王姍姍,趙琬怡,吳慧瀟,舒夢,袁嘉欣,方麗,徐潮
研究報告
特發(fā)性低促性腺激素性性腺功能減退癥與基因變異研究
王姍姍1,趙琬怡2,吳慧瀟2,舒夢2,袁嘉欣2,方麗2,徐潮1
1. 山東第一醫(yī)科大學(xué)附屬山東省立醫(yī)院內(nèi)分泌與代謝性疾病科,山東省臨床醫(yī)學(xué)研究院內(nèi)分泌代謝研究所,山東省內(nèi)分泌與脂質(zhì)代謝重點實驗室,濟南 250021 2. 山東大學(xué)附屬山東省立醫(yī)院內(nèi)分泌與代謝性疾病科,山東省臨床醫(yī)學(xué)研究院內(nèi)分泌代謝研究所,山東省內(nèi)分泌與脂質(zhì)代謝重點實驗室,濟南 250021
特發(fā)性低促性腺激素性性腺功能減退癥(idiopathic hypogonadotropic hypogonadism, IHH)是由于促性腺激素釋放激素(gonadotropin-releasing hormone, GnRH)缺乏或作用缺陷引起以性腺發(fā)育不良為特征的內(nèi)分泌罕見病。依據(jù)是否并發(fā)嗅覺障礙可以分為嗅覺正常特發(fā)性低促性腺激素性性腺功能減退癥(normosmic isolated hypogonadotropic hypogonadism, nIHH)和嗅覺障礙的卡爾曼綜合征(Kallmann syndrome, KS)。本研究收集并分析了1例nIHH散發(fā)病例的臨床資料。全外顯子測序證實患兒同時攜帶基因變異(c.2008G>A, p.E670K)和遺傳于其母親的基因變異(c.964G>A, p.D322N)。生物信息學(xué)分析發(fā)現(xiàn)基因突變(c.2008G>A)改變FGFR1蛋白TK2結(jié)構(gòu)域,影響FGFR1受體的功能及下游細胞信號轉(zhuǎn)導(dǎo)通路的激活。基因(c.964G>A)可能影響GnRH神經(jīng)元的正確遷徙途徑導(dǎo)致IHH,CEP290蛋白與FGFR1蛋白之間存在相互作用。本研究結(jié)果擴展了IHH致病基因表達譜,為探究IHH的致病機制提供了新的方向,并為該類疾病的臨床精準(zhǔn)診療提供了借鑒和參考。
特發(fā)性低促性腺激素性性腺功能減退癥;;;生物信息學(xué)分析
特發(fā)性低促性腺激素性性腺功能減退癥(idio-pathic hypogonadotropic hypogonadism, IHH)是由于促性腺激素釋放激素(gonadotropin-releasing hor-mone, GnRH)缺乏或作用缺陷引起以性腺發(fā)育不良為特征的一種非常罕見的遺傳異質(zhì)性疾病[1~3]。根據(jù)是否存在嗅覺障礙,分為具有嗅覺障礙的卡爾曼綜合征(Kallmann syndrome, KS)及嗅覺正常的特發(fā)性促性腺激素性性腺功能減退(normosmic isolated hypogonadotropic hypogonadism, nIHH)[2,4]。IHH是一類遺傳異質(zhì)性疾病,包括多種遺傳方式:X連鎖隱性遺傳、常染色體顯性遺傳和常染色體隱性遺傳等[5~7]。隨著測序技術(shù)的進步,目前已經(jīng)發(fā)現(xiàn)至少有50個基因與IHH的發(fā)病有關(guān):、和等[8~10]。隨著研究的深入,研究發(fā)現(xiàn)IHH可由2個或2個以上的基因突變引起,稱為寡基因性,且在約有10%~20%的IHH患者或家系可檢測到同時存在多個致病基因[11],具有明顯的臨床異質(zhì)性。GnRH神經(jīng)元的缺陷會引起不同程度的生殖系統(tǒng)臨床表現(xiàn)[12,13],還伴發(fā)其他少見的非生殖系統(tǒng)表型:唇腭裂、孤立腎、骨骼畸形或牙齒發(fā)育不良、較特異的雙手連帶動作、感覺性神經(jīng)耳聾、痙攣性截癱、尿道下裂及肥胖等[14~16]。本研究描述了同時攜帶和兩個候選突變基因的一個nIHH散發(fā)病例,利用生物信息學(xué)軟件預(yù)測了變異基因可能致病機制,并發(fā)現(xiàn)基因可能是IHH致病候選基因之一。
患兒,男,9月齡,因“陰莖長度0.5 cm,直徑0.5 cm”由父母攜同于2016年5月就診于山東第一醫(yī)科大學(xué)附屬省立醫(yī)院兒科內(nèi)分泌門診,初步診斷為“IHH”,經(jīng)父母同意并簽署知情同意書后,收集患者臨床資料,并抽取先證者及其I級親屬的外周血,每人各收集5 mL含EDTA抗凝劑的全血和5 mL血清。本研究已通過山東第一醫(yī)科大學(xué)附屬省立醫(yī)院倫理委員會批準(zhǔn)。研究方案與《赫爾辛基宣言》(2013年,巴西修訂版)一致。
留取家系成員的外周血,使用基因組DNA試劑盒(北京天根生化公司)提取基因組DNA,經(jīng)片段化、連接接頭、擴增純化后進行全外顯子組測序[17]。
使用SeqCap EZ meddexome Target Enrichment Kit (Roche NimbleGen)雜交捕獲人類全部基因的外顯子區(qū)及旁側(cè)內(nèi)含子區(qū)域(50 bp)經(jīng)洗脫和擴增純化后,使用高通量測序儀(Illumina HiSeq)測序,使用NextGene V2.3.4軟件與UCSC hg19人類參考基因組序列進行比對和鑒別遺傳變異,并收集目標(biāo)區(qū)域的覆蓋度和平均測序深度等質(zhì)量參數(shù)。受檢者目標(biāo)基因外顯子測序區(qū)域平均測序深度151.24×,目標(biāo)基因CDs覆蓋度20×以上97.95%。當(dāng)全外顯子檢出致病或可能致病變異時,實驗室通過Sanger測序確保該基因編碼序列的覆蓋率達到 100%[18]。遺傳變異的致病性評估依據(jù)美國醫(yī)學(xué)遺傳學(xué)與基因組學(xué)學(xué)會(American College of Medical Genetics and Genomics, ACMG)發(fā)布的《序列變異解讀標(biāo)準(zhǔn)和指南》,并采用HGVS命名法。
利用Clustal Omega (http://ebi.ac.uk/Tools/msa/ clustalo/)進行多重序列比對[19],并通過Jalview和WebLogo(http://welogo.threepiusone.com/creat.cgi.)突變蛋白氨基酸的保守度可視化。使用EMBL-EBI分析基因(c.2008G>A, p.E670K)的突變概率。通過Mutation-Taster (http://www.mutationtaster.org/) 和PolyPhen-2 (http://genetics.bwh.harvard.edu/pph2/ dbsearch.shtml)兩個在線生物信息軟件對突變位點進行評分,預(yù)測突變位點是否具有致病性[20,21]。利用AlphaFold在線軟件(https://alphafold.ebi.ac.uk/)構(gòu)建FGFR1野生型及突變體的三維空間結(jié)構(gòu)。在線分析(http://www.vls3d.com/)FGFR1突變蛋白對下游信號信號分子影響。使用InBio Map(https://www. intomics.com/inbio/map/)構(gòu)建蛋白質(zhì)–蛋白質(zhì)相互作用網(wǎng)絡(luò)。所有模型均在PyMOL軟件(version 1.3)上可視化。
收集的該nIHH三代家系,共7名成員。先證者9個月時因“陰莖長度0.5 cm,直徑0.5 cm”來我院就診。該患兒基線血清FSH、LH及睪酮水平下降,曲普瑞林興奮試驗:LH峰值2.12 mIU/mL (表1)。垂體MRI未見明顯異常。超聲顯示兩側(cè)睪丸體積均小于1 mL (表1)。染色體核型分析:46XY。截止到2022年3月,先證者嗅覺正常,有輕微斜視,未有其他非生殖系統(tǒng)表現(xiàn)。其家系其余成員均未發(fā)病(圖1)。
表1 nIHH先證者患者的臨床特點及曲普瑞林興奮試驗
nIHH:嗅覺正常的特發(fā)性促性腺激素性性腺功能減退癥;FSH:促卵泡激素;LH:促黃體生成素;PRL:催乳素;MRI:磁共振成像。
圖1 nIHH先證者家系分析
□:正常男性;○:正常女性;■:nIHH男性。
先證者檢出基因突變(c.2008G> A, p.E670K)及基因突變(c.964G>A, p.D322N)。其母親檢出基因突變(c.964G>A, p.D322N),其余家系成員均為野生型(圖2)。
利用Clustal-X軟件的保守性分析結(jié)果表明,F(xiàn)GFR1蛋白突變(p.E670K)在同源物種間高度保守,CEP290蛋白突變(p.D322N)在同源物種間高度保守(圖3)。
經(jīng)Alpha Fold對FGFR1蛋白質(zhì)建模,該突變位點TK2結(jié)構(gòu)域的α螺旋中,距離兩個自磷酸位點653位酪氨酸及677位酪氨酸和623位天冬氨酸活化中心很近,所帶電荷由負變正(圖4A)。該結(jié)構(gòu)域的表觀靜電勢分布由正變成負(圖4,C和D),進而影響表面的氫鍵分布、范德華力的形成,改變蛋白質(zhì)三級結(jié)構(gòu),推測可能會影響正常蛋白質(zhì)的功能及下游信號分子的結(jié)合。
圖2 先證者及其父母FGFR1、CEP290基因測序結(jié)果
A:先證者及其父母基因測序結(jié)果;B:先證者及其父母基因測序結(jié)果。箭頭所示為突變位點。
圖3 FGFR1和CEP290蛋白在同源物種中多重序列比對
表2 突變位點的致病性分析
Mutation-Taster預(yù)測結(jié)果:A:Disease causing automatic (有害);D:Disease causing (可能有害);N:Polymorphism (可能無害);P:Polymorphism automatic (無害)。PolyPhen-2預(yù)測結(jié)果:D:Probably damaging (很可能有害,分值≥0.957);P:Possibly damaging (可能有害,分值0.453~0.956);B:Benign (無害,分值≤0.452)。
活化后的FGFR1可激活下游RAS-RAF-MAPK、PI3K-AKT、STAT和PLC途徑等細胞信號傳導(dǎo)通路(圖6A),F(xiàn)GFR1蛋白變異(p.E670K)位于TK2結(jié)構(gòu)域(圖6B),是下游信號分子的重要結(jié)合部位。本研究利用在線生物信息學(xué)工具進一步驗證FGFR1蛋白變異(p.E670K)是否會影響下游信號傳導(dǎo)通路。結(jié)果發(fā)現(xiàn)該突變會影響JAK2、STAT3下游信號分子的結(jié)合(圖7,A和B),在ERK1、ERK2也發(fā)現(xiàn)了相似的結(jié)果(圖7,C和D)。由此推測FGFR1蛋白變異(p.E670K)會影響下游信號傳導(dǎo)通路的激活。
本文利用在線生物信息學(xué)軟件預(yù)測基因突變(c.2008G>A)是IHH的致病突變,該先證者中同時檢測到基因突變,除本研究利用生物信息學(xué)軟件預(yù)測其可能具有致病性外,無法獲得與CHH發(fā)病相關(guān)的確切證據(jù)。
圖4 FGFR1蛋白發(fā)生E到K變異的概率預(yù)測
圖5 野生型及突變型FGFR1蛋白建模
A:FGFR1突變蛋白的卡通模型;B:FGFR1突變蛋白表面結(jié)構(gòu);C:野生型FGFR1蛋白靜電勢模型;D:突變型FGFR1蛋白靜電勢模型。紅色條帶代表突變位置。圓圈標(biāo)注為突變位點。突變蛋白圓圈標(biāo)注點靜電勢由紅色變?yōu)樗{色代表由負電變成正電。
保守性分析發(fā)現(xiàn)CEP290蛋白變異(p.D322N)位于高度保守序列。既往研究已經(jīng)證實,CEP290是嗅覺上皮細胞纖毛發(fā)生起始所必需的[22],對GnRH神經(jīng)元的正確遷徙和最終定位至關(guān)重要。本研究推測CEP290蛋白可能與FGFR1蛋白存在相互作用。為了驗證這一猜想,本文利用InBio Map構(gòu)建了FGFR1蛋白質(zhì)相互作用網(wǎng)絡(luò),發(fā)現(xiàn)FGFR1蛋白可能通過FGF8、IL17RD、FLRT1、PIK3、S100B等信號分子與CEP290蛋白質(zhì)相互作用(圖8),這些信號分子對細胞周期、神經(jīng)元細胞增殖、細胞分化、細胞凋亡、基因表達等至關(guān)重要。
IHH是一種由GnRH合成、分泌或作用功能障礙引起的具有遺傳和臨床異質(zhì)性的疾病[3]。目前僅在不到10%的KS和nIHH患者中鑒定出了基因突變[12,23,24]?;蛭挥?p11.23,由24個外顯子組成,編碼822 種氨基酸,主要通過FGF8/FGFR1信號通路在胚胎嗅神經(jīng)和GnRH神經(jīng)元的形成、存活和遷移中起著關(guān)鍵作用[25]?;蚴抢w毛病的致病基因之一,在嗅覺上皮的發(fā)育中具有關(guān)鍵作用[26]。本文首次報道了一個同時攜帶基因變異(c.2008G>A, p.E670K)和基因突變(c.964G>A, p.D322N)的一個nIHH散發(fā)病例,僅先證者母親攜帶有基因(c.964G>A, p.D322N)雜合突變,其父親體內(nèi)未檢測到任何突變。本文初步明確了基因突變(c.2008G>A, p.E670K)的致病機制,并發(fā)現(xiàn)一個新的候選基因基因突變(c.964G>A, p.D322N),為臨床精準(zhǔn)診療提供了科學(xué)依據(jù)。
圖6 FGFR1下游重要細胞信號傳導(dǎo)通路及FGFR1和CEP290突變示意圖
A:FGFR1下游重要細胞信號傳導(dǎo)通路。成纖維細胞生長因子(FGF)與FGFR1結(jié)合后可促進兩個相鄰的單鏈FGFR1聚集、活化,活化后的FGFR1可進一步激活下游RAS–RAF–MAPK、PI3K–AKT、STAT和PLC途徑等細胞信號傳導(dǎo)通路。B:FGFR1(p.E670K)及CEP290(p.D322N)蛋白突變示意圖。
FGFR1蛋白作為成纖維細胞生長因子受體家族的基本成員,由3個部分組成:細胞外成纖維生長因子(fibroblast growth factor, FGF)結(jié)合域、單次跨膜的疏水α螺旋區(qū)以及含有酪氨酸蛋白激酶活性的胞內(nèi)結(jié)構(gòu)域[27,28]。其中細胞外FGF結(jié)合域由3個免疫球蛋白樣結(jié)構(gòu)域組成(IgI、IgII、IgIII),是與配體結(jié)合的關(guān)鍵位點[25]。FGF與FGFR1結(jié)合后可促進兩個相鄰的單鏈FGFR1聚集、活化,活化后的FGFR1可進一步激活下游RAS-RAF-MAPK、PI3K-AKT、STAT和PLC途徑等細胞信號傳導(dǎo)通路,它們參與調(diào)控器官發(fā)育、血管新生、細胞增殖、遷移、抗凋亡等多種生物學(xué)過程[29-31]。本研究利用生物在線軟件將該突變評估為具有致病性。蛋白質(zhì)建模顯示該突變將位于670號氨基酸由谷氨酸替換為賴氨酸,定位于酪氨酸激酶活性的細胞內(nèi)結(jié)構(gòu)域,位于同源物種的高度保守序列。突變使得該結(jié)構(gòu)域的表觀靜電勢分布由正變成負,影響了表面的氫鍵分布、范德華力的形成,改變了蛋白質(zhì)正常的三級結(jié)構(gòu),影響FGFR1蛋白功能缺失。由于TK結(jié)構(gòu)域是下游信號分子的重要結(jié)合部位。生物信息軟件預(yù)測FGFR1突變蛋白會影響JAK2、STAT3 ERK1、ERK2下游信號分子的結(jié)合。因此我們推測該突變造成蛋白質(zhì)的功能,并且影響下游信號轉(zhuǎn)導(dǎo)通路的激活[32],最終導(dǎo)致GnRH神經(jīng)元發(fā)育、遷移異常。
A:FGFR1突變蛋白與JAK2信號分子相互作用模型;B:FGFR1突變蛋白與STAT3信號分子相互作用模型;C:FGFR1突變蛋白與ERK1信號分子相互作用模型;D:FGFR1突變蛋白與ERK2信號分子相互作用模型。紅色代表突變位點。
據(jù)報道,約有10%的KS患者中可發(fā)現(xiàn)基因缺陷。白種人隊列中,家族性病例的患病率為3%,散發(fā)性病例為6%[12]。在日本隊列中,散發(fā)性和家族性病例中突變的頻率分別為11%和9%[33]。然而在nIHH患者中,突變的頻率目前尚不清楚。最近在134例nIHH病例中也檢測到7%的基因功能缺失突變[34]。但是基因突變類型與其臨床表型并無明確的相關(guān)性[35]?;虮憩F(xiàn)出明顯的“不完全外顯性”,在同一家系的患者或者不同家系的不同成員中,攜帶基因突變的IHH患者表現(xiàn)出不同程度的嗅覺異常和性腺功能減退,既可以導(dǎo)致KS,還可引起nIHH和青春期發(fā)育延遲[23,36]。約有10%~20%的IHH患者或家系中存在多個IHH相關(guān)突變基因。既往報道同時攜帶FGFR1(p.Gly348Glu)、IL17RD(p.Gly701Ser)和RUVBL2(p.Arg71Trp)突變IHH患者僅表現(xiàn)出了唇腭裂非生殖系統(tǒng)表型[35]。已經(jīng)被證實是IHH的致病基因。相比之下,僅攜帶突變(p.Arg209Cys)的患者表現(xiàn)出唇腭裂、牙齒畸形和高弓型腭裂等更嚴重非生殖系統(tǒng)表型,生殖系統(tǒng)表型更為嚴重[35]。Akkus等[37]之前也報道了1名攜帶相同突變(p.Arg209Cys)的14歲男性KS患者,患者表現(xiàn)出小陰莖,無法勃起等生殖系統(tǒng)癥狀,并未出現(xiàn)任何非生殖系統(tǒng)的表現(xiàn)。臨床表現(xiàn)的異質(zhì)性可能是二基因或寡基因遺傳的結(jié)果。最近通過動物模型揭示了FGFR1 FGF8雙雜合基因突變和在斑馬魚中同時存在IL-17受體D和變異,均產(chǎn)生了GnRH神經(jīng)元缺失的表型[27]。IHH患者的表型也受到表觀遺傳學(xué)和環(huán)境因素的影響[38]。與既往報道的攜帶基因突變的KS患者相比[36,39,40],我們的患者臨床表型較輕。也有攜帶相同的基因突變的IHH雙胞胎表達不同臨床表型的例子[41~43]。總之,IHH具有低外顯率和可變表達的復(fù)雜的遺傳異質(zhì)性。多種基因突變共存、環(huán)境因素、表觀遺傳修飾可能導(dǎo)致其可變的疾病表現(xiàn)[44,45]。此外nIHH總體患病率約110/1,000,000,且大部分患者都是成年發(fā)病,故多數(shù)延遲診斷而錯過最佳治療時機。目前僅有不到40%的患者發(fā)病可以由已發(fā)現(xiàn)的基因突變來解釋[46~48],還有許多與IHH發(fā)病有關(guān)的候選基因尚未發(fā)現(xiàn)[36]。
CEP290是一個進化保守的纖毛過渡區(qū)蛋白,其突變會導(dǎo)致多種纖毛病[49]。在基因突變的小鼠模型中發(fā)現(xiàn)CEP290蛋白在細胞分裂、保護腎臟、維持視網(wǎng)膜穩(wěn)態(tài)過程起著重要的作用[50]。攜帶基因突變的先天性黑蒙癥或梅克爾–格魯貝爾綜合征患者中,除了存在嗅覺異常外,還發(fā)現(xiàn)了GnRH神經(jīng)元的缺陷[51]。但本研究僅僅通過生物信息學(xué)分析初步預(yù)測基因有可能在基因?qū)е耼IHH的致病機制中發(fā)揮作用,但具體機制尚不明確,后續(xù)我們將會完善體外功能實驗。
與既往報道基因突變的nIHH患者相比,該先證者的表型較輕。且在隨訪期間,并未出現(xiàn)嗅覺喪失及其他非生殖系統(tǒng)癥狀。本研究推測基因突變的不完全外顯可能為該患兒未表現(xiàn)出其他臨床癥狀的重要原因[52];此外患兒年齡較小,生長發(fā)育不完全,應(yīng)定期隨訪有無其他癥狀的發(fā)生。
綜上所述,由于大多數(shù)IHH患者目前還沒有明確的分子機制,需要進一步研究。在此基礎(chǔ)上,本研究為闡明基因變異的分子機制提供了令人信服的證據(jù),并推測有可能是nIHH新的致病基因,為臨床精準(zhǔn)診療提供了科學(xué)依據(jù)。
[1] Erba? ?M, Paket?i A, Acar S, Kotan LD, Demir K, Abac? A, B?ber E. A nonsense variant in FGFR1: a rare cause of combined pituitary hormone deficiency., 2020, 33(12): 1613–1615.
[2] Bianco SDC, Kaiser UB. The genetic and molecular basis of idiopathic hypogonadotropic hypogonadism., 2009, 5(10): 569–576.
[3] Liu QX, Yin XQ, Li P. Clinical, hormonal, and genetic characteristics of 25 Chinese patients with idiopathic hypogonadotropic hypogonadism., 2022, 22(1): 30.
[4] Seminara SB, Hayes FJ, Crowley WF. Gonadotropin- releasing hormone deficiency in the human (idiopathic hypogonadotropic hypogonadism and Kallmann's syndrome): pathophysiological and genetic considerations., 1998, 19(5): 521–539.
[5] Teixeira L, Guimiot F, Dodé C, Fallet-Bianco C, Millar RP, Delezoide AL, Hardelin JP. Defective migration of neuro-endocrine GnRH cells in human arrhinencephalic condi-tions., 2010, 120(10): 3668–3672.
[6] Forni PE, Taylor-Burds C, Melvin VS, Williams T, Wray S. Neural crest and ectodermal cells intermix in the nasal placode to give rise to GnRH-1 neurons, sensory neurons, and olfactory ensheathing cells., 2011, 31(18): 6915–6927.
[7] Pitteloud N, Durrani S, Raivio T, Sykiotis GP. Complex genetics in idiopathic hypogonadotropic hypogonadism., 2010, 39: 142–153.
[8] Stamou MI, Brand H, Wang M, Wong I, Lippincott MF, Plummer L, Crowley WF, Talkowski M, Seminara S, Balasubramanian R. Prevalence and phenotypic effects of copy number variants in isolated hypogonadotropic hypogonadism., 2022, 107(8): 2228–2242.
[9] Stamou MI, Cox KH, Crowley WF. Discovering genes essential to the hypothalamic hegulation of human repro-duction using a human disease model: adjusting to life in the "-omics" era., 2015, 36(6): 603– 621.
[10] Beate K, Joseph N, Nicolas de R, Wolfram K. Genetics of isolated hypogonadotropic hypogonadism: role of GnRH receptor and other genes., 2012, 2012: 147893.
[11] Quaynor SD, Kim HG, Cappello EM, Williams T, Chorich LP, Bick DP, Sherins RJ, Layman LC. The prevalence of digenic mutations in patients with normosmic hypogona-dotropic hypogonadism and Kallmann syndrome., 2011, 96(6): 1424–1430. e6.
[12] Dodé C, Levilliers J, Dupont JM, De Paepe A, Le D? N, Soussi-Yanicostas N, Coimbra RS, Delmaghani S, Compain-Nouaille S, Baverel F, Pêcheux C, Le Tessier D, Cruaud C, Delpech M, Speleman F, Vermeulen S, Amalfitano A, Bachelot Y, Bouchard P, Cabrol S, Carel JC, de Waal HDV, Goulet-Salmon B, Kottler ML, Richard O, Sanchez-Franco F, Saura R, Young J, Petit C, Hardelin JP. Loss-of-function mutations in FGFR1 cause autosomal dominant Kallmann syndrome., 2003, 33(4): 463–465.
[13] Boyar RM, Wu RH, Kapen S, Hellman L, Weitzman ED, Finkelstein JW. Clinical and laboratory heterogeneity in idiopathic hypogonadotropic hypogonadism., 1976, 43(6): 1268–1275.
[14] Boehm U, Bouloux PM, Dattani MT, de Roux N, Dodé C, Dunkel L, Dwyer AA, Giacobini P, Hardelin JP, Juul A, Maghnie M, Pitteloud N, Prevot V, Raivio T, Tena- Sempere M, Quinton R, Young J. Expert consensus document: European Consensus Statement on congenital hypogonadotropic hypogonadism—pathogenesis, diagnosis and treatment., 2015, 11(9): 547–564.
[15] Lewkowitz-Shpuntoff HM, Hughes VA, Plummer L, Au MG, Doty RL, Seminara SB, Chan YM, Pitteloud N, Crowley WF, Balasubramanian R. Olfactory phenotypic spectrum in idiopathic hypogonadotropic hypogonadism: pathophysiological and genetic implications., 2012, 97(1): E136–E144.
[16] Xu H, Niu YH, Wang T, Liu SM, Xu H, Wang SG, Liu JH, Ye ZQ. Novel FGFR1 and KISS1R mutations in Chinese Kallmann syndrome males with cleft lip/palate., 2015, 2015: 649698.
[17] Ying H, Sun Y, Wu HX, Jia WY, Guan QB, He Z, Gao L, Zhao JJ, Ji YM, Li GM, Xu C. Posttranslational modification defects in fibroblast growth factor receptor 1 as a reason for normosmic isolated hypogonadotropic hypogonadism., 2020, 2020: 2358719.
[18] Luo HJ, Zheng RZ, Zhao YG, Wu JY, Li J, Jiang F, Chen DN, Zhou XT, Li JD. A dominant negative FGFR1 mutation identified in a Kallmann syndrome patient., 2017, 621: 1–4.
[19] Thompson JD, Gibson TJ, Higgins DG. Multiple sequence alignment using ClustalW and ClustalX., 2002, Chapter 2: Unit 2. 3.
[20] Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kondrashov AS, Sunyaev SR. A method and server for predicting damaging missense mutations., 2010, 7(4): 248–249.
[21] Schwarz JM, R?delsperger C, Schuelke M, Seelow D. MutationTaster evaluates disease-causing potential of sequence alterations., 2010, 7(8): 575–576.
[22] Uytingco CR, Green WW, Martens JR. Olfactory loss and dysfunction in ciliopathies: molecular mechanisms and potential therapies., 2019, 26(17): 3103–3119.
[23] Pitteloud N, Meysing A, Quinton R, Acierno JS, Dwyer AA, Plummer L, Fliers E, Boepple P, Hayes F, Seminara S, Hughes VA, Ma JH, Bouloux P, Mohammadi M, Crowley WF. Mutations in fibroblast growth factor receptor 1 cause Kallmann syndrome with a wide spectrum of reproductive phenotypes., 2006, 254–255: 60–69.
[24] Hébert JM, Lin M, Partanen J, Rossant J, Mcconnell SK. FGF signaling through FGFR1 is required for olfactory bulb morphogenesis., 2003, 130(6): 1101–1111.
[25] Falardeau J, Chung WCJ, Beenken A, Raivio T, Plummer L, Sidis Y, Jacobson-Dickman EE, Eliseenkova AV, Ma JH, Dwyer A, Quinton R, Na S, Hall JE, Huot C, Alois N, Pearce SHS, Cole LW, Hughes V, Mohammadi M, Tsai P, Pitteloud N. Decreased FGF8 signaling causes deficiency of gonadotropin-releasing hormone in humans and mice., 2008, 118(8): 2822–2831.
[26] Mcewen DP, Koenekoop RK, Khanna H, Jenkins PM, Lopez I, Swaroop A, Martens JR. Hypomorphic CEP290/ NPHP6 mutations result in anosmia caused by the selective loss of G proteins in cilia of olfactory sensory neurons., 2007, 104(40): 15917– 15922.
[27] Tata BK, Chung WCJ, Brooks LR, Kavanaugh SI, Tsai PS. Fibroblast growth factor signaling deficiencies impact female reproduction and kisspeptin neurons in mice., 2012, 86(4): 119.
[28] Lee PL, Johnson DE, Cousens LS, Fried VA, Williams LT. Purification and complementary DNA cloning of a receptor for basic fibroblast growth factor., 1989, 245(4913): 57–60.
[29] Mohammadi M, Olsen SK, Ibrahimi OA. Structural basis for fibroblast growth factor receptor activation., 2005, 16(2): 107–137.
[30] Goetz R, Mohammadi M. Exploring mechanisms of FGF signalling through the lens of structural biology., 2013, 14(3): 166–180.
[31] Sykiotis GP, Plummer L, Hughes VA, Au M, Durrani S, Nayak-Young S, Dwyer AA, Quinton R, Hall JE, Gusella JF, Seminara SB, Crowley WF, Pitteloud N. Oligogenic basis of isolated gonadotropin-releasing hormone deficiency., 2010, 107(34): 15140–15144.
[32] Eswarakumar VP, Lax I, Schlessinger J. Cellular signaling by fibroblast growth factor receptors., 2005, 16(2): 139–149.
[33] Sato N, Katsumata N, Kagami M, Hasegawa T, Hori N, Kawakita S, Minowada S, Shimotsuka A, Shishiba Y, Yokozawa M, Yasuda T, Nagasaki K, Hasegawa D, Hasegawa Y, Tachibana K, Naiki Y, Horikawa R, Tanaka T, Ogata T. Clinical assessment and mutation analysis of Kallmann syndrome 1 (KAL1) and fibroblast growth factor receptor 1 (FGFR1, or KAL2) in five families and 18 sporadic patients., 2004, 89(3): 1079–1088.
[34] Raivio T, Sidis Y, Plummer L, Chen HB, Ma JH, Mukherjee A, Jacobson-Dickman E, Quinton R, Van Vliet G, Lavoie H, Hughes VA, Dwyer A, Hayes FJ, Xu SY, Sparks S, Kaiser UB, Mohammadi M, Pitteloud N. Impaired fibroblast growth factor receptor 1 signaling as a cause of normosmic idiopathic hypogonadotropic hypogonadism., 2009, 94(11): 4380–4390.
[35] Wang DQ, Niu YH, Tan JH, Chen YW, Xu H, Ling Q, Gong JN, Ling L, Wang JX, Wang T, Liu JH. Combined in vitro and in silico analyses of FGFR1 variants: genotype-phenotype study in idiopathic hypogonadotropic hypogonadism., 2020, 98(4): 341–352.
[36] Miraoui H, Dwyer AA, Sykiotis GP, Plummer L, Chung W, Feng BH, Beenken A, Clarke J, Pers TH, Dworzynski P, Keefe K, Niedziela M, Raivio T, Crowley WF, Seminara SB, Quinton R, Hughes VA, Kumanov P, Young J, Yialamas MA, Hall JE, Van Vliet G, Chanoine JP, Rubenstein J, Mohammadi M, Tsai PS, Sidis Y, Lage K, Pitteloud N. Mutations in FGF17, IL17RD, DUSP6, SPRY4, and FLRT3 are identified in individuals with congenital hypogonadotropic hypogonadism., 2013, 92(5): 725–743.
[37] Akku? G, Kotan LD, Durmaz E, Mengen E, Turan ?, Ulubay A, Gürbüz F, Yüksel B, Tetiker T, Topalo?lu AK. Hypogonadotropic hypogonadism due to novel FGFR1 mutations., 2017, 9(2): 95–100.
[38] Vezzoli V, Duminuco P, Bassi I, Guizzardi F, Persani L, Bonomi M. The complex genetic basis of congenital hypogonadotropic hypogonadism., 2016, 41(2): 223–239.
[39] Costa-Barbosa FA, Balasubramanian R, Keefe KW, Shaw ND, Al-Tassan N, Plummer L, Dwyer AA, Buck CL, Choi JH, Seminara SB, Quinton R, Monies D, Meyer B, Hall JE, Pitteloud N, Crowley WF. Prioritizing genetic testing in patients with Kallmann syndrome using clinical phenotypes., 2013, 98(5): E943–E953.
[40] Amato LGL, Montenegro LR, Lerario AM, Jorge AAL, Guerra Junior G, Schnoll C, Renck AC, Trarbach EB, Costa EMF, Mendonca BB, Latronico AC, Silveira LFG. New genetic findings in a large cohort of congenital hypogonadotropic hypogonadism., 2019, 181(2): 103–119.
[41] Choe J, Kim JH, Kim YA, Lee J. Dizygotic twin sisters with normosmic idiopathic hypogonadotropic hypogonadism caused by an FGFR1 gene variant., 2020, 25(3): 192–197.
[42] Hermanussen M, Sippell WG. Heterogeneity of Kallmann's syndrome., 1985, 28(2): 106–111.
[43] Hipkin LJ, Casson IF, Davis JC. Identical twins discordant for Kallmann's syndrome., 1990, 27(3): 198–199.
[44] Bonomi M, Libri DV, Guizzardi F, Guarducci E, Maiolo E, Pignatti E, Asci R, Persani L, Idiopathic Central Hypogonadism Study Group of the Italian Societies of Endocrinology and Pediatric Endocrinology and Diabetes. New understandings of the genetic basis of isolated idiopathic central hypogonadism., 2012, 14(1): 49–56.
[45] Network for Central Hypogonadism (Network Ipogonadismo Centrale, NICe) of Italian Societies of Endocrinology (SIE), of Andrology and Sexual Medicine (SIAMS) and of Peadiatric Endocrinology and Diabetes (SIEDP). Kallmann's syndrome and normosmic isolated hypogonadotropic hypogonadism: two largely overlapping manifestations of one rare disorder., 2014, 37(5): 499–500.
[46] Bhangoo A, Jacobson-Dickman E. The genetics of idiopathic hypogonadotropic hypogonadism: unraveling the biology of human sexual development., 2009, 6(3): 395–404.
[47] Bonomi M, Libri DV, Guizzardi F, Guarducci E, Maiolo E, Pignatti E, Asci R, Persani L, Idiopathic Central Hypogonadism Study Group of the Italian Societies of Endocrinology and Pediatric Endocrinology and Diabetes. New understandings of the genetic basis of isolated idiopathic central hypogonadism., 2012, 14(1): 49–56.
[48] Kim SH. Congenital hypogonadotropic hypogonadism and Kallmann syndrome: past, present, and future., 2015, 30(4): 456–466.
[49] Coppieters F, Lefever S, Leroy BP, De Baere E. CEP290, a gene with many faces: mutation overview and presentation of CEP290base., 2010, 31(10): 1097–1108.
[50] Valente EM, Silhavy JL, Brancati F, Barrano G, Krishnaswami SR, Castori M, Lancaster MA, Boltshauser E, Boccone L, Al-Gazali L, Fazzi E, Signorini S, Louie CM, Bellacchio E, International Joubert Syndrome Related Disorders Study Group, Bertini E, Dallapiccola B, Gleeson JG. Mutations in CEP290, which encodes a centrosomal protein, cause pleiotropic forms of Joubert syndrome., 2006, 38(6): 623–625.
[51] Balasubramanian R, Dwyer A, Seminara SB, Pitteloud N, Kaiser UB, Crowley WF. Human GnRH deficiency: a unique disease model to unravel the ontogeny of GnRH neurons., 2010, 92(2): 81–99.
[52] Pitteloud N, Acierno JS, Meysing A, Eliseenkova AV, Ma JH, Ibrahimi OA, Metzger DL, Hayes FJ, Dwyer AA, Hughes VA, Yialamas M, Hall JE, Grant E, Mohammadi M, Crowley WF. Mutations in fibroblast growth factor receptor 1 cause both Kallmann syndrome and normosmic idiopathic hypogonadotropic hypogonadism., 2006, 103(16): 6281–6286.
Research on the variants ofandgenes in idiopathic hypogonadotropin hypogonadism
Shanshan Wang1, Wanyi Zhao2, Huixiao Wu2, Meng Shu2, Jiaxin Yuan2, Li Fang2, Chao Xu1
Idiopathic hypogonadotropic hypogonadism (IHH) is a rare endocrine disease characterized by gonadal dysplasia. According to whether the sense of smell is affected, this disorder is classified into Kallmann syndrome (KS) and normosmic isolated hypogonadotropic hypogonadism (nIHH). In this study, we reported a case of nIHH patient and explored the pathogenic mechanism ofin nIHH. Avariant (c.2008G>A, p.E670K) and avariant (c.964G>A, p.D322N) were detected by the whole exome sequencing in this nIHH patient. Bioinformatic analysis revealed that thisvariant (c.2008G>A) causes structural perturbations in TK2 domain demonstrating that this variant result in FGFR1 loss-of-function and abnormal signaling. The identification of an additionalvariant (c.964G>A) indicated thatmight play a potential role in developmental abnormalities and inhibition of GnRH neuron release. A protein interaction network analysis showed that CEP290 was predicted to interact with FGFR1. In summary, our study identified the potential pathogenic mechanism(s) of the novelvariant and indicated thatmight play a role in the GnRH neuron migration route. Our findings expand the mutation spectrum ofandand provide a reference for clinical diagnosis and treatment of IHH.
IHH;;; bioinformatics analysis
2022-06-15;
2022-09-17;
2022-09-29
國家自然科學(xué)基金項目(編號:81974124)和泰山學(xué)者項目專項資金(編號:20161071)資助[Supported by the National Natural Science Foundation of China (No. 81974124) and the Special Funds for the Taishan Scholar Project (No. 20161071)]
王姍姍,在讀碩士研究生,專業(yè)方向:內(nèi)分泌與代謝遺傳學(xué)。E-mail: 593603071@qq.com
徐潮,博士,教授,主任醫(yī)師,研究方向:性腺發(fā)育不良的精準(zhǔn)診療。E-mail: doctorxuchao@163.com
10.16288/j.yczz.22-196
(責(zé)任編委: 周紅文)