• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The experiment and analysis of transitional flow in pipe*

    2016-10-14 12:23:33JunWANG王軍GuangshengDU杜廣生JingyingWANG王京盈JieGENG耿介DongLI李冬
    關(guān)鍵詞:王軍

    Jun WANG (王軍),Guang-sheng DU (杜廣生),Jing-ying WANG (王京盈),Jie GENG (耿介),Dong LI (李冬)

    1.School of Energy and Power Engineering,Shandong University,Jinan 250061,China

    2.School of Thermal Engineering,Shandong Jianzhu University,Jinan 250101,China,E-mail:wwjjy99@126.com

    The experiment and analysis of transitional flow in pipe*

    Jun WANG (王軍)1,2,Guang-sheng DU (杜廣生)1,Jing-ying WANG (王京盈)1,Jie GENG (耿介)1,Dong LI (李冬)1

    1.School of Energy and Power Engineering,Shandong University,Jinan 250061,China

    2.School of Thermal Engineering,Shandong Jianzhu University,Jinan 250101,China,E-mail:wwjjy99@126.com

    The transitional flow in a pipe is important for delivery,but its characteristics remain to be explored.In this paper,the two-dimensional laser Doppler velocimetry (LDV) is used for the study,focusing on the attenuation characteristics of the axial velocity,the variation of the velocity gradient,the effect of the angle between the axis and the resultant velocity vector,and the relationship between the energy coefficient and the flow state.The attenuation characteristics of the axial velocity along the radial direction are obtained.It is shown that with the increase of the Reynolds number,the change rate of the velocity gradient slows down with a similar distribution,and a rapid decrease is seen in the near wall region.The amplitude and the frequency of the angular variation are obviously improved with the increase of the Reynolds number.The instability of the velocity field is enhanced with the increase of the energy coefficient.

    transitional flow,attenuation,velocity gradient,flow instability,energy coefficient

    Introduction

    The pipe flow is one of the most common phenomena in industrial processes,the flow in the pipe is complicated,unstable,and related with a complex fluid dynamics.Aravinth[1]studied the heat and mass transfer processes of the turbulent fluid flow in the pipe,and proposed formulas obtained from a wide range of experimental data.References [2,3]analyzed the fully developed turbulent pipe flow by experiments,and obtained the velocity distribution and the von Karman' s coefficient in the pipe.

    Most of the researches mentioned above deal with the turbulence.The transition from the laminar to the turbulent flows has not been paid due attention,while there are significant differences between theflow field of a fully developed turbulence and that in the transitional area.A simplified flow model is often adopted to analyze it,and the experimental results focus on the change of the turbulent velocity field in the pipe.

    The transitional flow may be found in civil and industrial processes,and it is often treated as a turbulence.Using this method to design the pipe system and to make the flow measurement will cause a remarkable error,therefore,it is important to make a study of the flow of the transition area.The difference between a simplified theoretical model and the actual flow will bring about some errors,as the simplified model cannot fully reflect the essence of the pipe flow.In this paper,we study the transition area in the pipe by the experimental method to avoid the disadvantage of the simplified model.In the meantime,the factors affecting the pipe flow are discussed based on the velocity field.

    The Navier-Stokes (N-S) equation[4]of the incompressible fluid is usually used in the study of the pipe flow.In order to analyze the flow situation,the traditional method of analysis is to simplify the N-S equation by a dimensionless method.The dimensionless N-S equation takes the form

    In Eq.(1) and Eq.(2),W is the speed,t is the time,p is the pressure,Re is the Reynolds number andf is the volume force.

    It can be found from the dimensionless equations that the flo w states with the same Reynolds number are similar.It is seen that the speed item plays an important part in the flow process,so that the attenuation and the change of the velocity in the pipe can affect the flow significantly.In this paper,we use the two-dimensional laser Doppler velocimetry (LDV)[5,6]for the measurements in the transition area of the pipe flow.Because of the measuring advantage of the LDV[7,8]in the near wall region,the results can reflect the true state of the flow due to the uniformity of distribution and the good flow property of the natural impurities in water.The test area is arranged depending on the structural characteristics of the three-dimensional coordinate frame.

    From the pipe wall to the axis in the radial direction,the LDV is utilized sequentially for different positions and sections of the flow at different Reynolds numbers to obtain the flow parameters.From the experiment results,we can further analyze the variation and the attenuation of the flow and check the effects of the relevant parameters on the flow state.A reference can be provided for the numerical simulation of the pipe,the design of the piping system and the flow measuring device.

    Fig.1 Doppler testing system

    1.Experiment devices

    The experimental system includes a water circulation system[9-11]and a Doppler testing system,the water circulation system includes an upper water tank,a pipe system,an electromagnetic flow meter,a regulating valve,a circulating water pump and a lower water tank.The Doppler testing system is shown in Fig.1[12],the position of the measuring points can be adjusted by the use of a three-dimensional coordinate frame.

    2.Experiment method

    The water cycling system is started to form different flow states by the regulation of the valve opening,the flux is measured by the flow meter.To ensure the accuracy of the measurement,the LDV should be adjusted in accordance with the requirements of the experiment[12-14].The test section of the pipe is made of transparent plexiglass,its inner diameter is 0.04 m.The LDV is adjusted according to the technical parameters of the three-dimensional coordinates frame,the test area is shown in Fig.2.

    Fig.2 Test area

    According to the characteristics of the pipe flow,the flow velocity near the pipe wall changes greatly and the velocity decreases from the pipe center to the pipe wall.The measuring points near the wall are arranged densely to reflect the flow characteristics,the inner wall of the pipe is the starting point,on each section the beam intersection point is used as a measuring point and a set of data is obtained.There are 40 nodes in the radial direction and 70 nodes in the axial direction,the entire test area contains 2 800 nodes.A set of samples is chosen in the speed measurement,according to the initial setting of the test system,the average values are taken as the required data.The Reynolds number of the test area is from 2 000 to 8 000.On each test section,400 sets of data are obtained for every Reynolds number.

    3.Analysis of test results

    3.1 Attenuation characteristics of average axial velocity

    The axial velocity distribution varies greatly in different flow areas in the pipe[15,16],the attenuation characteristics have much to do with the flow state.Six flow states in the experiment ( Re = 2 400,3 800,4 800,5 800,6 800,7 800) are selected.

    Comparing the velocity of each measuring point with the average velocity in each flow state,it can befound that the proportion of the velocity below the average value is gradually decreased with the increase of the Reynolds number.When Re =2 400,the proportion of the measured velocity below the average speed is 40%,and it becomes 25% when Re =7800,and the flow state tends to be enhanced.The results of the experiment are shown in Table 1.

    Table 1 Proportion of velocity below average speed

    The attenuation characteristics in different flow states are analyzed.Considering the instantaneity and the mutability of the flow field,the radial coordinate is nondimensionalized.

    Fig.3 Distributions of the average speed

    Figure 3 shows the average velocity distribution along the radial direction.The center of the pipe is used as the starting point of the coordinater and the pipe wall is the end.Comparing the occurrence position of the average speed,it can be seen that the mainstream area is enlarged with the increase of the Reynolds number.In Fig.3,Curve 1 is the occurrence position of the average speed in the radial direction in different flow states,Curve 2 is the positional distribution when the speed is down to the 50 percent of the average velocity.The axial velocity is enhanced with the increase of the Reynolds number; because of the inertia force,the axial velocity at different measuring points shows a trend of overall increase,the occurrence position of the average speed gradually moves towards the pipe wall,reflecting the change of the velocity distribution in the flow field.With the increase of the Reynolds number,the distribution of the points on Curves 1 and 2 has an approximately linear relationship.Comparing Curve 1 with Curve 2,it can be found that the decaying rate at a high Reynolds number is significantly greater than that at a low Reynolds number on the basis of per unit length under different flow conditions,when the average speed declines gradually to its 50% in the radial direction,the attenuation improves greatly with the increase of the Reynolds number,and the decaying rate of the axial velocity in the radial direction has a close relationship with the flow state.

    3.2 Analysis of flow changes near the pipe wall

    The LDV performs well in the testing area near the pipe wall.The distribution of the flow velocity vector at different Reynolds numbers is shown in Fig.4.With the increase of the Reynolds number,the influence of the inertia force is gradually increased and that of the viscous force is weakened[17],the flow velocity near the pipe wall is increased,the velocity profile develops gradually and becomes full,the shape of the profile boundary changes from parabola to logarithmic curve,the flow state is gradually changed.The change extent of the profile shape is particularly evident near the pipe wall.

    Fig.4 Distributions of the velocity vector near the pipe wall

    In order to study the flow characteristics near the pipe wall quantitatively,the axial velocity profile composed of ten continuous measuring points is analyzed numerically and the distribution of the velocity gradient along the radial direction is obtained,from which the effective scope of the flow field can be determined.Based on the work of the Ref.[18],the velocity gradient is dealt with the dimensionless method to reach some general conclusions.The dimensionless uses the following method

    where ?u is the axial velocity change,V is theaverage velocity,?r is the radius variation,andD is the diameter.The distribution of the dimensionless velocity gradient is shown in Fig.5.

    Fig.5 Distributions of the dimensionless velocity gradient

    According to the distribution of the dimensionless velocity gradient,in the starting stage of the curve,six curves of the velocity gradient see a certain similarity.With the measuring point being moved from the axis to the pipe wall,the inertial force plays more important role than that of the viscous force at a low Reynolds number,the change of the velocity gradient along the radial direction is significant and has a certain continuity,the curve shows the state of a rapid uplift and the uplift location is far away from the pipe wall.

    With the increase of the Reynolds number,the axial velocity is improved,the impact of the inertial force is enhanced and that of the viscous force is reduced.The mixing of the fluid particles is improved.It can be observed in Fig.5 that the similarity of the velocity gradient curve is apparent at a high Reynolds number.With the expansion of the axial velocity boundary,the front of the curve is relatively flat,with characteristics of a sharp improvement in the position close to the pipe wall.

    Fig.6 Axial angle distributions of the resultant velocity

    3.3 The change of the angle between the resultant velocity vector and the pipe axis

    In various sections of the pipe,the flow velocities are in the form of resultant vectors,and the change of the resultant velocity has an important impact on the pipe flow.According to the features of the Doppler velocimetry,the distribution of the resultant velocity on the longitudinal section of the pipe is analyzed.

    Figure 6 shows the change of the angle between the resultant velocity vector on the longitudinal section in the pipe and the pipe axis at different Reynolds numbers.At a low Reynolds number,the angle changes but little.The tendency of the curve is relatively stable.Because of the viscous force,the impact of the radial velocity is weakened.Interference between different flow layers is small.

    With the increase of the Reynolds number,the axial velocity becomes to play a leading role at the position close to the pipe axis because of the impact of the inertial force,the change of the angle is not significant,when the considered position moves continuously towards the pipe wall along the radial direction,there is a significant increase in the angle with the improvement of the effect of the viscous force,the angle sees a larger fluctuation,the direction of the resultant velocity changes frequently,which causes the interference between different flow layers.The radial velocity is severely affected in the area close to the pipe wall and the angle becomes to show a downward trend.

    At a high Reynolds number,the position where the angle changes significantly moves forward obviously,the radial velocity plays a more important role with the reduction of the viscosity force effect,the region of the angle fluctuation is widened and the volatility is also increased.The variation and the frequency of the axial angle are improved and the uncertainty of the flow is enhanced,the disturbance and the mixing between flow layers lead to the change of the flow state.Because of the impact of the pipe wall,the radial velocity is reduced and the angle also shows a downward trend in the area close to the pipe wall.

    3.4 The effect of energy coefficient

    The kinetic energy is an important parameter to analyze the flow state,and the energy change in the fluid flow can be analyzed as

    In Eq.(4),1u,1vand1ware,respectively,the root mean square values of the axial,radial and circumferential velocities,V is the average axial velocity and βis the energy coefficient.

    In the experiment,the two-dimensional Doppler velocimetry is used as the testing instrument,and the experimental data contain only the radial and axial velocity components.It is assumed that the pipe flowis isotropic.To analyze the flow state,Eq.(4) can be simplified as

    The relationship between the energy coefficient and the change of the flow state in the pipe can be studied according to the change of the energy coefficient.

    Figure 7 is the distribution of the energy coefficient in three flow states.With the increase of the Reynolds number,the growth ofβis improved,the kinetic energy coefficient in three flow states can reach the maximum value at the pipe axis,with the radial velocity and the axial velocity increasing rapidly.At a high Reynolds number,there are more peak points of the kinetic energy coefficient on the curves,the change of the energy is more severe,and the randomness and the volatility of the flow are significantly increased.

    Fig.7 Distributions of the energy coefficients

    The curves ofβin the three flowing states see a decrease in the region close to the pipe wall,the greater the Reynolds number,the more obvious the downward trend.At a low Reynolds number,the location where the curves show a downtrend trend is far from the pipe wall.With the increase of the Reynolds number,the curves rapidly decline at locations close to the pipe wall,which reflects the influence of the pipe wall on the velocity field in different flow states,that is,the region near the pipe wall has an inhibitory effect on the flow development.The shape of the curve shows irregular changes,by comparing the coefficient curves at different Reynolds numbers.It is found that the fluctuations of the curve at a high Reynolds number can appear in the whole radial area,which reflects the increase of the energy distribution instability.When moving along the radial direction,the velocity field changes due to the effect of the viscous force which leads to the change of the energy coefficient.

    At a small Reynolds number,the acting area and the intensity of the viscous force are enlarged,the energy of the fluid changes slowly,and its kinetic coefficient curve is relatively flat.At a high Reynolds number,one sees the steep rise and drop in the curves,the instability of the flow is more severe.The energy coefficient curves in the three flowing states are in a downward trend,which indicates that the development of the flow in the near wall region is inhibited.In the flow process,the curve fluctuations are not significant near the pipe axis area,the fluctuations of the curves appear mainly in the movement from the pipe axis to the pipe wall.The interaction between the inertia force and the viscous force has a great bearing on the flow state in the flow region,and the distribution of the energy coefficient also sees a significant change.

    4.Conclusions

    The radial attenuation of the axial velocity is closely related to the flow conditions and the flow area,the attenuation is not significant at the area close to the pipe axis,and at a high Reynolds number,the attenuation is significantly increased near the pipe wall.Due to the intensification of the flow and the expansion of the flow area,the position where the average velocity changes steeply moves toward the pipe wall with the increase of the Reynolds number.

    The variation of the velocity gradient can affect the flow state.Under different flow conditions,the tendencies of the velocity gradient curves are similar in the pipe axis region where the inertia force has a strong effect.When the observation point moves gradually to the pipe wall,the changing range of the velocity gradient is larger at a low Reynolds number.At a high Reynolds number,the velocity gradient sees a rapid decline in the area close to the pipe wall.

    At a low Reynolds number,the angle between the resultant velocity vector and the pipe axis is small,the interference between different flow layers is weak,the effect of the viscous force is enhanced and the flow has better stability.At a high Reynolds number,the angle between the resultant velocity vector and the pipe axis is increased and sees fluctuations when moving to the pipe wall along the radial direction,the change of the velocity vector angle will increase the uncertainty of the fluid particle motion and promote the change of the flow state.

    The energy coefficient can reflect the change of the flowing state,the instability of the flow improves with the increase of the energy coefficient,the trend is proportional to the increase of the Reynolds number,the fluctuation of the energy coefficient is mainly in the region between the pipe axis and the pipe wall.

    [1]ARAVINTH S.Prediction of heat and mass transfer forfully developed turbulent fluid flow through pipes[J].International Journal of Heat and Mass Transfer,2000,43(8):1399-1408.

    [2]DUGUET Y.,WILLIS A.P.and KERSWELL R.R.Slug genesis in cylindrical pipe flow[J].Journal of Fluid Mechanics,2010,663(11):180-208.

    [3]FENG Bin-chun,CUI Gui-xiang and ZHANG Zhao-shun.Experimental study for fully developed turbulent pipe flow[J].Acta Mechanica Sinica,2002,34(2):156-167(in Chinese).

    [4]KOEHLER C.,BERAN P.and VANELLA M.et al.Flows produced by the combined oscillatory rotation and translation of a circular cylinder in a quiescent fluid[J].Journal of Fluid Mechanics,2015,764(2):148-170.

    [5]LIU You,YANG Xiao-tao and MA Xiu-zhen.Technique of flow field measurement based on laser Doppler velocimetry[J].Laser and Infrared,2012,42(1):18-21(in Chinese).

    [6]TIAN Zhong,DENG Jun and FENG Xue-min.Investigation of flow Fields for plug dissipaters by LDV[J].Journal of Sichuan University (Engineering Science Edition),2014,46(4):1-5(in Chinese).

    [7]SANTINI M.,SANTINI S.F.and COSSALI G.LDV characterization and visualization of the liquid velocity field underneath an impacting drop in isothermal conditions[J].Experiments in Fluids,2013,54(9):1593-1597.

    [8]MOUAZE D.,BELORGEY P.M.Internally mounted laser-Doppler-anemometry system for boundary layer measureme[J].Experiments in Fluids,2001,30(1):111-114.

    [9]LIU Yong-hui,DU Guang-sheng and LIU Li-ping et al.Experimental study of velocity distribution in the transition region of pipes[J].Journal of Hydrodynamics,2011,23(5):643-648.

    [10]PAN Dong-yuan,WANG Tong and ZHANG Bin et al.PIV measurement on rotating disks flow in cylinder[J].Chinese Journal of Hydrodynamics,2009,24(2):200-206(in Chinese).

    [11]TALPOS S.,APOSTOL M.Displaced logarithmic profile of the velocity distribution in the boundary layer of a turbulent flow over an unbounded flat surface[J].Physics Letters A,2015,379(47):3102-3107.

    [12]SHEN Xiong.Principle and application of laser doppler testing technique[M].Beijing,China:Tsinghua University Press,2004(in Chinese).

    [13]ZHOU Jian.Application of frequency spectrum refinementand correction technology in laser doppler velocimeter[J].Laser and Infrared,2010,40(2):146-151(in Chinese).

    [14]WEN Yuan-fan,XIAO Hong-yin.A laser imaging-LDV coupling measurement of single bubble forming and rising in shear-thinning fluid[J].Journal of Thermal Science,2014,23(3):233-238.

    [15]ARMAN M.,LYES K.and AFSHIN G.Measurement of fluid velocity development in laminar pipe flow using laser Doppler velocimetry[J].European Journal of Physics,2013,34(5):1127-1134.

    [16]FENG Jian-jun,LUO Xing-qi and BENRA Friedrich-Kar et al.Experimental investigation of velocity fluctuations in a radial diffuser pump[J].Journal of Hydrodynamics,2015,27(3):332-339.

    [17]SAD CHEMLOUL N.Experimental study of the drag reduction in turbulent pipe flow[J].Energy,2014,64(1):818-827.

    [18]LAI Yong-bin,YANG Min-guan and GAO Bo.Experiment on axial circle flow in axially stirred tank[J].Journal of Jiangsu University (Natural Science Edition),2009,30(4):379-382(in Chinese).

    10.1016/S1001-6058(16)60633-9

    (Received October 23,2015,Revised February 20,2016)

    * Project supported by the National Natural Science Foundation of China (Grant No.10972123).

    Biography:Jun WANG (1969-),Male,Ph.D.Candidate,Associate professor

    Guang-sheng DU,E-mail:du@sdu.edu.cn

    2016,28(2):313-318

    猜你喜歡
    王軍
    HITTING PROBABILITIES AND INTERSECTIONS OF TIME-SPACE ANISOTROPIC RANDOM FIELD
    石榴樹想法妙
    我要好好來欣賞
    不下戰(zhàn)場的士兵——王軍
    活力(2019年19期)2020-01-06 07:34:36
    蜜蜂和油菜花
    可愛的小丫丫
    生態(tài)景觀在城市規(guī)劃中的應(yīng)用探索
    Revisit submergence of ice blocks in front of ice cover-an experimental study *
    Impact of bridge pier on the stability of ice jam*
    Simulations of ice jam thickness distribution in the transverse direction*
    亚洲黑人精品在线| 免费高清在线观看日韩| 又黄又爽又免费观看的视频| 免费不卡黄色视频| 天天添夜夜摸| 色综合站精品国产| 日韩欧美三级三区| 少妇粗大呻吟视频| netflix在线观看网站| a级毛片在线看网站| 男女午夜视频在线观看| 777久久人妻少妇嫩草av网站| 精品国内亚洲2022精品成人| 久久精品国产99精品国产亚洲性色 | 别揉我奶头~嗯~啊~动态视频| 变态另类丝袜制服| 国语自产精品视频在线第100页| 日日爽夜夜爽网站| 欧美成狂野欧美在线观看| 国产精品,欧美在线| 国产av在哪里看| 老熟妇乱子伦视频在线观看| 久久国产亚洲av麻豆专区| 首页视频小说图片口味搜索| 在线观看免费日韩欧美大片| 国产精品精品国产色婷婷| 欧美午夜高清在线| 日本五十路高清| 成人特级黄色片久久久久久久| 国产免费男女视频| 亚洲欧美日韩高清在线视频| 欧美中文综合在线视频| 男人的好看免费观看在线视频 | 亚洲欧美激情综合另类| 18禁裸乳无遮挡免费网站照片 | 精品国产亚洲在线| 免费在线观看亚洲国产| 午夜福利在线观看吧| 午夜亚洲福利在线播放| 欧美日韩中文字幕国产精品一区二区三区 | 日韩精品中文字幕看吧| 窝窝影院91人妻| 国产亚洲欧美精品永久| 国产欧美日韩一区二区精品| or卡值多少钱| av有码第一页| 久久精品国产亚洲av香蕉五月| 国产av在哪里看| 身体一侧抽搐| 亚洲欧美激情在线| 亚洲中文日韩欧美视频| 成熟少妇高潮喷水视频| 啦啦啦 在线观看视频| 99久久久亚洲精品蜜臀av| netflix在线观看网站| 午夜久久久久精精品| 亚洲一区高清亚洲精品| 香蕉国产在线看| cao死你这个sao货| 俄罗斯特黄特色一大片| 日韩欧美一区二区三区在线观看| 一a级毛片在线观看| 久久狼人影院| 国产一区在线观看成人免费| 日韩 欧美 亚洲 中文字幕| 亚洲美女黄片视频| 麻豆久久精品国产亚洲av| 国产99白浆流出| 中文亚洲av片在线观看爽| 亚洲国产精品合色在线| 精品卡一卡二卡四卡免费| 久久人人爽av亚洲精品天堂| 成熟少妇高潮喷水视频| e午夜精品久久久久久久| 一级作爱视频免费观看| 给我免费播放毛片高清在线观看| 国产成人精品久久二区二区91| 国产一区二区三区在线臀色熟女| 久久精品人人爽人人爽视色| 变态另类丝袜制服| 99热只有精品国产| 日韩欧美三级三区| 1024香蕉在线观看| avwww免费| 久久人人97超碰香蕉20202| 欧美亚洲日本最大视频资源| 少妇 在线观看| 波多野结衣巨乳人妻| 日韩一卡2卡3卡4卡2021年| 欧美一区二区精品小视频在线| 久久国产精品人妻蜜桃| 精品熟女少妇八av免费久了| www.999成人在线观看| 国产高清视频在线播放一区| 好看av亚洲va欧美ⅴa在| 高清在线国产一区| 久久久精品国产亚洲av高清涩受| 丝袜美腿诱惑在线| 变态另类成人亚洲欧美熟女 | 18禁国产床啪视频网站| 成人18禁高潮啪啪吃奶动态图| 日本精品一区二区三区蜜桃| 九色国产91popny在线| 国产成人精品在线电影| 女性被躁到高潮视频| 一边摸一边抽搐一进一小说| av免费在线观看网站| 又大又爽又粗| 12—13女人毛片做爰片一| 成熟少妇高潮喷水视频| 欧美激情 高清一区二区三区| 亚洲一区二区三区不卡视频| 精品国产一区二区久久| а√天堂www在线а√下载| 国产欧美日韩精品亚洲av| 91字幕亚洲| 国产亚洲精品久久久久久毛片| 看片在线看免费视频| √禁漫天堂资源中文www| 国产麻豆成人av免费视频| 久久精品91无色码中文字幕| 99国产精品免费福利视频| 国产高清视频在线播放一区| 亚洲人成网站在线播放欧美日韩| 少妇熟女aⅴ在线视频| 看片在线看免费视频| 亚洲成国产人片在线观看| 性少妇av在线| 麻豆国产av国片精品| 丝袜美腿诱惑在线| 日韩三级视频一区二区三区| av视频免费观看在线观看| 丁香欧美五月| 韩国精品一区二区三区| 欧美日韩瑟瑟在线播放| 我的亚洲天堂| 校园春色视频在线观看| 99riav亚洲国产免费| 国产亚洲欧美在线一区二区| 亚洲成人精品中文字幕电影| 国产亚洲精品久久久久久毛片| 色播在线永久视频| 久久伊人香网站| 69精品国产乱码久久久| 亚洲黑人精品在线| 久久久精品欧美日韩精品| 岛国视频午夜一区免费看| 日本欧美视频一区| 午夜视频精品福利| 岛国在线观看网站| 在线国产一区二区在线| 精品午夜福利视频在线观看一区| 两性夫妻黄色片| 国产亚洲欧美在线一区二区| 久久中文看片网| 婷婷精品国产亚洲av在线| 一区二区三区激情视频| 又黄又爽又免费观看的视频| 久久久久久久久免费视频了| 久久九九热精品免费| 久久人妻福利社区极品人妻图片| 18禁国产床啪视频网站| 中文字幕人成人乱码亚洲影| 午夜视频精品福利| 久久久久国产精品人妻aⅴ院| 久久人人爽av亚洲精品天堂| 可以免费在线观看a视频的电影网站| 热99re8久久精品国产| 麻豆av在线久日| 90打野战视频偷拍视频| 宅男免费午夜| 国产高清激情床上av| 纯流量卡能插随身wifi吗| 中文字幕精品免费在线观看视频| 色尼玛亚洲综合影院| 国产极品粉嫩免费观看在线| 久久精品人人爽人人爽视色| 12—13女人毛片做爰片一| 一区二区三区国产精品乱码| 中文字幕久久专区| 亚洲免费av在线视频| 免费看十八禁软件| 90打野战视频偷拍视频| 亚洲av日韩精品久久久久久密| 久热这里只有精品99| 色在线成人网| 午夜免费成人在线视频| 久久婷婷成人综合色麻豆| 欧美乱码精品一区二区三区| 成人欧美大片| 91大片在线观看| 成人三级做爰电影| av片东京热男人的天堂| 欧美日韩一级在线毛片| 成年人黄色毛片网站| 亚洲精华国产精华精| 色综合站精品国产| 久久精品国产亚洲av香蕉五月| 欧美黑人精品巨大| 一级a爱片免费观看的视频| 婷婷精品国产亚洲av在线| 女人被躁到高潮嗷嗷叫费观| 午夜两性在线视频| 成年版毛片免费区| 欧美一区二区精品小视频在线| 丁香欧美五月| 一二三四社区在线视频社区8| 他把我摸到了高潮在线观看| 99热只有精品国产| 亚洲精品国产精品久久久不卡| 极品教师在线免费播放| 青草久久国产| aaaaa片日本免费| 91大片在线观看| 黄色毛片三级朝国网站| 欧美精品啪啪一区二区三区| 亚洲熟女毛片儿| 女同久久另类99精品国产91| 国产精品免费视频内射| 亚洲成人久久性| 黄色 视频免费看| 亚洲av五月六月丁香网| 国产亚洲精品av在线| 欧美乱码精品一区二区三区| 成人永久免费在线观看视频| 久久久久久久久免费视频了| 十八禁人妻一区二区| 亚洲午夜理论影院| 91av网站免费观看| 亚洲精品粉嫩美女一区| 精品乱码久久久久久99久播| 99re在线观看精品视频| 纯流量卡能插随身wifi吗| 欧美成人午夜精品| 欧美不卡视频在线免费观看 | 免费看美女性在线毛片视频| 人人妻人人澡欧美一区二区 | 999久久久精品免费观看国产| 成人欧美大片| av天堂久久9| 久久这里只有精品19| 国产精品久久久久久人妻精品电影| 女性生殖器流出的白浆| 欧美激情 高清一区二区三区| 1024香蕉在线观看| 1024香蕉在线观看| 高清黄色对白视频在线免费看| 欧美+亚洲+日韩+国产| 久久人人97超碰香蕉20202| 久久精品91蜜桃| 亚洲欧美精品综合一区二区三区| 手机成人av网站| 成年版毛片免费区| 不卡av一区二区三区| 亚洲va日本ⅴa欧美va伊人久久| 黄色毛片三级朝国网站| 最新在线观看一区二区三区| 国产单亲对白刺激| 成人手机av| 国产蜜桃级精品一区二区三区| 亚洲av成人一区二区三| 一级毛片高清免费大全| 精品高清国产在线一区| 日日夜夜操网爽| 老司机福利观看| 国产区一区二久久| aaaaa片日本免费| 国产国语露脸激情在线看| 波多野结衣一区麻豆| 在线观看日韩欧美| 波多野结衣一区麻豆| 高清毛片免费观看视频网站| 亚洲精品久久国产高清桃花| 黄频高清免费视频| 亚洲自拍偷在线| 18禁观看日本| 亚洲成人久久性| 日本黄色视频三级网站网址| 亚洲欧美激情在线| 成人精品一区二区免费| 中文字幕av电影在线播放| 午夜免费鲁丝| 成人欧美大片| 99精品在免费线老司机午夜| 91老司机精品| 国产日韩一区二区三区精品不卡| 久久久久精品国产欧美久久久| 日本三级黄在线观看| 日本一区二区免费在线视频| 别揉我奶头~嗯~啊~动态视频| 三级毛片av免费| 99久久国产精品久久久| 18禁黄网站禁片午夜丰满| 久久久国产成人免费| 一级作爱视频免费观看| 操出白浆在线播放| 国产熟女午夜一区二区三区| 99精品久久久久人妻精品| 男人操女人黄网站| 黄色片一级片一级黄色片| 性少妇av在线| 首页视频小说图片口味搜索| 非洲黑人性xxxx精品又粗又长| 在线观看日韩欧美| 国产麻豆69| 亚洲成a人片在线一区二区| 久久这里只有精品19| 日本vs欧美在线观看视频| 亚洲欧美激情综合另类| 亚洲第一欧美日韩一区二区三区| 亚洲午夜精品一区,二区,三区| 国产熟女xx| 两性午夜刺激爽爽歪歪视频在线观看 | 久久性视频一级片| 两性夫妻黄色片| 好男人在线观看高清免费视频 | 成人三级黄色视频| 久久婷婷成人综合色麻豆| ponron亚洲| 18禁观看日本| 精品久久久久久,| 日本 av在线| 亚洲激情在线av| 亚洲熟妇中文字幕五十中出| 午夜福利18| 久久婷婷人人爽人人干人人爱 | 亚洲熟妇熟女久久| 久久久久久大精品| 99国产综合亚洲精品| 久久久久久久精品吃奶| 一级,二级,三级黄色视频| 十八禁人妻一区二区| 亚洲国产欧美一区二区综合| av福利片在线| 日本一区二区免费在线视频| 欧美成人免费av一区二区三区| 色尼玛亚洲综合影院| 成人亚洲精品av一区二区| 亚洲欧洲精品一区二区精品久久久| 麻豆av在线久日| 嫁个100分男人电影在线观看| 真人一进一出gif抽搐免费| 非洲黑人性xxxx精品又粗又长| 精品熟女少妇八av免费久了| 十八禁人妻一区二区| 男人的好看免费观看在线视频 | 久久精品91无色码中文字幕| 亚洲成av人片免费观看| 免费在线观看黄色视频的| 国产精品美女特级片免费视频播放器 | 国产一区二区三区在线臀色熟女| 亚洲av日韩精品久久久久久密| 午夜亚洲福利在线播放| 一级,二级,三级黄色视频| 男人的好看免费观看在线视频 | 国产蜜桃级精品一区二区三区| 午夜福利一区二区在线看| 一二三四社区在线视频社区8| 99国产精品免费福利视频| 亚洲av成人av| 久久国产精品男人的天堂亚洲| 亚洲av美国av| 亚洲av电影在线进入| 91精品三级在线观看| 亚洲精品美女久久av网站| 久久香蕉国产精品| 亚洲国产精品成人综合色| 一区二区三区精品91| 亚洲色图 男人天堂 中文字幕| 美女 人体艺术 gogo| 成人三级做爰电影| 免费久久久久久久精品成人欧美视频| 成人18禁在线播放| 男男h啪啪无遮挡| 欧美精品啪啪一区二区三区| 激情视频va一区二区三区| 亚洲 欧美 日韩 在线 免费| 一区二区三区高清视频在线| 99re在线观看精品视频| 淫秽高清视频在线观看| 免费看十八禁软件| 性少妇av在线| 成年女人毛片免费观看观看9| 50天的宝宝边吃奶边哭怎么回事| 亚洲色图综合在线观看| 色婷婷久久久亚洲欧美| 激情视频va一区二区三区| 国产精品影院久久| 久久国产乱子伦精品免费另类| 天堂动漫精品| 欧美日韩乱码在线| 久久午夜亚洲精品久久| 国产欧美日韩综合在线一区二区| 亚洲国产中文字幕在线视频| 国产99久久九九免费精品| 97人妻天天添夜夜摸| 精品电影一区二区在线| 精品乱码久久久久久99久播| 午夜福利一区二区在线看| 女性生殖器流出的白浆| 免费在线观看黄色视频的| e午夜精品久久久久久久| 亚洲成国产人片在线观看| 正在播放国产对白刺激| 久久久久久久久免费视频了| 久久精品亚洲精品国产色婷小说| 好看av亚洲va欧美ⅴa在| 欧美性长视频在线观看| 变态另类成人亚洲欧美熟女 | 一本综合久久免费| 精品一区二区三区av网在线观看| 黄色丝袜av网址大全| 亚洲中文日韩欧美视频| 亚洲五月色婷婷综合| 乱人伦中国视频| 宅男免费午夜| 免费女性裸体啪啪无遮挡网站| 免费在线观看黄色视频的| 国产精品 欧美亚洲| 韩国av一区二区三区四区| 亚洲中文字幕日韩| 天天躁狠狠躁夜夜躁狠狠躁| 美女高潮到喷水免费观看| 欧美在线一区亚洲| 国产精品,欧美在线| 在线永久观看黄色视频| 免费观看人在逋| 可以免费在线观看a视频的电影网站| 黄色成人免费大全| 视频区欧美日本亚洲| 国产精品秋霞免费鲁丝片| 成人永久免费在线观看视频| 国产在线观看jvid| 中国美女看黄片| 高潮久久久久久久久久久不卡| 99久久久亚洲精品蜜臀av| 亚洲久久久国产精品| 午夜精品在线福利| 日韩免费av在线播放| 国产日韩一区二区三区精品不卡| 最近最新中文字幕大全电影3 | 欧美黄色片欧美黄色片| 在线观看免费视频网站a站| 国产野战对白在线观看| 欧美日本视频| 国产精品 国内视频| 男人舔女人的私密视频| a在线观看视频网站| 精品卡一卡二卡四卡免费| 久久久国产精品麻豆| 大码成人一级视频| 亚洲成av人片免费观看| 一a级毛片在线观看| 成人18禁高潮啪啪吃奶动态图| 亚洲精品国产精品久久久不卡| 好男人电影高清在线观看| 国产亚洲精品av在线| 99久久综合精品五月天人人| 亚洲国产欧美一区二区综合| 国产一卡二卡三卡精品| 亚洲精品国产精品久久久不卡| 精品一区二区三区视频在线观看免费| √禁漫天堂资源中文www| 黄片大片在线免费观看| 88av欧美| 日本欧美视频一区| 久久人人97超碰香蕉20202| 少妇 在线观看| 欧美 亚洲 国产 日韩一| 国产精品野战在线观看| 久久午夜综合久久蜜桃| 欧美日韩亚洲国产一区二区在线观看| 欧美日韩福利视频一区二区| 国产亚洲精品久久久久5区| 午夜a级毛片| 身体一侧抽搐| 欧美 亚洲 国产 日韩一| 免费在线观看黄色视频的| 国产精品精品国产色婷婷| 国产又爽黄色视频| 成人特级黄色片久久久久久久| 精品久久久久久久人妻蜜臀av | 日本在线视频免费播放| 久久性视频一级片| 成在线人永久免费视频| 男女下面进入的视频免费午夜 | 免费看美女性在线毛片视频| 久久天堂一区二区三区四区| 色哟哟哟哟哟哟| 欧美最黄视频在线播放免费| 极品人妻少妇av视频| 电影成人av| 久久国产精品男人的天堂亚洲| 黄色毛片三级朝国网站| aaaaa片日本免费| 又大又爽又粗| 少妇裸体淫交视频免费看高清 | 国产乱人伦免费视频| 欧美乱色亚洲激情| 又黄又粗又硬又大视频| 级片在线观看| 久久久久久久精品吃奶| 一区二区三区精品91| 黑人欧美特级aaaaaa片| 国产亚洲精品久久久久久毛片| 久久精品国产清高在天天线| 国产成人精品久久二区二区91| 夜夜夜夜夜久久久久| 欧美性长视频在线观看| 女人高潮潮喷娇喘18禁视频| 午夜亚洲福利在线播放| 欧美日韩亚洲国产一区二区在线观看| 777久久人妻少妇嫩草av网站| 在线免费观看的www视频| 亚洲成av人片免费观看| 99国产精品一区二区三区| 搡老妇女老女人老熟妇| 亚洲专区字幕在线| 黑丝袜美女国产一区| 黄色毛片三级朝国网站| 国产精品九九99| 免费在线观看日本一区| 国产精品一区二区三区四区久久 | 俄罗斯特黄特色一大片| 校园春色视频在线观看| 麻豆成人av在线观看| 国产精品日韩av在线免费观看 | 欧美日韩一级在线毛片| 欧美大码av| 丝袜在线中文字幕| 亚洲av美国av| 一区在线观看完整版| 欧美日韩福利视频一区二区| 丝袜美足系列| 欧美av亚洲av综合av国产av| 国产亚洲欧美在线一区二区| 国产亚洲av嫩草精品影院| www国产在线视频色| 亚洲熟女毛片儿| 国产一区二区激情短视频| 老司机午夜十八禁免费视频| 又黄又粗又硬又大视频| 18禁观看日本| 久久精品国产亚洲av高清一级| 国产成人啪精品午夜网站| 亚洲一区二区三区不卡视频| 国产一区在线观看成人免费| 一区二区三区精品91| 国产99久久九九免费精品| 国产真人三级小视频在线观看| 亚洲一区高清亚洲精品| 久久久久亚洲av毛片大全| 99久久精品国产亚洲精品| 人人妻人人澡欧美一区二区 | 久久精品91无色码中文字幕| 亚洲午夜精品一区,二区,三区| 精品国产乱码久久久久久男人| 国产伦一二天堂av在线观看| 少妇裸体淫交视频免费看高清 | 欧美亚洲日本最大视频资源| 男人操女人黄网站| 女人被躁到高潮嗷嗷叫费观| 亚洲色图 男人天堂 中文字幕| 亚洲中文字幕一区二区三区有码在线看 | √禁漫天堂资源中文www| avwww免费| 国产av一区在线观看免费| 少妇被粗大的猛进出69影院| 人人澡人人妻人| 国产男靠女视频免费网站| 国产单亲对白刺激| 亚洲av美国av| 国产精品乱码一区二三区的特点 | 好看av亚洲va欧美ⅴa在| a级毛片在线看网站| 欧美+亚洲+日韩+国产| www.精华液| 亚洲无线在线观看| 久久国产精品影院| 精品一区二区三区四区五区乱码| 色综合亚洲欧美另类图片| 韩国av一区二区三区四区| 在线观看午夜福利视频| 亚洲av成人不卡在线观看播放网| 亚洲欧洲精品一区二区精品久久久| 91成年电影在线观看| 麻豆成人av在线观看| 国产亚洲欧美98| 亚洲男人天堂网一区| www日本在线高清视频| 99在线视频只有这里精品首页| 国产真人三级小视频在线观看| 日日摸夜夜添夜夜添小说| 母亲3免费完整高清在线观看| 亚洲全国av大片| 国产片内射在线| 欧美激情高清一区二区三区| 不卡一级毛片| 欧美日韩亚洲国产一区二区在线观看| 亚洲av日韩精品久久久久久密| 一边摸一边做爽爽视频免费| 亚洲成国产人片在线观看| 国产一区二区三区综合在线观看| 国产乱人伦免费视频| 日本vs欧美在线观看视频| 宅男免费午夜| 两性午夜刺激爽爽歪歪视频在线观看 | 日韩精品免费视频一区二区三区| 久久 成人 亚洲| 中亚洲国语对白在线视频| 亚洲精品一区av在线观看| 欧美一级a爱片免费观看看 | 国产精品爽爽va在线观看网站 | 亚洲专区中文字幕在线| 国产精品永久免费网站|