• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Lattice Boltzmann method for Casimir invariant of two-dimensional turbulence*

    2016-10-14 12:23:34YuxianXIA夏玉顯YuehongQIAN錢躍竑

    Yu-xian XIA (夏玉顯),Yue-hong QIAN (錢躍竑)

    Shanghai Institute of Applied Mathematics and Mechanics,Shanghai University,Shanghai 200072,China,E-mail:xiayuxian2008.com@163.com

    Lattice Boltzmann method for Casimir invariant of two-dimensional turbulence*

    Yu-xian XIA (夏玉顯),Yue-hong QIAN (錢躍竑)

    Shanghai Institute of Applied Mathematics and Mechanics,Shanghai University,Shanghai 200072,China,E-mail:xiayuxian2008.com@163.com

    The Casimir invariants of the 2-D turbulence are investigated by the lattice Boltzmann method.A coarse-graining approach is used,that allows to resolve the flux of the Casimir invariant in scale and in space.It is found that the flux of the enstrophy cascades to small scales and the direction cascade of the energy flux is upscaled.Moveover,the probability distribution function (PDF) of the enstrophy flux gives a clear evidence that the enstrophy cascades to smaller scales.Finally,the behavior of the cascade of the high-order Casimir invariants Znis discussed.The flux of the fourth-order Casimir invariant Z4cascades to small scales.The flux of Znhas a logarithmic relationship with the scale,that is,

    2-D turbulence,Casimir invariants,lattice Boltzmann method

    Introduction

    It is commonly believed that the simultaneous conservation of the energy and the enstrophy by the advection term of the forced 2-D Navier-Stokes equations gives rise to a dual turbulence cascade when the Reynolds number tends to infinity[1-3].Under statistically stationary conditions,when the turbulent flow is sustained by an external forcing acting in a typical force scale lf,a double cascade develops.According to the Kraichnan theory,at a large scale,i.e.,when the wave numbersk?kf~l-f1,the energy spectrum assumes the formE( k)≈ε2/3k-5/3while in small scales,k?kf,the prediction is E( k)≈η2/3k-3,witha possible logarithmic correction[1].Here η=k2ε.ε and η are,respectively,the energy and the enstrophy injection rates.

    In addition to conserving the energy and the enstrophy,the nonlinear terms of the 2-D incompressible Navier-Stokes equation are well known to conserve the global integral of any continuously differentiable function of the scalar vorticity field,which are known as the Casimir invariants.A fundamental question is whether these Casimir invariants also play an underlying role in the turbulence cascade,in addition to the rugged quadratic invariants (the enstrophy).Whether they cascade to large or small scales is an open question.Polyakov' minimal conformal field theory model suggests that the higher-order Casimir invariants cascade to large scales[4],while Eyink[5]predicted that they might instead cascade to small scales.Bowman[6]pointed out that the fourth power of the vorticity cascades to small scales by using the wellresolved implicitly dealiased pseudospectral simulations.Meanwhile,this study raises the question of whether the Kraichnan theory of the unbounded 2-D turbulence,based solely on the uniform flux of the energy in large scales and that of the enstrophy in small scales,needs to be re-examined to account for a direct cascade of the Casimir invariants to smaller scales.

    A better understanding of the physical mechanism on the basis of the cascades can be obtained by looking at the distribution of the fluxes of the Casimir invariant in scales.Here the key analysis method we use is a “coarse-graining” or “filtering” approach for analyzing the scale interactions in complex flows.Eyink[7]developed the formalism mathematically to analyze the fundamental physics of the scale coupling in turbulence,which was laterly applied to numerical and experimental studies of flows of 2-D turbulence[8-12].For any field a( x),a “coarse-graining” or“filtering” field,which contains modes at a lengthscale>l,is defined as

    where Gl( r)is a normalized convolution kernel.It is well known that the lattice Boltzmann method (LBM)is valid in the investigations of 2-D turbulence[3,13,14].In this paper,this “filtering” approach is used to investigate the flux of the Casimir invariant in the frame of the LBM.

    1.Preliminaries

    1.1 The flux of Casimir invariants

    The balance equations governing the local conservation of the vorticity invariants are expressed in space and in scale.Due to the viscous effect,the high order Casimir invariants are generally not in conservation.However,it is verified that the viscosity has no influence on the definition of the flux of high order Casimir invariants.To introduce the concepts in the simple context,we discuss first the free evolution,i.e.,the equations without any external forcing.Thus,our starting point is the 2-D Euler equations in the “vorticity formulation”.

    That is,we consider the large-scale vorticity defined by convolutionand the large-scale velocity defined by,where Glis taken to be the Gaussian filter.If the filter is convoluted with the equation of motion,Eq.(1),an equation for the largescale vorticity field is obtained

    where σlis the space transport of the vorticity due to the eliminated small-scale turbulence.From Eq.(2),a balance equation is derived for the local densityhl( r,t)=

    where Kl( r,t)represents the space transport of the large-scale enstrophy,

    In Eq.(3),we see that in order forto have a net positive value,the turbulence vorticity transport σl(r,t)should tend to be antiparallel to the large-scale vorticity gradientThe required statistical anticorrelation between σl(r,t)and(r,t)is an alignment property characteristic of the enstrophy cascade.It is analogous to the much-studied alignment of the stress tensorτidue to small scales and the large-scale strain,which underlies the energy cascade to small scales in 3-D.

    An identical analysis can be made of the balance for the local densitiesof the contribution to the Casimir invariants Znin the largescale modesBy a similar calculation as before,it follows that

    It is of some interest that it is simply proportional to the enstrophy flux itself,when n>2.

    1.2 lattice Boltzmann method (LBM)

    The Navier-Stokes equation for the fluid flows can be simulated by the LBM in a simple and efficient way[13,15-19].The LBM has its roots in the kinetic theory,and the general idea behind this scheme is to compute a probability distribution function fi( r,t),where

    Table 1 Parameters of the simulations

    fi( r,t)is the population of the particles,withi representing the fluid element with a corresponding velocity along the directioniat the positioniand the timex,as they stream and collide.The statistical behavior of the distribution of the particle population delineates that of the dynamics of the fluid flow.For 2-D incompressible fluid flows,the popular D2Q9 model[13]is used to simulate various fluid flow problems,whose evolution equation for fi( r,t)can be described by

    where ciis the discrete particle velocity,τdenotes the relaxation time,and the local equilibrium distribution is as follows

    where Wiis the lattice weight,αis a Cartesian coordinate (with implied summation convention for repeated indices) andis the speed of sound.Fiis the external force term andis the friction term.The local macroscopic density and the velocity field are then obtained by

    By using the Chapman-Enskog expansion,the Navier-Stokes equations can be derived to the second order of the Knudsen number at a long wavelength and long time limits,

    where Fαis the external force of the system,is the friction force,andνis the viscosity coefficient.The relationship between the external force term Fiin Eq.(9).and the external force Fαof the system in Eq.(14).is described by

    where C=[1- 1/2τ(uF-Fu)].The relationship between the friction force termand the friction forceis the sam e as Eq.(15).In order to obtain the steady state,the linear friction μuis necessary to avoid a energy condensation in a large scale.The additional term Rμin the momentum equation of Eq.(14).is due to the presence of an external force.

    Fig.1 The scale behaviors of the enstrophy flux in two cases of LBM external force model.Here the external force is band-limited 0.9lf<l<1.1lf.Solid curve and dot line represent the Ladd and Verberg force model,dot curve and circle are LGA force model

    Fig.2 The average enstrophy flux and energy flux as a function of length scale l/ lf.Hollow circle represents enstrophy flux in Case A,hollow square represents energy flux in Case A,solid circle represents enstrophy flux in Case B,solid square represents energy flux in Case B.Hollow circle represents enstrophy flux in Case C,hollow square represents energy flux in Case C,solid circle represents enstrophy flux in Case D,solid square represents energy flux in Case B

    In the case of the Ladd and Verberg external forced model,In fact,if the external forceFαis a constant with time,Eq.(14) will be the correct hydrodynamic equation[3].It is found in Fig.1 that the artificial termRμdoes not affect the cascade and statistical behaviors of the 2-D turbulence,so the more detail about Rμwill not be discussed here.The detailed information of the external forcing is given in Table 1.The external force scale Reynolds number of the 2-D turbulence Ref~(kmax/kf)2(kmax=N /2).The initial energy spectrum E( k)=(k/4.68)4exp[2.0(k/4.68)2]will not lead to the significant inverse energy cascade of a short duration simulation.The 2D turbulence is investigated by means of a standard LBM parallel code on a double periodic square domain with the sidesLx=Ly=2π.

    Fig.3 Normalized probability distribution functions for the scale-to-scale enstrophy flux

    2.Numerical results

    The space average of the coarse-grained enstrophy budget as a function of the scale l is calculated.Obviously,the average enstrophy fluxes in different external scaleskf,shown in Fig.2,cascade to small scales.The enstrophy flux falls off in all length scales.The fall in the enstrophy transfer in all scales is due to the effect of the linear frictional force on the full field of the 2-D turbulence.

    It is interesting to measure the energy transfer in the 2-D turbulence,which may reflect the behavior observed more generally in systems with a quasi-2-D character[20,21].In Fig.2,the mean energy transfers for Cases A,B,C,D are negative revealing that the energy cascades to the upscale despite the expected lack of a constant energy flux.It also increases and goes to zero in the length scales smaller than the injection scale lf.The behavior of the energy flux issomewhat dependent on the form of the full-band external force.It is verified that the more energy is injected in a smaller scale.So the more energy is transferred to a larger scale from a smaller scale.Figure 2 shows the double cascade of the 2-D turbulence.

    The PDFs,shown in Fig.3,are normalized by their respective rms fluctuations.These PDFsin Case E and Case F where the linear friction coefficientμis equal to zero are asymmetric and positively skewed.The PDF has a positive mean,indicating that there is a net transfer of the enstrophy to a smaller scale.These PDFs recorded for different separations lare strongly non-Gaussian,with long tails for large values of the enstrophy flux.The shapes of the PDFs do vary with the scale in the large fluctuation event,thus showing the nature of the intermittency in the enstrophy cascade range corresponding to our result[3]that the intermittency exists in the direct inertial range due to the statistical feature in the velocity field.

    Fig.4 The average enstrophy flux and energy flux as a function of length scale l/ lfwhen l>0.9lfin Case D.Hollow circle represents enstrophy flux,solid circle represents energy flux

    Fig.5 The effect of finite resolution on the enstrophy flux as a function of length scale l/ lf.Hollow circle represents Case A,dot curve represents Case B,solid circle represents Case G,and solid curve represents Case H

    It is important to explore whether the external force scale kmax/kfaffects the cascade of the Casimir invariants.The enstrophy flux in Case D withkmax/ kfequal to 3.41,described in Fig.4,becomes negative in the injection scalelf.The value of kmax/kfin Case D is small so as to see the finite resolution effect on the enstrophy flux.This is not a surprise because the extent of the direct cascade is simply proportional to kmax/kfWhen the values of kmax/kfin Case A and Case C are larger than that in Case D where kmax/kfis equal to 10.24,the sign of the enstrophy flux does not change in all length scales.The enstrophy is really positive in all length scales in the 2-D turbulence forced by the full-band force.From Fig.5,the direction of the enstrophy flux in Cases A and B is consistent with that in Cases G and H where kmax/kfis equal to 20.48.Obviously,the external force scale does have an influence on the Casimir cascade.In order to have a wider range of the inertial range and avoid the finite resolution effect,the condition that kmax/kf≥10.24should be satisfied to investigate the higher order Casimir invariant of the 2-D turbulence.

    Fig.6 The average fourth-order Casimir invariant flux as a function o f length scale l/ lfin Case G and Case H,in Case G,ζ4=2.15±0.1 in Case H.Solid circle represents Case G,hollow circle represents Case H

    Next,the cascade direction of the higher order Casimir invariant Zn(n>2)is estimated.The globally integrated invariantZ3appears to slosh back and forth between the large and small scales.In retrospect,this should be expected sinceω3is not a sign-definite quantity.So,we mainly focus on the determination of a sign-definite quantity like the fourth-order Casimir invariant Z4.Fig.6 displays the space behaviors of Z4.The flux of the fourth-order Casimir invariantcascades to small scales.It is seen in Fig.6 that the flux ofZ4has the logarithmic relationship withthe scale,that is,.In Case G,ζ4=2.15± 0.1 in all length scales.ζ4=2.15±0.1in Case H.Obviously,the friction force does not break up the logarithmic behaviors of the fourth-order Casimir invariant.Figure 7 shows the nonlinear relationship betweenζnand the order n( n=2,4,6)in the enstrophy inertial range.It shows that the intermittency exists in the enstrophy cascade according to the statistical behaviors of higher-order Casimir invariants.

    Fig.7 The relationship between Znand the order n( n=2,4,6)in the enstrophy inertial range.ζ2=1.68±0.2,ζ4=2.15±0.1,ζ6=2.10

    3.Conclusion

    We have presented a statistical analysis of the 2-D turbulence and how to obtain a band-pass decomposition of the flux of Casimir invariants with a Gaussian filter.The mathematical form of the flux of Casimir invariants given in this paper is easy to be used to reveal the cascade behaviors of Casimir invariants.It is verified that the flux of the fourth-order Casimir invariant Z4cascades to small scales.And also,this flux has a uniform logarithmic relationship with the scale.This logarithmic relationship raises the question of whether the Kraichnan theory of the unbounded 2-D turbulence,based solely on the uniform flux of the energy to large scales and that of the enstrophy to small scales,needs to be revisited to account for a direct cascade of Casimir invariants to small scales.In future,we will focus on this issue.

    [1]BOFFETTA G.,ECKE R.E.Two dimensional turbulence[J].Annual Review of Fluid Mechanics,2012,44(3):427-451.

    [2]THUBURN J.,KENT J.and WOO D.N.Cascades,backscatter and conservation in numerical models of twodimensional turbulence[J].Quarterly Journal of the Royal Meteorological Society,2013,140(679):626-638.

    [3]XIA Y.X.,QIAN Y.H.Lattice Boltzmann simulation for forced two-dimensional turbulence[J].Physical Review E,2014,90(2):023004.

    [4]POLYAKOV A.M.The theory of turbulence in two dimensions[J].Nuclear Physics B,1993,396(2-3):367-385.

    [5]EYINK G.L.Exact results on stationary turbulence in 2D:Consequences of vorticity conservation[J].Physica D,1996,91(1-2):97-195.

    [6]BOWMAN J.C.Casimir cascades in two-dimensional turbulence[J].Journal of Fluid Mechanics,2013,729:364-376.

    [7]EYINK G.Local energy flux and the refined similarity hypothesis[J].Journal of Statistical Physics,1995,78(1):335-351.

    [8]EYINK G.Multi-scale gradient expansion of turbulence stress tensor[J].Journal of Fluid Mechanics,2006,549:159-190.

    [9]CHEN S.Y.,ECKE R.E.and EYINK G.L.et al.Physical mechanism of the two-dimensional enstrophy cascade[J].Physical Review Letters,2003,91(21):214501.

    [10]CHEN S.Y.,ECKE R.E.and EYINK G.L.et al.Physical mechanism of the two-dimensional inverse energy cascade[J].Physical Review Letters,2006,96(8):084502.

    [11]RIVERA M.K.,DANIEL W.B.and CHEN S.Y.et al.Energy and enstrophy transfer in decaying two-dimensional turbulence[J].Physical Review Letters,2003,90(10):104502.

    [12]RIVERA M.K.,ALUIE H.and ECKE R.E.The direct enstrophy cascade of two-dimensional soap film flows[J].Physics of Fluids,2013,26(5):499-502.

    [13]XU H.,QIAN Y.H.and TAO W.Q.Revisiting twodimensional turbulence by lattice Boltzmann method[J].Progress in Computational Fluid Dynamics,2009,9(3):133-140.

    [14]BENZI R.,SUCCI S.Two-dimensional turbulence with the lattice Boltzmann equation[J].Journal of Physics A Mathematical and General,1990,23(1):L1-L5.

    [15]QIAN Y.H.,D?HUMIèRES D.and LALLEMAND P.Lattice BGK models for Navier-Stokes equation[J].Europhysics Letters,1992,17(6):479-484.

    [16]QIAN Y.H.Simulating thermohydrodynamics with lattice BGK models[J].Journal of Computational Physics,1993,8(3):231-242.

    [17]BENZI R.,SUCCI S.and VERGASSOLA M.The lattice boltzmann equation:Theory and applications[J].Physics Reports,1992,222(3):145-197.

    [18]AIDUN C.K.,CLAUSEN J.R.Lattice-Boltzmann method for complex flows[J].Annual Review of Fluid Mechanics,2010,42(1):439-472.

    [19]DIAO Wei,Cheng Yong-guang and ZHANG Chun-ze et al.Three-dimensional prediction of reservoir water temperature by the lattice Boltzmann method:Validation[J].Journal of Hydrodynamics,2015,27(2):248-256.

    [20]BOFFETTA G.Energy and enstrophy fluxes in the double cascade of two- dimensional turbulence[J].Journal of Fluid Mechanics,2007,589:253-260.

    [21]BOFFETTA G.,MUSACCHIO S.Evidence for the double cascade scenario in two-dimensional turbulence[J].Physical Review E,Statistical,Nonlinear,and Soft Matter Physics,2010,82(2):016307.

    10.1016/S1001-6058(16)60634-0

    (Received July 10,2014,Revised August 11,2015)

    * Project supported by the National Natural Science Foundation of China (Grant No.91441104),the Ministry of Education in China via project (Grant No.IRT0844) and the Shanghai Science and Technology Commission Project of leading Scientists and Excellent Academic Leaders (Grant No.11XD1402300).

    Biography:Yu-xian XIA (1982-),Male,Ph.D.Candidate

    Yue-hong QIAN,E-mail:qian@shu.edu.cn

    2016,28(2):319-324

    亚洲一码二码三码区别大吗| 国产成人精品久久二区二区免费| 亚洲全国av大片| 欧美日韩国产mv在线观看视频| 国产精品亚洲av一区麻豆| 精品乱码久久久久久99久播| 每晚都被弄得嗷嗷叫到高潮| 国产精品乱码一区二三区的特点 | 国产av精品麻豆| 新久久久久国产一级毛片| 老司机亚洲免费影院| 国产成+人综合+亚洲专区| 又黄又爽又免费观看的视频| 伊人久久大香线蕉亚洲五| 亚洲精品美女久久久久99蜜臀| 国产成人精品无人区| 日韩一卡2卡3卡4卡2021年| 极品人妻少妇av视频| 男女之事视频高清在线观看| 国产又色又爽无遮挡免费看| 18禁观看日本| 亚洲精品中文字幕在线视频| a级片在线免费高清观看视频| 精品乱码久久久久久99久播| 久久人人97超碰香蕉20202| 色老头精品视频在线观看| 欧美黄色淫秽网站| tocl精华| 中文字幕人妻熟女乱码| 久9热在线精品视频| 日本撒尿小便嘘嘘汇集6| 看片在线看免费视频| 日韩中文字幕欧美一区二区| 黄色成人免费大全| 这个男人来自地球电影免费观看| 国产精品二区激情视频| 国产精品自产拍在线观看55亚洲| 久久午夜亚洲精品久久| 国产成人啪精品午夜网站| 免费在线观看日本一区| 色老头精品视频在线观看| 国产深夜福利视频在线观看| 国产精品二区激情视频| 久久久久久久久久久久大奶| 久久午夜亚洲精品久久| 亚洲成国产人片在线观看| 久久人妻av系列| 757午夜福利合集在线观看| 激情视频va一区二区三区| 丁香欧美五月| 午夜免费观看网址| 一个人观看的视频www高清免费观看 | 精品无人区乱码1区二区| 午夜免费鲁丝| 91精品国产国语对白视频| 国产亚洲精品久久久久久毛片| 国产亚洲av高清不卡| 亚洲成人免费av在线播放| 精品人妻在线不人妻| 久久中文字幕人妻熟女| av福利片在线| 最新美女视频免费是黄的| 国产精品国产高清国产av| 日本免费一区二区三区高清不卡 | 久久久国产欧美日韩av| 国产一区二区三区综合在线观看| 黑丝袜美女国产一区| 久久亚洲真实| 亚洲成a人片在线一区二区| 大码成人一级视频| 91老司机精品| 好看av亚洲va欧美ⅴa在| 欧美亚洲日本最大视频资源| 两个人免费观看高清视频| 国产精品av久久久久免费| 男人操女人黄网站| 18禁黄网站禁片午夜丰满| 婷婷丁香在线五月| 最新美女视频免费是黄的| 亚洲av成人一区二区三| 身体一侧抽搐| 在线永久观看黄色视频| 亚洲欧美一区二区三区黑人| 亚洲人成伊人成综合网2020| 国内久久婷婷六月综合欲色啪| 丝袜美足系列| 亚洲专区国产一区二区| 天天躁狠狠躁夜夜躁狠狠躁| videosex国产| 久久天躁狠狠躁夜夜2o2o| 熟女少妇亚洲综合色aaa.| 久久精品国产综合久久久| 亚洲成人免费电影在线观看| 一区福利在线观看| 精品国产乱码久久久久久男人| 18禁裸乳无遮挡免费网站照片 | 精品人妻1区二区| 欧美+亚洲+日韩+国产| 国产又爽黄色视频| 在线视频色国产色| 亚洲久久久国产精品| 在线天堂中文资源库| 免费女性裸体啪啪无遮挡网站| 国产黄色免费在线视频| 一区在线观看完整版| 国内毛片毛片毛片毛片毛片| 啦啦啦 在线观看视频| 免费女性裸体啪啪无遮挡网站| 日日干狠狠操夜夜爽| 国产精华一区二区三区| 首页视频小说图片口味搜索| 国产亚洲欧美精品永久| 亚洲男人的天堂狠狠| 亚洲国产中文字幕在线视频| 国产av一区在线观看免费| 免费av中文字幕在线| 91老司机精品| 9热在线视频观看99| 女人高潮潮喷娇喘18禁视频| 搡老岳熟女国产| 亚洲自拍偷在线| 搡老岳熟女国产| 91麻豆精品激情在线观看国产 | 午夜精品在线福利| 欧美另类亚洲清纯唯美| 男男h啪啪无遮挡| 国产免费男女视频| 午夜日韩欧美国产| 久久久久久久久中文| 国产精品1区2区在线观看.| 大型黄色视频在线免费观看| 国产真人三级小视频在线观看| 国产欧美日韩一区二区三| 久久人妻熟女aⅴ| 操出白浆在线播放| 熟女少妇亚洲综合色aaa.| 欧美色视频一区免费| 成人三级做爰电影| 99国产精品99久久久久| 日本黄色视频三级网站网址| 精品国产美女av久久久久小说| 精品免费久久久久久久清纯| 欧美日韩视频精品一区| 黄色丝袜av网址大全| 看黄色毛片网站| 国产亚洲av高清不卡| 日本五十路高清| 午夜免费观看网址| 十八禁人妻一区二区| 99精品在免费线老司机午夜| 在线观看一区二区三区激情| 69精品国产乱码久久久| 又黄又爽又免费观看的视频| 国产一区二区激情短视频| 国产区一区二久久| 久久精品91蜜桃| 欧美激情极品国产一区二区三区| 欧美日韩亚洲国产一区二区在线观看| 少妇粗大呻吟视频| 久久亚洲真实| 久久精品国产综合久久久| av欧美777| tocl精华| 国产日韩一区二区三区精品不卡| 婷婷精品国产亚洲av在线| 人成视频在线观看免费观看| 国产成人av激情在线播放| 亚洲伊人色综图| 老鸭窝网址在线观看| 黄色怎么调成土黄色| 亚洲美女黄片视频| 18美女黄网站色大片免费观看| 窝窝影院91人妻| 天天躁狠狠躁夜夜躁狠狠躁| 十八禁人妻一区二区| 午夜日韩欧美国产| 欧美黑人欧美精品刺激| 成人亚洲精品av一区二区 | 狠狠狠狠99中文字幕| 欧美大码av| 嫩草影视91久久| 男女之事视频高清在线观看| 国产成人av教育| 在线十欧美十亚洲十日本专区| 国产91精品成人一区二区三区| 午夜老司机福利片| 国产亚洲精品久久久久久毛片| 一个人免费在线观看的高清视频| 日韩欧美在线二视频| 久久婷婷成人综合色麻豆| 少妇裸体淫交视频免费看高清 | 亚洲成人精品中文字幕电影 | 欧美激情久久久久久爽电影 | 久9热在线精品视频| 国产亚洲精品一区二区www| 丰满的人妻完整版| 精品久久蜜臀av无| 好男人电影高清在线观看| 69av精品久久久久久| 免费在线观看日本一区| 日韩欧美一区二区三区在线观看| 一进一出抽搐动态| 亚洲熟女毛片儿| 日韩视频一区二区在线观看| 我的亚洲天堂| 亚洲第一av免费看| 午夜精品久久久久久毛片777| 免费在线观看视频国产中文字幕亚洲| 亚洲精品粉嫩美女一区| 久久久久精品国产欧美久久久| 精品电影一区二区在线| 性色av乱码一区二区三区2| 中文字幕色久视频| 一本大道久久a久久精品| 免费观看精品视频网站| 国产亚洲av高清不卡| 亚洲精品粉嫩美女一区| 亚洲一区高清亚洲精品| 欧美国产精品va在线观看不卡| 一级a爱片免费观看的视频| cao死你这个sao货| 精品一区二区三区av网在线观看| 午夜视频精品福利| 亚洲熟妇中文字幕五十中出 | 午夜日韩欧美国产| 精品久久久久久,| av超薄肉色丝袜交足视频| xxxhd国产人妻xxx| 亚洲成人精品中文字幕电影 | 亚洲精品国产一区二区精华液| 变态另类成人亚洲欧美熟女 | 久久亚洲真实| 老司机午夜福利在线观看视频| 变态另类成人亚洲欧美熟女 | 99在线人妻在线中文字幕| 国产精品秋霞免费鲁丝片| 国产伦一二天堂av在线观看| 男女午夜视频在线观看| 亚洲自拍偷在线| 啦啦啦 在线观看视频| 国产欧美日韩综合在线一区二区| 黑人操中国人逼视频| 日韩欧美国产一区二区入口| 嫩草影院精品99| 女人精品久久久久毛片| 日韩国内少妇激情av| 久久亚洲精品不卡| 精品久久久久久电影网| 成人av一区二区三区在线看| 超色免费av| 欧美性长视频在线观看| 国产一区二区三区在线臀色熟女 | 亚洲中文av在线| 亚洲国产中文字幕在线视频| 久久国产精品男人的天堂亚洲| 国产熟女午夜一区二区三区| 成人特级黄色片久久久久久久| 日日干狠狠操夜夜爽| 在线观看免费高清a一片| 国产一卡二卡三卡精品| 欧美成人免费av一区二区三区| 亚洲专区中文字幕在线| 国产熟女午夜一区二区三区| 亚洲精品一卡2卡三卡4卡5卡| 久久中文字幕一级| 午夜91福利影院| 免费高清视频大片| 精品无人区乱码1区二区| 一边摸一边抽搐一进一出视频| 亚洲中文av在线| 精品第一国产精品| 国产一卡二卡三卡精品| 国产av一区在线观看免费| 久久久国产欧美日韩av| 免费不卡黄色视频| 国产深夜福利视频在线观看| 一进一出抽搐动态| 热re99久久精品国产66热6| 国产精品久久久久久人妻精品电影| 丝袜美足系列| 欧美日韩中文字幕国产精品一区二区三区 | 别揉我奶头~嗯~啊~动态视频| 9热在线视频观看99| 国产精品av久久久久免费| 黄色怎么调成土黄色| 在线永久观看黄色视频| 成人18禁在线播放| 欧美黑人精品巨大| 国产精品久久电影中文字幕| 男人舔女人下体高潮全视频| av网站在线播放免费| 亚洲精品在线观看二区| 热99re8久久精品国产| 欧美日韩黄片免| 18美女黄网站色大片免费观看| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美最黄视频在线播放免费 | 成熟少妇高潮喷水视频| 精品久久久久久,| 在线观看日韩欧美| 欧美日韩亚洲高清精品| tocl精华| 亚洲三区欧美一区| 日韩人妻精品一区2区三区| 又黄又粗又硬又大视频| 欧美日韩亚洲综合一区二区三区_| 窝窝影院91人妻| 88av欧美| 50天的宝宝边吃奶边哭怎么回事| 岛国视频午夜一区免费看| 色尼玛亚洲综合影院| 在线观看一区二区三区激情| 成年女人毛片免费观看观看9| 人人妻,人人澡人人爽秒播| 久久久国产成人免费| 亚洲成人免费电影在线观看| 午夜免费激情av| 亚洲精品一卡2卡三卡4卡5卡| 中文字幕另类日韩欧美亚洲嫩草| 亚洲专区字幕在线| 俄罗斯特黄特色一大片| 欧美日韩视频精品一区| 999久久久精品免费观看国产| 亚洲一区二区三区欧美精品| 国产精品99久久99久久久不卡| 亚洲av第一区精品v没综合| 韩国av一区二区三区四区| 欧美日韩中文字幕国产精品一区二区三区 | 色综合欧美亚洲国产小说| 午夜影院日韩av| 美女 人体艺术 gogo| 黄色 视频免费看| 在线观看免费日韩欧美大片| 精品一区二区三区视频在线观看免费 | 免费av中文字幕在线| 国产精品香港三级国产av潘金莲| 校园春色视频在线观看| 久久精品aⅴ一区二区三区四区| 91麻豆av在线| avwww免费| 人妻久久中文字幕网| 美女大奶头视频| 亚洲成a人片在线一区二区| 日韩精品青青久久久久久| 后天国语完整版免费观看| 欧美成人午夜精品| 嫁个100分男人电影在线观看| 亚洲欧美精品综合一区二区三区| 午夜福利在线观看吧| 亚洲色图av天堂| 国产成人精品久久二区二区91| 国产精品久久久久成人av| av在线天堂中文字幕 | 国产成年人精品一区二区 | 日韩视频一区二区在线观看| 国产亚洲精品一区二区www| 黑丝袜美女国产一区| 亚洲av成人一区二区三| 精品国产乱码久久久久久男人| 亚洲欧美一区二区三区久久| 淫秽高清视频在线观看| 香蕉久久夜色| 亚洲av第一区精品v没综合| 欧美人与性动交α欧美软件| 欧美成人性av电影在线观看| 9热在线视频观看99| av网站免费在线观看视频| av电影中文网址| av在线天堂中文字幕 | 国产午夜精品久久久久久| 国产精品电影一区二区三区| 欧美日韩中文字幕国产精品一区二区三区 | 午夜成年电影在线免费观看| 久久天堂一区二区三区四区| 50天的宝宝边吃奶边哭怎么回事| 国产午夜精品久久久久久| 窝窝影院91人妻| 国产三级黄色录像| 欧美日韩国产mv在线观看视频| av在线天堂中文字幕 | 久久久久久久午夜电影 | 69av精品久久久久久| 美女国产高潮福利片在线看| 午夜福利在线观看吧| 在线观看免费视频日本深夜| 后天国语完整版免费观看| 老司机靠b影院| 国产熟女午夜一区二区三区| 国产深夜福利视频在线观看| 久久久国产成人精品二区 | 搡老岳熟女国产| 久久精品国产99精品国产亚洲性色 | 国产无遮挡羞羞视频在线观看| 欧美乱妇无乱码| 不卡一级毛片| 69精品国产乱码久久久| 人人妻,人人澡人人爽秒播| 两人在一起打扑克的视频| 波多野结衣av一区二区av| 国产单亲对白刺激| 国产主播在线观看一区二区| 制服人妻中文乱码| 国产一区二区三区综合在线观看| 精品卡一卡二卡四卡免费| 黄色视频,在线免费观看| 国产免费男女视频| 日韩人妻精品一区2区三区| 黑人巨大精品欧美一区二区mp4| 亚洲五月婷婷丁香| 国产欧美日韩一区二区三区在线| 两人在一起打扑克的视频| 亚洲国产精品sss在线观看 | 国产在线观看jvid| 多毛熟女@视频| 另类亚洲欧美激情| 脱女人内裤的视频| 午夜福利在线免费观看网站| 欧美性长视频在线观看| 国产黄色免费在线视频| 少妇粗大呻吟视频| 桃色一区二区三区在线观看| 日韩精品免费视频一区二区三区| 国产日韩一区二区三区精品不卡| 国产一区二区激情短视频| 国产亚洲精品综合一区在线观看 | 国产精品亚洲一级av第二区| 69精品国产乱码久久久| 久久人人97超碰香蕉20202| 欧美精品亚洲一区二区| www.www免费av| 久久精品91蜜桃| 精品熟女少妇八av免费久了| 91成人精品电影| 熟女少妇亚洲综合色aaa.| 亚洲视频免费观看视频| 亚洲精品av麻豆狂野| 嫩草影院精品99| 不卡av一区二区三区| 国产精品久久久久久人妻精品电影| 国产视频一区二区在线看| 麻豆国产av国片精品| 乱人伦中国视频| 久久久久国产一级毛片高清牌| 亚洲精品久久成人aⅴ小说| 国产精品一区二区在线不卡| 久久香蕉国产精品| 超碰成人久久| 午夜免费激情av| 国产欧美日韩一区二区三区在线| 性欧美人与动物交配| 亚洲国产看品久久| 欧美久久黑人一区二区| 一个人免费在线观看的高清视频| 国产精品国产高清国产av| 嫁个100分男人电影在线观看| 一进一出抽搐gif免费好疼 | 久久中文看片网| 亚洲色图综合在线观看| 黄频高清免费视频| 久久国产精品影院| 国产极品粉嫩免费观看在线| 搡老岳熟女国产| 国产人伦9x9x在线观看| videosex国产| 9热在线视频观看99| 欧美精品一区二区免费开放| 女人高潮潮喷娇喘18禁视频| 色尼玛亚洲综合影院| 久久精品影院6| 国产亚洲精品综合一区在线观看 | 亚洲一区二区三区色噜噜 | 女人被躁到高潮嗷嗷叫费观| 亚洲成国产人片在线观看| 丰满的人妻完整版| 一级毛片高清免费大全| 日韩av在线大香蕉| 色哟哟哟哟哟哟| 色婷婷av一区二区三区视频| 男女做爰动态图高潮gif福利片 | 欧美日韩瑟瑟在线播放| 一区二区三区精品91| 神马国产精品三级电影在线观看 | 亚洲熟妇中文字幕五十中出 | 一边摸一边抽搐一进一小说| 亚洲专区中文字幕在线| 老司机午夜福利在线观看视频| 亚洲精品一二三| 日日摸夜夜添夜夜添小说| 男女之事视频高清在线观看| 激情视频va一区二区三区| aaaaa片日本免费| 日本 av在线| 亚洲精品久久午夜乱码| 51午夜福利影视在线观看| 一边摸一边做爽爽视频免费| 很黄的视频免费| 男人舔女人下体高潮全视频| 欧美最黄视频在线播放免费 | 久久久久久久久中文| 人成视频在线观看免费观看| 99久久久亚洲精品蜜臀av| 久久久国产成人精品二区 | 色播在线永久视频| 色精品久久人妻99蜜桃| 自线自在国产av| 一级片'在线观看视频| 日韩欧美三级三区| 欧美日韩国产mv在线观看视频| 国产精品 国内视频| ponron亚洲| 成人亚洲精品av一区二区 | 亚洲自偷自拍图片 自拍| 久久久久国内视频| 久久欧美精品欧美久久欧美| www.熟女人妻精品国产| 国产免费现黄频在线看| 国产精品99久久99久久久不卡| 一级作爱视频免费观看| 亚洲第一av免费看| 一级毛片女人18水好多| 满18在线观看网站| 亚洲国产欧美日韩在线播放| 欧美一级毛片孕妇| 长腿黑丝高跟| 老司机亚洲免费影院| 青草久久国产| 免费看a级黄色片| 黄色丝袜av网址大全| 视频区欧美日本亚洲| 欧美日韩av久久| 亚洲色图 男人天堂 中文字幕| 无遮挡黄片免费观看| 国产精品一区二区免费欧美| 国产有黄有色有爽视频| 精品国产亚洲在线| 免费在线观看亚洲国产| 黄色女人牲交| netflix在线观看网站| 日韩高清综合在线| 久久人人精品亚洲av| 亚洲情色 制服丝袜| 午夜亚洲福利在线播放| 久久婷婷成人综合色麻豆| 自拍欧美九色日韩亚洲蝌蚪91| 日本黄色日本黄色录像| 欧美日韩瑟瑟在线播放| 99热国产这里只有精品6| 一区二区日韩欧美中文字幕| 亚洲国产欧美网| 国产成人影院久久av| 亚洲 国产 在线| 国产激情久久老熟女| 欧美激情极品国产一区二区三区| 97人妻天天添夜夜摸| 日本wwww免费看| 国产欧美日韩一区二区三| 香蕉久久夜色| 亚洲色图 男人天堂 中文字幕| 久久国产精品男人的天堂亚洲| 国产精品电影一区二区三区| 亚洲aⅴ乱码一区二区在线播放 | 成熟少妇高潮喷水视频| av有码第一页| av免费在线观看网站| 精品一区二区三区四区五区乱码| 久久中文看片网| 日韩国内少妇激情av| 亚洲一卡2卡3卡4卡5卡精品中文| 美女午夜性视频免费| 国产1区2区3区精品| 18美女黄网站色大片免费观看| 最好的美女福利视频网| 亚洲在线自拍视频| 日韩av在线大香蕉| 人人妻,人人澡人人爽秒播| 欧美久久黑人一区二区| 久久99一区二区三区| 自线自在国产av| 91大片在线观看| 51午夜福利影视在线观看| 三上悠亚av全集在线观看| 国产av一区在线观看免费| 国产有黄有色有爽视频| 亚洲国产欧美日韩在线播放| 日本三级黄在线观看| 久久久精品欧美日韩精品| 动漫黄色视频在线观看| 99久久综合精品五月天人人| 成人免费观看视频高清| 日韩中文字幕欧美一区二区| 欧美成人免费av一区二区三区| 亚洲av日韩精品久久久久久密| 午夜两性在线视频| 色综合欧美亚洲国产小说| 90打野战视频偷拍视频| 精品一区二区三区视频在线观看免费 | 亚洲va日本ⅴa欧美va伊人久久| 精品熟女少妇八av免费久了| 国产欧美日韩一区二区三| 不卡av一区二区三区| 无人区码免费观看不卡| 亚洲第一青青草原| 757午夜福利合集在线观看| 三级毛片av免费| 人人妻人人爽人人添夜夜欢视频| 又黄又爽又免费观看的视频| 精品久久久久久电影网| www.999成人在线观看| 黄色成人免费大全| 亚洲成国产人片在线观看| 五月开心婷婷网| 激情视频va一区二区三区| 午夜久久久在线观看| 精品国产乱码久久久久久男人| 国产欧美日韩一区二区三区在线|