美人与动物交配| 麻豆成人av在线观看| 99在线人妻在线中文字幕| 国产成人欧美在线观看| 少妇粗大呻吟视频| 亚洲一区二区三区欧美精品| 高清欧美精品videossex| 欧美午夜高清在线| 美女 人体艺术 gogo| 在线十欧美十亚洲十日本专区| 91麻豆精品激情在线观看国产 | 一区福利在线观看| 极品人妻少妇av视频| 亚洲精品一卡2卡三卡4卡5卡| 亚洲熟妇熟女久久| 亚洲欧洲精品一区二区精品久久久| 大型黄色视频在线免费观看| a级毛片在线看网站| 中文字幕av电影在线播放| 精品国产一区二区三区四区第35| 99久久国产精品久久久| 中文亚洲av片在线观看爽| 国产一区二区三区在线臀色熟女 | 久久香蕉国产精品| 搡老乐熟女国产| av中文乱码字幕在线| 一级,二级,三级黄色视频| 可以在线观看毛片的网站| 丁香欧美五月| 午夜精品久久久久久毛片777| 欧美人与性动交α欧美软件| 女生性感内裤真人,穿戴方法视频| av网站在线播放免费| 身体一侧抽搐| 中亚洲国语对白在线视频| 久久国产亚洲av麻豆专区| 日韩欧美一区视频在线观看| 十分钟在线观看高清视频www| 亚洲欧美日韩另类电影网站| 男女之事视频高清在线观看| 免费一级毛片在线播放高清视频 | 亚洲一区二区三区欧美精品| 无限看片的www在线观看| 亚洲,欧美精品.| 中文字幕色久视频| 国产欧美日韩一区二区三区在线| 国产精品久久视频播放| 不卡av一区二区三区| 男女床上黄色一级片免费看| 夫妻午夜视频| 日本欧美视频一区| 操出白浆在线播放| 久热爱精品视频在线9| 成在线人永久免费视频| 一级毛片精品| 欧美黄色片欧美黄色片| 亚洲精品国产一区二区精华液| 午夜视频精品福利| 丝袜人妻中文字幕| 亚洲色图av天堂| 国产精品爽爽va在线观看网站 | 两性夫妻黄色片| 在线十欧美十亚洲十日本专区| 在线天堂中文资源库| 欧洲精品卡2卡3卡4卡5卡区| 亚洲欧美日韩无卡精品| 精品久久久久久电影网| 999久久久精品免费观看国产| 久久中文字幕人妻熟女| 中文字幕av电影在线播放| 80岁老熟妇乱子伦牲交| 一级片'在线观看视频| 18禁观看日本| 真人一进一出gif抽搐免费| 亚洲av五月六月丁香网| 黄色视频,在线免费观看| 91老司机精品| 亚洲精品一二三| 性欧美人与动物交配| 老汉色∧v一级毛片| 老鸭窝网址在线观看| 99久久99久久久精品蜜桃| 岛国视频午夜一区免费看| 色综合欧美亚洲国产小说| 韩国精品一区二区三区| 一级作爱视频免费观看| 亚洲精品在线美女| 久久久久九九精品影院| 水蜜桃什么品种好| 欧美成人性av电影在线观看| 一本综合久久免费| 国产精品爽爽va在线观看网站 | 亚洲五月婷婷丁香| 水蜜桃什么品种好| 亚洲aⅴ乱码一区二区在线播放 | 99riav亚洲国产免费| 又黄又粗又硬又大视频| 国产一区二区三区在线臀色熟女 | 免费高清在线观看日韩| 91精品国产国语对白视频| 亚洲片人在线观看| 欧美丝袜亚洲另类 | 欧美老熟妇乱子伦牲交| www.熟女人妻精品国产| 在线视频色国产色| 国产极品粉嫩免费观看在线| 亚洲三区欧美一区| 亚洲五月天丁香| 欧美乱色亚洲激情| 极品教师在线免费播放| 夜夜躁狠狠躁天天躁| 一区福利在线观看| 熟女少妇亚洲综合色aaa.| av天堂在线播放| 成人黄色视频免费在线看| 午夜激情av网站| 俄罗斯特黄特色一大片| 欧美最黄视频在线播放免费 | e午夜精品久久久久久久| 亚洲精品中文字幕在线视频| 午夜免费激情av| www日本在线高清视频| 久久久精品欧美日韩精品| 亚洲欧美日韩高清在线视频| 亚洲成av片中文字幕在线观看| 夫妻午夜视频| 欧美黑人精品巨大| 久久久久久亚洲精品国产蜜桃av| 黑人巨大精品欧美一区二区蜜桃| 欧美日韩福利视频一区二区| 悠悠久久av| 一区二区三区精品91| a级毛片黄视频| 久久人妻福利社区极品人妻图片| 成人精品一区二区免费| 国产黄a三级三级三级人| 两个人看的免费小视频| 黄片小视频在线播放| 夫妻午夜视频| 两个人免费观看高清视频| 性欧美人与动物交配| 亚洲精品在线观看二区| 色婷婷av一区二区三区视频| 丝袜在线中文字幕| 中文字幕人妻熟女乱码| 日本免费一区二区三区高清不卡 | 精品国产乱子伦一区二区三区| 一进一出好大好爽视频| 91大片在线观看| 一区福利在线观看| 黑人猛操日本美女一级片| 精品国产一区二区三区四区第35| 高清av免费在线| 欧美av亚洲av综合av国产av| 精品欧美一区二区三区在线| 精品一区二区三卡| 熟女少妇亚洲综合色aaa.| 天天影视国产精品| 欧美一级毛片孕妇| 男女下面进入的视频免费午夜 | 日韩av在线大香蕉| 亚洲色图av天堂| 久久久久久久精品吃奶| 国产精品一区二区精品视频观看| 午夜福利在线观看吧| 国产乱人伦免费视频| 男女下面插进去视频免费观看| 两性午夜刺激爽爽歪歪视频在线观看 | 这个男人来自地球电影免费观看| 亚洲精品一卡2卡三卡4卡5卡| 欧美在线一区亚洲| 777久久人妻少妇嫩草av网站| 久久精品国产亚洲av高清一级| 高清欧美精品videossex| 久久中文字幕一级| 热99国产精品久久久久久7| 香蕉丝袜av| 香蕉久久夜色| а√天堂www在线а√下载| 一本大道久久a久久精品| 黄色视频,在线免费观看| 99久久99久久久精品蜜桃| 淫秽高清视频在线观看| 欧美乱码精品一区二区三区| 精品免费久久久久久久清纯| 曰老女人黄片| www.www免费av| 又紧又爽又黄一区二区| 91国产中文字幕| 亚洲熟女毛片儿| 黄片大片在线免费观看| 国产99白浆流出| 欧美日韩视频精品一区| 欧美一区二区精品小视频在线| 在线观看日韩欧美| 亚洲av成人不卡在线观看播放网| 亚洲人成伊人成综合网2020| 日韩成人在线观看一区二区三区| 中出人妻视频一区二区| 亚洲片人在线观看| 欧美大码av| 免费在线观看完整版高清| 91老司机精品| 国产三级黄色录像| 色播在线永久视频| 一夜夜www| 欧美日韩瑟瑟在线播放| 麻豆av在线久日| 在线观看66精品国产| 久久久久国内视频| 亚洲精品国产区一区二| bbb黄色大片| 国产精品影院久久| 亚洲第一欧美日韩一区二区三区| 日韩精品免费视频一区二区三区| www.熟女人妻精品国产| 日本精品一区二区三区蜜桃| 91精品国产国语对白视频| 91成年电影在线观看| 9191精品国产免费久久| 欧美日韩乱码在线| 国产精品1区2区在线观看.| 午夜福利在线观看吧| 亚洲三区欧美一区| 欧美日韩一级在线毛片| 男女午夜视频在线观看| 亚洲avbb在线观看| 欧美老熟妇乱子伦牲交| 一级毛片精品| 亚洲九九香蕉| 激情在线观看视频在线高清| 一区二区三区精品91| 老汉色∧v一级毛片| 国产欧美日韩综合在线一区二区| 精品人妻1区二区| 久久精品国产99精品国产亚洲性色 | 久久久久久免费高清国产稀缺| 嫁个100分男人电影在线观看| 超碰97精品在线观看| 欧美日韩一级在线毛片| 动漫黄色视频在线观看| 一边摸一边抽搐一进一小说| 亚洲中文字幕日韩| 久久久国产成人免费| 黄色成人免费大全| 中文字幕另类日韩欧美亚洲嫩草| 岛国在线观看网站| 一区二区三区精品91| 99久久久亚洲精品蜜臀av| bbb黄色大片| 91成人精品电影| 成熟少妇高潮喷水视频| 他把我摸到了高潮在线观看| 人妻丰满熟妇av一区二区三区| 国产亚洲欧美在线一区二区| 一本综合久久免费| 中亚洲国语对白在线视频| 久久精品91蜜桃| 欧美人与性动交α欧美精品济南到| 嫩草影视91久久| 亚洲成国产人片在线观看| 亚洲精品久久成人aⅴ小说| 天堂影院成人在线观看| 黄色视频不卡| 亚洲专区字幕在线| 一级,二级,三级黄色视频| 在线观看www视频免费| 欧美色视频一区免费| 日韩欧美国产一区二区入口| 一级片'在线观看视频| 午夜免费观看网址| 在线观看免费高清a一片| 中文字幕另类日韩欧美亚洲嫩草| 国产精品免费视频内射| 一区在线观看完整版| 97碰自拍视频| 国产亚洲欧美精品永久| 在线免费观看的www视频| 可以在线观看毛片的网站| 99国产综合亚洲精品| 亚洲一区中文字幕在线| 一区二区三区精品91| 日韩免费av在线播放| 亚洲人成伊人成综合网2020| 午夜a级毛片| 黄片播放在线免费| 黄色视频,在线免费观看| 手机成人av网站| 中文欧美无线码| 韩国精品一区二区三区| 亚洲精品国产一区二区精华液| 国产精品影院久久| 美女扒开内裤让男人捅视频| 久久精品成人免费网站| 亚洲色图av天堂| 中文欧美无线码| 波多野结衣高清无吗| 自拍欧美九色日韩亚洲蝌蚪91| 久热这里只有精品99| 精品国产乱子伦一区二区三区| 免费高清在线观看日韩| 女性被躁到高潮视频| 黄片大片在线免费观看| 神马国产精品三级电影在线观看 | 亚洲久久久国产精品| 亚洲午夜理论影院| av超薄肉色丝袜交足视频| 亚洲精品国产区一区二| 最新在线观看一区二区三区| 久热这里只有精品99| 精品国产乱子伦一区二区三区| 久久中文字幕人妻熟女| 又紧又爽又黄一区二区| 三级毛片av免费| 男人舔女人下体高潮全视频| 50天的宝宝边吃奶边哭怎么回事| 欧美日韩亚洲综合一区二区三区_| 国产乱人伦免费视频| 久9热在线精品视频| 波多野结衣av一区二区av| 成人影院久久| 国产一区二区三区在线臀色熟女 | 中文字幕人妻熟女乱码| 久久国产精品男人的天堂亚洲| 成人18禁高潮啪啪吃奶动态图| 啦啦啦 在线观看视频| 欧美 亚洲 国产 日韩一| 中国美女看黄片| 91字幕亚洲| 熟女少妇亚洲综合色aaa.| 长腿黑丝高跟| 亚洲国产精品合色在线| 久久香蕉激情| 国产又色又爽无遮挡免费看| 看免费av毛片| 亚洲一码二码三码区别大吗| 老汉色∧v一级毛片| 狂野欧美激情性xxxx| 久久中文看片网| 色播在线永久视频| 亚洲一区二区三区欧美精品| 99久久人妻综合| 国内久久婷婷六月综合欲色啪| 日本黄色日本黄色录像| 又黄又爽又免费观看的视频| 午夜精品久久久久久毛片777| 丁香欧美五月| 脱女人内裤的视频| 欧美在线一区亚洲| 男人舔女人的私密视频| 熟女少妇亚洲综合色aaa.| 99在线人妻在线中文字幕| 在线十欧美十亚洲十日本专区| 国产av又大| 成人三级黄色视频| 亚洲精品久久午夜乱码| 亚洲一码二码三码区别大吗| 12—13女人毛片做爰片一| 婷婷丁香在线五月| 国产黄a三级三级三级人| 一边摸一边抽搐一进一出视频| 99香蕉大伊视频| avwww免费| 一级毛片精品| 久久天躁狠狠躁夜夜2o2o| 天天躁夜夜躁狠狠躁躁| 免费av中文字幕在线| 欧美日韩中文字幕国产精品一区二区三区 | 看片在线看免费视频| 国产成人精品久久二区二区91| 老汉色∧v一级毛片| 久久久久国产一级毛片高清牌| 十八禁网站免费在线| 女性被躁到高潮视频| 在线观看日韩欧美| 两个人免费观看高清视频| 在线国产一区二区在线| 十八禁人妻一区二区| 国产野战对白在线观看| 我的亚洲天堂| 99国产精品一区二区蜜桃av| 伊人久久大香线蕉亚洲五| 高清在线国产一区| 亚洲九九香蕉| 身体一侧抽搐| www.精华液| 国产成人精品在线电影| 女同久久另类99精品国产91| 99久久精品国产亚洲精品| 亚洲成人国产一区在线观看| 亚洲自偷自拍图片 自拍| 国产欧美日韩一区二区精品| av欧美777| 男男h啪啪无遮挡| 久久久久国内视频| 欧美av亚洲av综合av国产av| 亚洲色图综合在线观看| 一级,二级,三级黄色视频| 免费看a级黄色片| 淫妇啪啪啪对白视频| 99国产精品一区二区蜜桃av| www.自偷自拍.com| 级片在线观看| 男女之事视频高清在线观看| 欧美一区二区精品小视频在线| svipshipincom国产片| 俄罗斯特黄特色一大片| 超碰97精品在线观看| 精品久久久久久成人av| 一个人免费在线观看的高清视频| 久久精品91蜜桃| 国产亚洲欧美精品永久| 露出奶头的视频| 一区二区三区激情视频| 欧美一级毛片孕妇| 久久精品人人爽人人爽视色| 亚洲中文字幕日韩| 人妻久久中文字幕网| 淫秽高清视频在线观看| 久久久久久免费高清国产稀缺| 国产亚洲欧美精品永久| 国产一区二区三区在线臀色熟女 | 国产97色在线日韩免费| 老汉色av国产亚洲站长工具| 亚洲欧美精品综合一区二区三区| 亚洲免费av在线视频| 99在线人妻在线中文字幕| 久久国产精品影院| 欧美中文日本在线观看视频| 国产黄a三级三级三级人| 黑人巨大精品欧美一区二区mp4| 桃色一区二区三区在线观看| www.999成人在线观看| 手机成人av网站| 亚洲免费av在线视频| 亚洲精品粉嫩美女一区| 亚洲五月色婷婷综合| 色综合欧美亚洲国产小说| 国产一区二区三区在线臀色熟女 | 狂野欧美激情性xxxx|