• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      耕作與植物生長(zhǎng)調(diào)節(jié)劑對(duì)優(yōu)質(zhì)粳稻產(chǎn)量及光合特性的影響

      2022-11-13 07:55:10趙黎明鄭殿峰馮乃杰沈雪峰黃安琪王亞新蔣文鑫
      關(guān)鍵詞:莖鞘齊穗穗數(shù)

      趙黎明,鄭殿峰,馮乃杰,沈雪峰,黃安琪,王亞新,蔣文鑫

      耕作與植物生長(zhǎng)調(diào)節(jié)劑對(duì)優(yōu)質(zhì)粳稻產(chǎn)量及光合特性的影響

      趙黎明,鄭殿峰※,馮乃杰,沈雪峰,黃安琪,王亞新,蔣文鑫

      (廣東海洋大學(xué)濱海農(nóng)業(yè)學(xué)院,湛江 524088)

      為探明耕作方式與植物生長(zhǎng)調(diào)節(jié)劑(Plant Growth Regulators,PGRs)對(duì)連續(xù)旋耕稻田優(yōu)質(zhì)粳稻光合特性和產(chǎn)量的影響,解決或緩解不合理耕作帶來(lái)的產(chǎn)量形成不利問(wèn)題,該研究于2018-2019年在大田條件下以綏粳18、墾稻12和三江6為試驗(yàn)材料,在連續(xù)旋耕稻田上設(shè)置深耕(Deep Tillage,DT)與旋耕(Rotary Tillage,RT)2種耕作處理,于劍葉展葉期分別噴施己酸二乙氨基乙醇酯(Diethylaminoethyl caproate,DA-6),6-芐氨基腺嘌呤(6-benzylaminoadenine,6-BA)和亞精胺(Spermidine,Spd)3種PGRs,并設(shè)置清水對(duì)照,研究深耕與PGRs對(duì)優(yōu)質(zhì)粳稻生育中后期產(chǎn)量形成及光合物質(zhì)生產(chǎn)特性的調(diào)控效應(yīng)。結(jié)果表明:與RT相比,DT處理增加了生物量和莖鞘物質(zhì)轉(zhuǎn)運(yùn)能力,提高了齊穗期和蠟熟期葉片葉綠素相對(duì)含量(Soil and Plant Analyzer Development,SPAD)和凈光合速率,增加了齊穗后葉面積指數(shù)和群體生長(zhǎng)速率,延長(zhǎng)了齊穗后綠葉面積持續(xù)時(shí)間,增加了每平方米有效穗數(shù)、每穗粒質(zhì)量、千粒質(zhì)量、收獲指數(shù)及籽粒產(chǎn)量,其中兩年產(chǎn)量增幅5.15%~14.54%(<0.05)。不同PGRs作用下,與CK相比,噴施6-BA能夠提高齊穗后凈光合速率和SPAD值,增加結(jié)實(shí)率、收獲指數(shù)、每穗粒數(shù)及粒質(zhì)量,實(shí)現(xiàn)兩年產(chǎn)量增幅4.93%~13.88%(<0.05)。在互作效應(yīng)上,耕作與PGRs互作對(duì)收獲指數(shù)和產(chǎn)量存在顯著影響,其中DT+6-BA處理產(chǎn)量最高,該處理增產(chǎn)途徑是在較高有效穗數(shù)前提下,增加了齊穗后綠葉面積持續(xù)時(shí)間,提高了齊穗后生物量、粒葉比、凈光合速率和SPAD值,促進(jìn)齊穗后高光效群體的形成,提高了穗粒數(shù)和收獲指數(shù),增加了籽粒產(chǎn)量,其次是DT+DA-6處理;而RT+6-BA處理較清水對(duì)照下的RT處理兩年增產(chǎn)8.83%~13.88%(<0.05)。綜上所述,在連續(xù)旋耕稻田上采用1次深耕耕作方式和葉面噴施6-BA有利于提高優(yōu)質(zhì)粳稻光合物質(zhì)生產(chǎn)能力和增加產(chǎn)量,可以作為提高本區(qū)域優(yōu)質(zhì)粳稻高產(chǎn)高效栽培的一種可持續(xù)耕作制度和有效栽培措施。

      耕作;產(chǎn)量;植物生長(zhǎng)調(diào)節(jié)劑;優(yōu)質(zhì)粳稻;光合特性

      0 引 言

      黑龍江省作為中國(guó)最主要的粳稻生產(chǎn)基地之一,2021年水稻種植面積約4.0×106hm2,該稻作區(qū)具有日照時(shí)間長(zhǎng)、晝夜溫差大和黑土層土壤有機(jī)質(zhì)含量高特點(diǎn),生產(chǎn)出的稻米口感好、品質(zhì)優(yōu),是中國(guó)重要的商品糧生產(chǎn)基地。近年來(lái),隨著優(yōu)質(zhì)粳稻品種的不斷增加,生產(chǎn)上對(duì)良種良法配套栽培措施的要求越來(lái)越高。目前,該稻作區(qū)種植戶為了緩解春季農(nóng)忙,保證水稻在安全生育范圍內(nèi)適期早栽,稻田耕作多以秋旋耕為主,該耕作方式土壤適耕性強(qiáng),旋深多保持在10~15 cm范圍。然而,這種長(zhǎng)期的旋耕雖然降低了成本,但卻導(dǎo)致犁底層上移,不利于秸稈還田,且春季整地泡田后秸稈大量上浮,導(dǎo)致機(jī)插漂秧、倒秧,影響水稻機(jī)插效果,增加補(bǔ)苗成本。因此,為解決稻田長(zhǎng)期旋耕所帶來(lái)的不利影響,保證優(yōu)質(zhì)水稻高效生產(chǎn)必須建立科學(xué)合理的可持續(xù)耕作制度。合理的土壤耕作方式為作物的生長(zhǎng)提供優(yōu)良環(huán)境,有利于增加產(chǎn)量[1-2]。前人對(duì)于耕作方式所展開(kāi)的研究因土壤類型、栽培方式和區(qū)域環(huán)境因素不同,對(duì)水稻生長(zhǎng)發(fā)育和產(chǎn)量形成方面的研究結(jié)果各異。相關(guān)研究表明,旋耕較翻耕雖然有利于促進(jìn)生長(zhǎng)前期單株干物質(zhì)積累,但卻降低了生長(zhǎng)后期的葉面積指數(shù)和籽粒產(chǎn)量[3-5]。相比之下,深耕則可以打破犁底層和改善土壤環(huán)境,緩解長(zhǎng)期旋耕帶來(lái)的不利影響[6-7];增加葉面積指數(shù)、光合勢(shì)、凈光合速率及葉綠素含量,促進(jìn)干物質(zhì)積累與分配,改善源庫(kù)關(guān)系及其合理分配,提高結(jié)實(shí)率、莖蘗成穗率和有效穗數(shù),增加籽粒產(chǎn)量[8-10]。也有相關(guān)研究表明,旋耕與深耕相結(jié)合有利于促進(jìn)植株生長(zhǎng)發(fā)育、干物質(zhì)積累和生物產(chǎn)量的增加,進(jìn)而為水稻高產(chǎn)提供了物質(zhì)保障[11]。

      優(yōu)質(zhì)粳稻多為穗重型品種,具有穗粒重高和產(chǎn)量潛力大特點(diǎn),但單位面積成穗數(shù)少,且籽粒干物質(zhì)大部分來(lái)自于開(kāi)花后功能葉片的光合產(chǎn)物積累。植物生長(zhǎng)調(diào)節(jié)劑(Plant Growth Regulators,PGRs)是人工合成且具有植物激素活性的一類有機(jī)物,在較低濃度下即可對(duì)作物生長(zhǎng)發(fā)育表現(xiàn)出促進(jìn)或抑制作用,實(shí)現(xiàn)作物外部性狀與內(nèi)部生理過(guò)程的雙調(diào)控,它的應(yīng)用大大活化了傳統(tǒng)技術(shù)措施。相關(guān)研究表明,噴施PGRs能夠提高生育后期葉綠素含量,促進(jìn)葉片光合作用[12-13];增加地上部干物質(zhì)積累量,調(diào)節(jié)光合產(chǎn)物的運(yùn)轉(zhuǎn)分配,增加生物產(chǎn)量[14];提高每平方米有效穗數(shù)、粒數(shù)、千粒質(zhì)量、結(jié)實(shí)率和籽粒產(chǎn)量[15-16]。其中,6-芐氨基腺嘌呤(6-benzylaminoadenine,6-BA)是一種人工合成的細(xì)胞分裂素,噴施6-BA可以提高葉片葉綠素含量,增加葉面積,延緩葉片衰老,增加生物量和籽粒產(chǎn)量[17-18];己酸二乙氨基乙醇酯(Diethylaminoethyl caproate,DA-6)是一種植物生長(zhǎng)促進(jìn)劑,目前已廣泛應(yīng)用于玉米、水稻和小麥等作物,噴施DA-6能夠增加葉片葉綠素含量,提高光合能力,增加地上部干物質(zhì)積累,提高單粒質(zhì)量和作物產(chǎn)量[19-21];亞精胺(Spermidine,Spd)是一種具有生理代謝功能和強(qiáng)烈生物活性的低分子脂肪族含氮堿,可直接參與生物體的許多生理活動(dòng),噴施Spd能夠增加地上部干物質(zhì)積累量,提高籽粒產(chǎn)量[22-23]。因此,引入PGRs解決或緩解不合理耕作帶來(lái)的產(chǎn)量形成不利問(wèn)題將是一個(gè)新的研究思路。

      目前,關(guān)于耕作的相關(guān)研究較多,但主要是基于秸稈還田和施肥模式下的研究,而在連續(xù)旋耕稻田上進(jìn)行耕作方式與PGRs種類結(jié)合對(duì)優(yōu)質(zhì)粳稻光合物質(zhì)生產(chǎn)特性和產(chǎn)量形成的調(diào)控研究未見(jiàn)報(bào)道。因此,本文以種植面積較大的優(yōu)質(zhì)粳稻品種綏粳18、墾稻12和三江6為試驗(yàn)材料,在連續(xù)旋耕稻田上以2種耕作方式和葉噴3種PGRs為處理方式,研究深耕對(duì)齊穗后光合物質(zhì)生產(chǎn)及產(chǎn)量形成的影響,分析生長(zhǎng)中后期深耕和旋耕條件下的PGRs調(diào)控效果,進(jìn)而為優(yōu)質(zhì)粳稻高產(chǎn)、高效及優(yōu)質(zhì)栽培提供理論和技術(shù)支撐。

      1 材料與方法

      1.1 試驗(yàn)區(qū)概況

      試驗(yàn)于2018-2019年在黑龍江省佳木斯市佳南實(shí)驗(yàn)農(nóng)場(chǎng)(130.40°E,46.80°N)進(jìn)行,該區(qū)域適于光溫鈍感性早熟品種生育生態(tài)區(qū)。2 a試驗(yàn)地為同一地塊,0~20 cm耕層土壤基礎(chǔ)肥力相近,平均表現(xiàn)為堿解氮191.69 mg/kg、有效磷30.71 mg/kg、速效鉀133.08 mg/kg、有機(jī)質(zhì)51.81 g/kg、pH值6.71。本田生長(zhǎng)期降雨量和平均溫度氣象數(shù)據(jù)由試驗(yàn)區(qū)設(shè)置的InteliMet Advantage型小氣候監(jiān)測(cè)氣象站(Dynamax公司,美國(guó))提供,2018和2019年總降雨量分別為464.2 mm和481.9 mm,活動(dòng)積溫分別為2 723.9 ℃和2 641.2 ℃(見(jiàn)圖1)。

      1.2 試驗(yàn)設(shè)計(jì)

      試驗(yàn)采用三因素裂區(qū)設(shè)計(jì),主區(qū)為耕作方式,設(shè)置深耕(DT)和旋耕(RT)2個(gè)處理;副區(qū)為當(dāng)?shù)刂髟詢?yōu)質(zhì)粳稻品種,分別為綏粳18(黑龍江省農(nóng)業(yè)科學(xué)院綏化分院與黑龍江省龍科種業(yè)集團(tuán)有限公司選育,主莖12葉)、墾稻12(黑龍江省農(nóng)墾科學(xué)院水稻研究所選育,主莖12葉)和三江6(北大荒墾豐種業(yè)股份有限公司與黑龍江省農(nóng)墾總局建三江農(nóng)業(yè)科學(xué)研究所選育,主莖12葉)3個(gè)處理;副副區(qū)為不同PGRs,分別為DA-6(YH?,鄭州),6-BA(Phygene?,南昌)、Spd(Aladdin?,上海)以及清水對(duì)照4個(gè)處理。耕作于上一年秋季收獲2周后完成,其中深耕區(qū)翻深(27.2±1.3) cm,旋耕區(qū)旋深(14.2±1.1) cm。每主區(qū)占地面積432 m2,品種小區(qū)之間用50 cm高、埋深30 cm的PVC板分隔,確保不串肥不串水;每品種占地48 m2(6 m×8 m),3次重復(fù),單排單灌;每PGR處理占地12 m2(1.5 m×8 m),3次重復(fù)。2 a試驗(yàn)為同一地塊不同區(qū)域,該地塊常年同等施肥強(qiáng)度,采用半喂入式收割機(jī)收割,留茬15 cm,秸稈粉碎全量還田,前茬連續(xù)2 a耕作方式均為秋旋耕。日光溫室育苗,4月18日播種,旱育中苗,每盤(pán)播芽谷100 g,5月20日移栽,移栽葉齡分別為(3.5±0.2)葉(2018年)和(3.5±0.4)葉(2019年),插秧規(guī)格30 cm×12 cm,每穴4株,人工模擬機(jī)械插秧,行距用鐵制固定插秧架確定,株距用紅色毛線繩在白色尼龍繩上系扣確定。田間總施尿素(含46%N)230 kg/hm2,硫酸銨65 kg/hm2(含21%N),磷酸二銨(含46% P2O5)100 kg/hm2,氯化鉀(含60%K2O)150 kg/hm2。純氮按照基肥∶蘗肥(兩次)∶穗肥為4∶3∶3比例施入,其中移栽前施40%的氮(尿素+磷酸二銨)作基肥,蘗肥分兩次施入,即返青后立即施入第一次分蘗肥,施入量為總氮的20%(等量10%的氮分別來(lái)自尿素和硫酸銨),5.1~5.5葉齡期施第二次蘗肥,施入量為總氮的10%(尿素),10.5左右葉齡期施穗肥30%(尿素);磷肥100%作基肥,鉀肥50%作基肥,50%作穗肥。有關(guān)灌溉、病蟲(chóng)草防治措施按高產(chǎn)要求統(tǒng)一管理。

      圖1 水稻生育期間日降雨量和平均氣溫變化

      于劍葉展開(kāi)盛期(莖蘗劍葉展開(kāi)百分比達(dá)80%以上)進(jìn)行葉面噴施PGRs,此時(shí)期葉片已基本展開(kāi),藥劑噴施到位率高,同時(shí)也避免了PGRs對(duì)抽穗開(kāi)花期授粉的負(fù)面影響。噴藥時(shí)間統(tǒng)一選擇無(wú)風(fēng)晴天16:00之后進(jìn)行,DA-6、6-BA和Spd使用劑量(田間篩選)分別為50 mg/L、40 mg/L和1 mmol/L,清水做對(duì)照,用水量225 L/hm2,噴藥前小區(qū)四周用塑料布圍擋,防止藥劑間誤噴或交叉重復(fù)。

      1.3 測(cè)定內(nèi)容及方法

      1.3.1 干物質(zhì)積累

      于齊穗期和成熟期對(duì)每個(gè)品種的重復(fù)小區(qū)進(jìn)行連續(xù)20穴莖蘗數(shù)隨機(jī)調(diào)查,計(jì)算每穴平均有效穗數(shù),按平均數(shù)選取長(zhǎng)勢(shì)一致的代表性植株3穴,用于植株各部位分析。將以上樣品進(jìn)行分樣處理后,于105 ℃殺青30 min,75 ℃烘箱72 h烘至質(zhì)量不變,分別測(cè)定各部位干質(zhì)量。

      1.3.2 葉面積指數(shù)

      采用方格干重法測(cè)定植株葉面積,即在硬塑板上用鉛筆畫(huà)出100 mm×200 mm矩形,隨機(jī)取1.3.1中對(duì)應(yīng)的每穴綠色功能葉片平鋪在矩形面積上,保持葉片長(zhǎng)度與矩形寬度平行,用刀片切除矩形框架外葉片部分,框內(nèi)葉片單獨(dú)包裝烘干后測(cè)定干質(zhì)量,根據(jù)每穴綠色功能葉干質(zhì)量和種植密度計(jì)算出每平方米葉面積和葉面積指數(shù)。

      1.3.3 光合指標(biāo)

      采用SPAD-502型葉綠素測(cè)定儀(Minolta Camem公司,日本)測(cè)定,于齊穗期(抽穗達(dá)80%)和蠟熟期(齊穗后28 d)每小區(qū)隨機(jī)選取3點(diǎn),每點(diǎn)選主莖10株,測(cè)定距葉基部2/3處的劍葉葉綠素相對(duì)含量(Soil and Plant Analyzer Development,SPAD)值,平均值表示測(cè)定結(jié)果。采用LI-6400型便攜式光合測(cè)定系統(tǒng)于09:00-11: 30測(cè)定齊穗期與蠟熟期劍葉凈光合速率。

      1.3.4 農(nóng)藝性狀

      于成熟期每重復(fù)區(qū)隨機(jī)選3點(diǎn),每點(diǎn)選擇長(zhǎng)勢(shì)一致的植株3穴,去掉根部多余泥土,做好標(biāo)記后倒掛于網(wǎng)室中,陰干后測(cè)定各農(nóng)藝產(chǎn)量性狀指標(biāo)。每穴單獨(dú)脫粒,采用CFY-Ⅱ型種子風(fēng)選凈度儀進(jìn)行實(shí)粒與空秕粒分離,采用SLY-C型微電腦自動(dòng)數(shù)粒儀調(diào)查實(shí)粒數(shù),采用日本KETT型水分快速測(cè)定儀進(jìn)行水分含量測(cè)定,并折算成14.5%標(biāo)準(zhǔn)水分質(zhì)量計(jì)算千粒質(zhì)量,人工完成空秕粒調(diào)查后,計(jì)算結(jié)實(shí)率,并根據(jù)每穴平均有效穗數(shù)計(jì)算每穗粒數(shù)和粒質(zhì)量。

      1.3.5 產(chǎn)量測(cè)定

      每小區(qū)實(shí)收2 m2,人工脫粒去雜后稱量并折算成14.5%標(biāo)準(zhǔn)水分下的公頃產(chǎn)量進(jìn)行數(shù)據(jù)分析。

      1.4 數(shù)據(jù)計(jì)算和分析

      粒/葉(mg/cm2)=籽粒產(chǎn)量/齊穗期葉面積 (1)

      莖鞘物質(zhì)轉(zhuǎn)運(yùn)量(g/m2)=齊穗期莖鞘干物質(zhì)質(zhì)量-

      成熟期莖鞘干物質(zhì)質(zhì)量 (2)

      莖鞘物質(zhì)輸出率(%)=[(齊穗期莖鞘干物質(zhì)質(zhì)量-

      成熟期莖鞘干物質(zhì)質(zhì)量)/齊穗期莖鞘干物質(zhì)質(zhì)量]×100(3)

      莖鞘物質(zhì)轉(zhuǎn)化率(%)=[(齊穗期莖鞘干物質(zhì)質(zhì)量-

      成熟期莖鞘干物質(zhì)質(zhì)量)/成熟期籽粒干物質(zhì)質(zhì)量]×100(4)

      群體生長(zhǎng)率(g/(m2·d))=(2–l)/(2–1) (5)

      凈同化率(g/(m2·d))=[(ln2?ln1)/(2?1)]·

      [(2?W1)/(2?1)] (6)

      式中1和2為前后兩次測(cè)定的葉面積,m2;1和2為前后兩次測(cè)定的時(shí)間,d;1和2為前后兩次測(cè)定的干物質(zhì)量,g。

      使用Microsoft Excel 2019進(jìn)行數(shù)據(jù)處理,DPS7.05 軟件進(jìn)行統(tǒng)計(jì)分析。

      2 結(jié)果與分析

      2.1 耕作方式與PGRs種類對(duì)齊穗后干物質(zhì)生產(chǎn)及運(yùn)轉(zhuǎn)的影響

      耕作、品種和PGRs對(duì)齊穗期至成熟期干物質(zhì)生產(chǎn)及轉(zhuǎn)運(yùn)存在顯著影響(<0.05),其中耕作與品種互作對(duì)齊穗期與成熟期生物量和莖鞘物質(zhì)積累、莖鞘物質(zhì)輸出量、輸出率及轉(zhuǎn)化率存在顯著影響,耕作、品種與PGRs三者互作顯著影響齊穗期莖鞘物質(zhì)積累,其余互作不顯著(表1)。由表2可知,從耕作方式上看,與RT相比,兩年間DT處理齊穗期與成熟期生物量增幅分別為2.70%~15.29%和0.50%~9.96%,其中齊穗期莖鞘干物質(zhì)積累增幅為4.62%~10.84%;提高了莖鞘物質(zhì)轉(zhuǎn)運(yùn)能力,兩年間DT處理莖鞘物質(zhì)轉(zhuǎn)運(yùn)量、輸出率和轉(zhuǎn)化率增幅分別為2.53%~39.31%、2.36%~31.92%和8.45%~33.15%(<0.05)。從PGRs作用效果上看,與CK相比,兩年間噴施6-BA顯著增加了齊穗期生物量和莖鞘物質(zhì)積累量(<0.05),增幅分別為4.11%~13.07%和1.89%~5.58%;提高了齊穗期至成熟期莖鞘物質(zhì)轉(zhuǎn)運(yùn)能力,兩年間轉(zhuǎn)運(yùn)量、輸出率和轉(zhuǎn)化率增幅分別為0.20%~21.29%、0.42%~17.11%和0.41%~15.63%,其次是DA-6處理,而Spd處理不利于干物質(zhì)積累和莖鞘物質(zhì)轉(zhuǎn)運(yùn)。品種間比較表明,兩年間KD12齊穗期生物量、莖鞘物質(zhì)積累及轉(zhuǎn)運(yùn)能力顯著高于SJ6(<0.05)。DT+6-BA處理齊穗后干物質(zhì)生產(chǎn)及運(yùn)轉(zhuǎn)能力最強(qiáng),表現(xiàn)最優(yōu),其中2018年作用效果最佳的品種為KD12,而2019年雖然品種間干物質(zhì)積累差異較大,但在莖鞘物質(zhì)轉(zhuǎn)運(yùn)效果上最佳的品種仍為KD12。上述說(shuō)明,深耕和6-BA處理能夠提高齊穗后莖鞘物質(zhì)積累及轉(zhuǎn)運(yùn)能力,增加齊穗后生物量。

      表1 不同處理齊穗后干物質(zhì)運(yùn)轉(zhuǎn)顯著性分析

      注:PGRs:植物生長(zhǎng)調(diào)節(jié)劑;DAS:莖鞘干物質(zhì)積累。*和**表示分別在0.05和0.01概率水平上差異顯著,ns表示不顯著。下同。

      Note: PGRs: Plant growth regulators; DAS: Dry matter accumulation of stem. * and **, significantly different at 0.05 and 0.01 probability levels, respectively, and ns is not significant. The same as below.

      表2 耕作方式與PGRs種類對(duì)齊穗后干物質(zhì)生產(chǎn)及運(yùn)轉(zhuǎn)的影響

      注:DT:深耕;RT:旋耕;SJ18:綏粳18;KD12:墾稻12;SJ6:三江6;DA-6:己酸二乙氨基乙醇酯;6-BA:6-芐氨基腺嘌呤;Spd:亞精胺;CK:清水。小寫(xiě)字母表示各處理間達(dá)0.05顯著差異。下同。

      Note: DT: Deep tillage; RT: Rotary tillage; SJ18: Suijing18; KD12: Kendao12; SJ6: Sanjiang6; DA-6: Diethyl aminoethyl hexanoate; 6-BA: 6-benzylaminoadenine; Spd: Spermidine; CK: Clear water. Lowercase letters indicate the significant differences at the level of 0.05 among the treatments. The same as below.

      2.2 耕作方式與PGRs種類對(duì)光合指標(biāo)的影響

      表3可以看出,耕作、品種和PGRs對(duì)葉面積指數(shù)、粒葉比、群體生長(zhǎng)速率和凈同化率存在顯著影響,耕作與品種互作對(duì)齊穗期葉面積指數(shù)、粒葉比、群體生長(zhǎng)速率和凈同化率的影響顯著,其余互作不顯著。表4可知,從耕作方式上看,與RT相比,DT處理顯著提高了齊穗期和成熟期葉面積指數(shù),增幅分別為0.78%~9.82%和7.19%~32.79%;增加了群體生長(zhǎng)速率,增幅為0.48%~4.70%,說(shuō)明DT處理有利于生長(zhǎng)中后期葉面積指數(shù)和群體生長(zhǎng)速率的提高。從PGRs作用效果上看,與CK相比,噴施6-BA能夠提高齊穗期至成熟期葉面積指數(shù),顯著增加粒葉比、群體生長(zhǎng)速率和凈同化率(<0.05),增幅分別為1.78%~9.35%、4.84%~11.12%和2.01%~7.31%,其次是DA-6處理,而噴施Spd對(duì)齊穗后光合特性產(chǎn)生不利影響,說(shuō)明噴施6-BA可以提高齊穗后葉面積指數(shù),有利于協(xié)調(diào)源庫(kù)關(guān)系,形成高光效高質(zhì)量群體,有效促進(jìn)抽穗后光合物質(zhì)生產(chǎn)與轉(zhuǎn)運(yùn)能力。品種間比較發(fā)現(xiàn),兩年間齊穗期至成熟期葉面積指數(shù)最高的品種均為SJ6,但KD12的凈同化率、群體生長(zhǎng)速率及粒葉比均明顯高于SJ6。各處理中以DT+6-BA處理齊穗期葉面積指數(shù)最高,對(duì)SJ6作用效果最佳,而在粒葉比、群體光合速率及凈同化率上效果最佳的品種則是KD12。

      表3 不同處理光合指標(biāo)顯著性分析

      表4 耕作方式與PGRs種類對(duì)光合指標(biāo)的影響

      2.3 耕作方式與PGRs種類對(duì)SPAD值和凈光合速率的影響

      葉片SPAD值能夠反映優(yōu)質(zhì)粳稻生育中后期功能葉光合能力。表5可知,在本研究中,耕作、品種和PGRs對(duì)兩年間齊穗期和蠟熟期主莖劍葉SPAD值存在顯著影響,其中耕作與品種互作對(duì)2019年齊穗期SPAD值存在顯著影響,而其余互作效應(yīng)不顯著。如表6所示,從耕作方式上看,與RT處理相比,DT處理提高了齊穗期至蠟熟期劍葉SPAD值,其中2018年和2019年齊穗期增幅分別為2.91%~3.85%和0.51%~4.54%,蠟熟期增幅分別為1.43%~2.28%和1.37%~3.18%,有效緩解了葉片的衰老進(jìn)程。從PGRs作用效果上看,與CK相比,噴施6-BA可以增加齊穗期和蠟熟期劍葉SPAD值,增幅分別為2.05%~8.44%和2.47%~9.58%,其次是DA-6處理。品種間SPAD值比較,齊穗期和蠟熟期葉片SPAD值從大到小均表現(xiàn)為SJ6、SJ18、KD12。進(jìn)一步分析表明,兩年間耕作、品種和PGRs對(duì)齊穗期和蠟熟期劍葉凈光合速率存在顯著影響,其中耕作與品種互作對(duì)2018年齊穗期和2019年蠟熟期劍葉凈光合速率存在顯著影響,而其余互作效應(yīng)不顯著。從兩年凈光合速率上看,DT處理高于RT處理,其中齊穗期增幅分別為4.24%~22.71%(2018年)和4.00%~11.82%(2019年)。從PGRs作用效果上看,與CK相比,噴施6-BA可顯著提高齊穗期和蠟熟期劍葉凈光合速率(<0.05),其中齊穗期增幅分別為5.01%~15.38%(2018年)和3.23%~19.52%(2019年),而蠟熟期增幅分別為5.71%~19.34%(2018年)和10.26%~27.57%(2019年),增幅顯著(<0.05);但噴施Spd不利于劍葉凈光合速率的提高。品種間比較表明,齊穗期和蠟熟期凈光合速率從大到小均表現(xiàn)為SJ6、SJ18、KD12。在所有處理中,DT+6-BA處理對(duì)SPAD值和凈光合速率作用效果最佳,其次是DT+DA-6處理;兩年間SPAD值和凈光合速率最佳處理的耕作、品種和PGRs均為DT、SJ6、6-BA。

      表5 不同處理SPAD值和凈光合速率顯著性分析

      表6 耕作方式與PGRs種類對(duì)SPAD值和凈光合速率的影響

      2.4 耕作方式與PGRs種類對(duì)產(chǎn)量及其構(gòu)成的影響

      表7可知,耕作、品種和PGRs對(duì)每平方米有效穗數(shù)、每穗粒數(shù)、每穗粒質(zhì)量、千粒質(zhì)量、結(jié)實(shí)率、收獲指數(shù)及籽粒產(chǎn)量存在顯著影響,其中耕作與品種互作對(duì)每平方米有效穗數(shù)、每穗粒質(zhì)量、千粒質(zhì)量、收獲指數(shù)和籽粒產(chǎn)量存在顯著影響,耕作與PGRs互作對(duì)收獲指數(shù)和籽粒產(chǎn)量存在顯著影響,其余互作不顯著。如表8所示,從耕作方式上看,與RT相比,DT處理能夠增加每穗粒數(shù)和每穗粒質(zhì)量,增幅分別為3.78%~11.14%和0.56%~8.34%;提高收獲指數(shù)和籽粒產(chǎn)量,增幅分別為0.57%~4.88%和5.15%~14.54%。從PGRs作用效果上看,與CK相比,噴施6-BA能夠增加每穗粒數(shù)和每穗粒質(zhì)量,增幅分別為0.83%~6.14%和2.58%~6.28%;提高結(jié)實(shí)率和收獲指數(shù),增幅分別為0.36%~3.70%和0.16%~4.94%;千粒質(zhì)量略有降低,但降幅不明顯;產(chǎn)量顯著增加,增幅為4.93%~13.88%,其次是DA-6處理;噴施Spd雖然增加了千粒質(zhì)量,但其他產(chǎn)量構(gòu)成因素均是降低的,導(dǎo)致最終產(chǎn)量下降。品種對(duì)比發(fā)現(xiàn),KD12千粒質(zhì)量、結(jié)實(shí)率和收獲指數(shù)顯著高于SJ18和SJ6 (<0.05),彌補(bǔ)了單株粒數(shù)和粒質(zhì)量的不足,并在每平方米有效穗數(shù)較高基礎(chǔ)上實(shí)現(xiàn)了產(chǎn)量增加,較SJ18和SJ6分別增幅1.42%~10.48%和7.90%~14.69%?;プ鞣矫妫糠只プ魈幚韺?duì)產(chǎn)量及其構(gòu)成因素存在顯著互作效應(yīng),其中在耕作與PGRs互作中,DT+6-BA處理每平方米有效穗數(shù)、收獲指數(shù)和產(chǎn)量最高,但在增產(chǎn)效果上,RT+6-BA處理效果最佳,較清水對(duì)照下的RT處理增幅8.83%~13.88%,說(shuō)明6-BA在RT處理上的效果高于DT處理;在所有處理中,DT+KD12+6-BA處理每平方米有效穗數(shù)、千粒質(zhì)量、收獲指數(shù)及產(chǎn)量最高,表現(xiàn)最佳。

      表7 不同處理產(chǎn)量構(gòu)成因素顯著性分析

      表8 耕作方式與PGRs種類對(duì)產(chǎn)量及其構(gòu)成因素的影響

      由于試驗(yàn)中PGRs是在劍葉展開(kāi)期葉面噴施的,此時(shí)各品種莖蘗數(shù)已基本穩(wěn)定,PGRs對(duì)莖蘗數(shù)和有效穗數(shù)無(wú)明顯影響,因此試驗(yàn)中莖蘗成穗率差異主要來(lái)自于耕作和品種。由圖2可知,總體上RT處理莖蘗成穗率較高,與DT處理相比,2018年差異顯著(<0.05),2019年口種KD12的RT處理的莖蘗成穗率為91.02%,而每平方米有效穗數(shù)最多的是2018年品種KD12的DT處理,表現(xiàn)為517.9個(gè),說(shuō)明RT處理提高了莖蘗成穗率,但每平方米莖蘗數(shù)低于DT處理,而種植KD12可同時(shí)實(shí)現(xiàn)有效穗數(shù)和莖蘗成穗率的增加,展現(xiàn)出該品種具有較強(qiáng)的適應(yīng)性。

      圖2 耕作方式對(duì)水稻莖蘗成穗率的影響

      3 討 論

      3.1 耕作方式與PGRs種類對(duì)干物質(zhì)積累及轉(zhuǎn)運(yùn)的調(diào)控

      籽粒產(chǎn)量取決于光合產(chǎn)物的積累與分配,其中70%以上來(lái)源于花后光合作用積累。相關(guān)研究表明,產(chǎn)量的高低取決于生物產(chǎn)量,而提高花后光合物質(zhì)生產(chǎn)及其轉(zhuǎn)運(yùn)能力是增加生物產(chǎn)量的有效途徑,因此,提高抽穗后光合物質(zhì)生產(chǎn)能力及干物質(zhì)向籽粒的轉(zhuǎn)移能力是提高籽粒產(chǎn)量的有效途徑,其中干物質(zhì)的積累和轉(zhuǎn)運(yùn)能力強(qiáng),說(shuō)明向籽粒運(yùn)轉(zhuǎn)分配的比例越大,最終產(chǎn)量也越高[24]。目前,黑龍江種植的優(yōu)質(zhì)粳稻多為偏穗重型品種,產(chǎn)量一般隨生長(zhǎng)中后期干物質(zhì)積累量與輸出量的增加而提高。關(guān)于耕作方式的研究,前人研究表明,旋耕有利于增加生長(zhǎng)前期單株干物質(zhì)積累,而深耕能夠提高抽穗后干物質(zhì)積累與分配能力[8];而在PGRs相關(guān)研究中,有學(xué)者認(rèn)為應(yīng)用PGRs可以提高植株干物質(zhì)積累和運(yùn)轉(zhuǎn)[20],增加生育中后期生物產(chǎn)量[20,25-26]。本研究中,DT處理通過(guò)增加生物量,提高齊穗至成熟期莖鞘物質(zhì)轉(zhuǎn)運(yùn)能力,品種產(chǎn)量潛力得到充分發(fā)揮,進(jìn)而獲得較高產(chǎn)量,這與前人在豐產(chǎn)穗重型品種上的研究結(jié)果基本一致;噴施6-BA能夠有效促進(jìn)花后干物質(zhì)向穗部的轉(zhuǎn)運(yùn)和積累,同時(shí)結(jié)合最終產(chǎn)量發(fā)現(xiàn),在RT處理基礎(chǔ)上施用6-BA較未施用PGR的DT處理減產(chǎn)不明顯,說(shuō)明在連續(xù)旋耕稻田上應(yīng)用6-BA可以實(shí)現(xiàn)深耕產(chǎn)量效果,同時(shí)對(duì)于減少稻田深耕次數(shù)也有一定幫助。因此,在生產(chǎn)中采用耕作和化學(xué)調(diào)控相結(jié)合的措施來(lái)調(diào)節(jié)水稻的干物質(zhì)積累、輸出及轉(zhuǎn)運(yùn),能夠緩解因連續(xù)旋耕而產(chǎn)生的不利問(wèn)題。

      3.2 耕作方式與PGRs種類對(duì)光合特征的調(diào)控

      光合作用是作物生長(zhǎng)和產(chǎn)量形成的重要代謝過(guò)程,葉片作為最重要的光合器官,是合成干物質(zhì)的源和獲得高產(chǎn)的基礎(chǔ),為生長(zhǎng)發(fā)育提供了光合同化產(chǎn)物與能量物質(zhì)。葉面積指數(shù)是表征群體光合生產(chǎn)能力的重要指標(biāo),適宜的群體葉面積指數(shù)一方面是高產(chǎn)群體質(zhì)量的基礎(chǔ)指標(biāo),它可以通過(guò)影響植株冠層的空間分布對(duì)群體光合效率產(chǎn)生影響;另一方面也是協(xié)調(diào)庫(kù)源關(guān)系和各部器官平衡發(fā)展的基礎(chǔ),影響群體干物質(zhì)生產(chǎn)和產(chǎn)量的形成[27]。在優(yōu)質(zhì)粳稻生長(zhǎng)發(fā)育過(guò)程中,抽穗開(kāi)花后葉片光合作用開(kāi)始逐漸減弱,此時(shí)葉片葉綠素含量和光合速率下降的快慢會(huì)影響到產(chǎn)量,其中葉綠素含量是評(píng)估葉片光合作用強(qiáng)弱的重要指標(biāo),而SPAD值與葉片葉綠素含量呈正相關(guān),因此,通過(guò)測(cè)定生育中后期葉片SPAD值能夠反映相應(yīng)時(shí)期葉片的光合能力和衰老進(jìn)程[28]。相關(guān)研究表明,深耕能夠增加生育后期葉面積,延長(zhǎng)綠葉面積持續(xù)期,優(yōu)化群體光合性能[8-9],而應(yīng)用PGRs能夠調(diào)節(jié)葉面積指數(shù),增加生長(zhǎng)中后期葉片葉綠素含量,延長(zhǎng)生育后期光合時(shí)間,從而改善葉片光合性能[14,20,25-26,29-30]。本研究中,DT處理具有較高的葉面積指數(shù)、群體生長(zhǎng)速率以及較強(qiáng)的干物質(zhì)轉(zhuǎn)運(yùn)能力,彌補(bǔ)了其凈同化率低的不足,增加了齊穗期和蠟熟期葉片SPAD值,延長(zhǎng)了齊穗后綠葉面積持續(xù)期,進(jìn)而為籽粒灌漿提供了持久的光合源泉;而噴施6-BA能夠增加群體生長(zhǎng)速率和齊穗期粒葉比,提高齊穗后葉面積指數(shù)、SPAD值和凈光合速率,有利于生長(zhǎng)中后期的光合物質(zhì)生產(chǎn)、積累及轉(zhuǎn)運(yùn),實(shí)現(xiàn)DT與6-BA雙增效果,進(jìn)而促進(jìn)優(yōu)質(zhì)粳稻產(chǎn)量增加。在品種比較中,KD12憑借較高的生物量和莖鞘物質(zhì)轉(zhuǎn)運(yùn)能力、優(yōu)異的齊穗期粒葉比、群體生長(zhǎng)速率和凈同化率特征,彌補(bǔ)了其生長(zhǎng)中后期葉面積指數(shù)、SPAD值和凈光合速率低的不足,產(chǎn)量明顯高于SJ18和SJ6(<0.05)。

      3.3 耕作方式與PGRs種類對(duì)產(chǎn)量及其構(gòu)成因素的調(diào)控

      產(chǎn)量形成取決于單位面積有效穗數(shù)、每穗粒數(shù)、每穗粒質(zhì)量、結(jié)實(shí)率和千粒質(zhì)量。目前,關(guān)于影響水稻產(chǎn)量的主控因素研究尚不明確,其中有學(xué)者認(rèn)為增加每平方米有效穗數(shù)是提高產(chǎn)量的主要途徑[31];也有學(xué)者認(rèn)為單位面積穗數(shù)和粒數(shù)是增加產(chǎn)量的主要因素[32]。水稻產(chǎn)量受控于群體數(shù)量和個(gè)體生產(chǎn)力兩個(gè)方面,在單位面積穗數(shù)增加情況下,每穗粒重隨穗粒數(shù)降低而降低, 其中莖蘗成穗率作為群體質(zhì)量中最核心指標(biāo), 直接影響高產(chǎn)群體的形成,因此有研究認(rèn)為在適宜穗數(shù)基礎(chǔ)上提高莖蘗成穗率有利于群體素質(zhì)提高[33]。在耕作相關(guān)研究中,有學(xué)者認(rèn)為深耕較旋耕能夠增加有效穗數(shù)、每穗粒數(shù)、結(jié)實(shí)率、千粒質(zhì)量和籽粒產(chǎn)量,而旋耕雖然不利于籽粒產(chǎn)量的增加,但與深耕的產(chǎn)量差異不顯著[3,5]。在本研究中,DT處理在較高穗數(shù)前提下,粒質(zhì)量、穗粒數(shù)和收獲指數(shù)均有不同程度的良性增加,彌補(bǔ)了成穗率和結(jié)實(shí)率低的不足,最終實(shí)現(xiàn)產(chǎn)量增加。在PGRs應(yīng)用研究中,有學(xué)者認(rèn)為孕穗期噴施PGR能夠提高結(jié)實(shí)率、千粒質(zhì)量、穗數(shù)和收獲指數(shù),增加籽粒產(chǎn)量[15,34]。在本研究中,噴施6-BA可以通過(guò)顯著增加每穗粒數(shù)、每穗粒質(zhì)量和谷草比,實(shí)現(xiàn)產(chǎn)量增加,而噴施Spd卻顯著降低了單株粒數(shù)和結(jié)實(shí)率,最終導(dǎo)致產(chǎn)量降低。

      綜上所述,兩年間DT處理獲得產(chǎn)量增加是建立在較高穗數(shù)的前提下,粒質(zhì)量、穗粒數(shù)和收獲指數(shù)均有不同程度的增加,彌補(bǔ)了成穗率和結(jié)實(shí)率低的不足,最終實(shí)現(xiàn)了產(chǎn)量增加。但長(zhǎng)期旋耕或深耕均不利于作物生長(zhǎng)和籽粒產(chǎn)量增加,其中深耕雖然能夠增加生物產(chǎn)量、促進(jìn)籽粒灌漿和提高籽粒產(chǎn)量,提高作物生產(chǎn)力,但卻降低了能源利用效率和經(jīng)濟(jì)效益[35-36]。因此,只有科學(xué)合理的耕作制度才能夠?qū)崿F(xiàn)農(nóng)業(yè)可持續(xù)耕作。外源物質(zhì)是目前調(diào)控作物生長(zhǎng)發(fā)育行為的最為高效易行的方法之一,其應(yīng)用可以提高穗粒數(shù)、千粒質(zhì)量和產(chǎn)量,但在生產(chǎn)實(shí)踐中應(yīng)用PGRs時(shí),不僅要考慮栽培措施的影響,還要考慮作物遺傳因素對(duì)PGRs的敏感效應(yīng)。本研究在旋耕作業(yè)基礎(chǔ)上應(yīng)用小劑量6-BA,可以通過(guò)改變花后干物質(zhì)積累和轉(zhuǎn)運(yùn)在增加籽粒產(chǎn)量方面發(fā)揮著重要作用,并在較高葉面積基礎(chǔ)上提高粒葉比,實(shí)現(xiàn)產(chǎn)量增幅。試驗(yàn)在劍葉展開(kāi)盛期進(jìn)行葉面噴施PGRs,此時(shí)每平方米有效莖蘗數(shù)已基本穩(wěn)定,籽粒產(chǎn)量的增加主要源于葉片光合能力、干物質(zhì)轉(zhuǎn)運(yùn)能力以及生物產(chǎn)量的增加。然而,受年份環(huán)境條件、品種敏感性、PGRs種類及濃度劑量等因素的影響,該試驗(yàn)在研究過(guò)程中存在不均衡性差異,還有待于進(jìn)一步深入研究。

      4 結(jié) 論

      連續(xù)旋耕稻田上進(jìn)行深耕處理能夠提高齊穗后群體干物質(zhì)生產(chǎn)及莖鞘物質(zhì)轉(zhuǎn)運(yùn)能力,增加齊穗后生物量、葉面積指數(shù)、凈光合速率和葉綠素含量,增加每平方米有效穗數(shù)、每穗粒數(shù)、結(jié)實(shí)率和千粒質(zhì)量,提高產(chǎn)量,其中兩年產(chǎn)量增幅5.15%~14.54%(<0.05)。劍葉展開(kāi)期噴施6-芐氨基腺嘌呤(6-benzylaminoadenine,6-BA)可緩解連續(xù)旋耕對(duì)產(chǎn)量形成帶來(lái)的不利影響,增加齊穗后綠葉面積持續(xù)時(shí)間,延緩生育中后期葉片衰老進(jìn)程,提高齊穗后生物量、凈光合速率和葉綠素含量,優(yōu)化干物質(zhì)積累與轉(zhuǎn)運(yùn)特性,能夠在較高葉面積指數(shù)基礎(chǔ)上提高粒葉比,促進(jìn)齊穗后高光效群體的形成,并在穩(wěn)定穗數(shù)基礎(chǔ)上增加粒質(zhì)量,提高穗粒數(shù)和收獲指數(shù),促進(jìn)產(chǎn)量性狀之間的協(xié)同互補(bǔ),實(shí)現(xiàn)兩年產(chǎn)量增幅4.93%~13.88%。因此,在連續(xù)旋耕稻田上進(jìn)行深耕和葉面噴施6-BA能夠改善優(yōu)質(zhì)粳稻齊穗后光合特性和增加產(chǎn)量,而在旋耕處理上噴施6-BA可實(shí)現(xiàn)非PGR處理下的深耕產(chǎn)量效果。

      [1] Büchi L, Wendling M, Amossé C, et al. Long and short-term changes in crop yield and soil properties induced by the reduction of soil tillage in a long-term experiment in Switzerland[J]. Soil & Tillage Research, 2017, 174: 120-129.

      [2] 張凱,劉戰(zhàn)東,強(qiáng)小嫚,等. 耕作方式和灌水處理對(duì)冬小麥-夏玉米水分利用及產(chǎn)量的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(17):102-109.

      Zhang Kai, Liu Zhandong, Qiang Xiaoman, et al. Effects of tillage and irrigation on water use and yield of winter wheat and summer maize[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(17): 102-109. (in Chinese with English abstract)

      [3] 劉金花,秦江濤,張斌,等. 贛東北雙季水稻輕型種植和耕作模式評(píng)價(jià)[J]. 土壤,2012,44(3):482-491.

      Liu Jinhua, Qin Jiangtao, Zhang Bin, et al. Effects of different light cultivation on rice growth, yields and economic benefits in Northeast area of Jiangxi province[J]. Soils, 2012, 44(3): 482-491.(in Chinese with English abstract)

      [4] 湯軍,黃山,譚雪明,等. 不同耕作方式對(duì)機(jī)插雙季水稻產(chǎn)量的影響[J]. 江西農(nóng)業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版),2014,36(5):996-1001.

      Tang Jun, Huang Shan, Tan Xueming, et al. Effect of different tillage regimes on rice yield under mechanical transplanting in a double rice cropping system[J]. Acta Agriculturae Universitatis Jiangxiensis (Natural Sciences Edition), 2014, 36(5): 996-1001. (in Chinese with English abstract)

      [5] 黃佑崗,馮躍華,許桂玲,等. 不同耕作方式對(duì)雜交秈稻生長(zhǎng)特性和產(chǎn)量形成的影響[J]. 中國(guó)稻米,2017,23(4):139-143.

      Huang Yougang, Feng Yuehua, Xu Guiling, et al. Effects of different tillage methods on growth characteristics and yield formation of Indica hybrid rice[J]. China Rice, 2017, 23(4): 139-143. (in Chinese with English abstract)

      [6] 韓上,武際,李敏,等. 深耕結(jié)合秸稈還田提高作物產(chǎn)量并改善耕層薄化土壤理化性質(zhì)[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2020,26(2):276-284.

      Han Shang, Wu Ji, Li Min, et al. Deep tillage with straw returning increase crop yield and improve soil physicochemical properties under topsoil thinning treatment[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(2): 276-284. (in Chinese with English abstract)

      [7] 鄒文秀,韓曉增,嚴(yán)君,等. 耕翻和秸稈還田深度對(duì)東北黑土物理性質(zhì)的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(15):9-18.

      Zou Wenxiu, Han Xiaozeng, Yan Jun, et al. Effects of incorporation depth of tillage and straw returning on soil physical properties of black soil in Northeast China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(15): 9-18. (in Chinese with English abstract)

      [8] 唐海明,肖小平,李超,等. 不同土壤耕作模式對(duì)雙季水稻生理特性與產(chǎn)量的影響[J]. 作物學(xué)報(bào),2019,45(5):740-754.

      Tang Haiming, Xiao Xiaoping, Li Chao, et al. Effects of different soil tillage systems on physiological characteristics and yield of double-cropping rice[J]. Acta Agronomica Sinica, 2019, 45(5): 740-754. (in Chinese with English abstract)

      [9] 谷子寒,王元元,帥澤宇,等. 土壤耕作方式對(duì)水稻產(chǎn)量形成特性的影響初探[J]. 作物研究,2017,31(2):103-109.

      Gu Zihan, Wang Yuanyuan, Shuai Zeyu, et al. Preliminary study about the effects of soil tillage ways on the yield formation characteristics of rice[J]. Crop Research, 2017, 31(2): 103-109. (in Chinese with English abstract)

      [10] 李娜,龍靜泓,韓曉增,等. 短期翻耕和有機(jī)物還田對(duì)東北暗棕壤物理性質(zhì)和玉米產(chǎn)量的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(12):99-107.

      Li Na, Long Jinghong, Han Xiaozeng, et al. Effects of short-term plowing and organic amendments on soil physical properties and maize yield in dark brown soil in Northeast China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(12): 99-107. (in Chinese with English abstract)

      [11] 凌啟鴻,張洪程,蔡建中,等. 水稻高產(chǎn)群體質(zhì)量及其優(yōu)化控制探討[J]. 中國(guó)農(nóng)業(yè)科學(xué),1993,26(6):1-11.

      Ling Qihong, Zhang Hongcheng, Cai Jianzhong, et al. Investigation on the population quality of high yield and its optimizing control programme in rice[J]. Scientia Agricultura Sinica, 1993, 26(6): 1-11. (in Chinese with English abstract)

      [12] Huang G M, Liu Y G, Guo Y L, et al. A novel plant growth regulator improves the grain yield of high-density maize crops by reducing stalk lodging and promoting a compact plant type[J]. Field Crops Research, 2021, 260:107982

      [13] Shehzad M A, Nawaz F, Ahmad F, et al. Protective effect of potassium and chitosan supply on growth, physiological processes and antioxidative machinery in sunflower (L.) under drought stress[J]. Ecotoxicology and Environmental Safety, 2020, 187: 109841.

      [14] Dehghan M, Balouchi H, Yadavi A, et al. Improve wheat () performance by brassinolide application under different irrigation regimes[J]. South African Journal of Botany, 2020, 130: 259-267

      [15] 楊宇塵,杜志敏,張小鵬,等. 抽穗開(kāi)花期噴施MeJA對(duì)粳稻產(chǎn)量和品質(zhì)的影響[J]. 作物雜志,2021(2):71-76.

      Yang Yuchen, Du Zhimin, Zhang Xiaopeng, et al. Effects of spraying methyl jasmonate on yield and grain quality of japonica rice during heading and flowering stage[J]. Crops, 2021(2): 71-76. (in Chinese with English abstract)

      [16] 鄭甲成,詹蘭蘭,劉婷,等. 有機(jī)肥和茉莉酸甲酯配施對(duì)水稻產(chǎn)量和品質(zhì)的影響[J]. 云南農(nóng)業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)),2020,35(3):519-525.

      Zheng Jiacheng, Zhan Lanlan, Liu Ting, et al. Effects of organic fertilizer and methyl jasmonate on the yield and quality of rice[J]. Journal of Yunnan Agricultural University (Natural Science), 2020, 35(3): 519-525. (in Chinese with English abstract)

      [17] Nagar S, Ramakrishnan S, Singh V P, et al. Cytokinin enhanced biomass and yield in wheat by improving N-metabolism under water limited environment[J]. Indian Journal of Plant Physiology, 2015, 20: 31-38.

      [18] 楊雪,彭靜,張明明,等. 葉面噴施6-BA對(duì)玉米生殖期碳水化合物轉(zhuǎn)運(yùn)和分配的影響[J]. 西北農(nóng)林科技大學(xué)學(xué)報(bào)(自然科學(xué)版),2019,47(7):62-70.

      Yang Xue, Peng Jing, Zhang Mingming, et al. Effects of foliar spraying of 6-BA on carbohydrate transfer and allocation of maize at the reproductive stage[J]. Journal of Northwest A&F University (Natural Science Edition), 2019, 47(7): 62-70. (in Chinese with English abstract)

      [19] Gong L S, Qu S J, Huang G M, et al. Improving maize grain yield by formulating plant growth regulator strategies in North China[J]. Journal of Integrative Agriculture, 2021, 20: 622-632.

      [20] 王娜,楊思敏,劉蓓蓓,等. 植物生長(zhǎng)調(diào)節(jié)劑對(duì)綠豆干物質(zhì)積累動(dòng)態(tài)與產(chǎn)量的影響[J]. 中國(guó)農(nóng)業(yè)大學(xué)學(xué)報(bào),2021,26 (3):10-18.

      Wang Na, Yang Simin, Liu Beibei, et al. Regulation of plant growth regulator on dry matter accumulation and yield of mung bean[J]. Journal of China Agricultural University, 2021, 26(3): 10-18. (in Chinese with English abstract)

      [21] 羅凱,謝琛,汪錦,等. 外源噴施植物生長(zhǎng)調(diào)節(jié)劑對(duì)套作大豆碳氮代謝和花莢脫落的影響[J]. 作物學(xué)報(bào),2021,47(4):752-760

      Luo Kai, Xie Shen, Wang Jin, et al. Effect of exogenous plant growth regulators on carbon-nitrogen metabolism and flower-pod abscission of relay strip intercropping soybean[J]. Acta Agronomica Sinica, 2021, 47(4):752-760. (in Chinese with English abstract)

      [22] Naz R, Sarfraz A, Anwar Z, et al. Combined ability of salicylic acid and spermidine to mitigate the individual and interactive effects of drought and chromium stress in maize (L.)[J]. Plant Physiology and Biochemistry, 2021, 159: 285-300

      [23] 孔祥,張?chǎng)?,黃翠,等. 外源亞精胺對(duì)水分虧缺下冬小麥小花發(fā)育及結(jié)實(shí)特性的調(diào)控效應(yīng)[J]. 華北農(nóng)學(xué)報(bào),2019,34(增刊):49-58.

      Kong Xiang, Zhang Xin, Huang Cui, et al. Effects of exogenous spermidine on floret development and grain setting characteristics of winter wheat under water deficit[J]. Acta Agriculturae Boreali-Sinica, 2019, 34 (Supplement): 4 9-58. (in Chinese with English abstract)

      [24] Zhang Y B, Tang Q Y, Zou Y B, et al. Yield potential and radiation use efficiency of “super” hybrid rice grown under subtropical conditions[J]. Field Crops Research, 2009, 114: 91-98

      [25] 宋佳琦,王玉祥,張博. 外源6-BA對(duì)紫花苜蓿盛花期葉片光合、生理特性及結(jié)莢率的影響[J]. 草業(yè)科學(xué),2019,36(3):720-728.

      Song Jiaqi, Wang Yuxiang, Zhang Bo. Effects of exogenous 6-BA on photosynthesis, physiological characteristics of alfalfa leaves at flowering stage and rate of podding[J]. Pratacultural Science, 2019, 36(3): 720-728. (in Chinese with English abstract)

      [26] Rasheed R, Yasmeen H, Hussain I, et al. Exogenously applied 5-aminolevulinic acid modulates growth, secondary metabolism and oxidative defense in sunflower under water deficit stress[J]. Physiology and Molecular Biology of Plants, 2020, 26: 489-499.

      [27] 凌啟鴻. 作物群體質(zhì)量[M]. 上海:上??茖W(xué)技術(shù)出版社,2000,55-57.

      [28] 李志宏,劉宏斌,張?jiān)瀑F. 葉綠素儀在氮肥推薦中的應(yīng)用研究進(jìn)展[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2006,12(1):125-132.

      Li Zhihong, Liu Hongbin, Zhang Yungui. A review on chlorophyll meter application on nitrogen fertilizer recommendation[J]. Plant Nutrition and Fertilizer Science, 2006, 12(1): 125-132. (in Chinese with English abstract)

      [29] Huang L, Liu L, Zhang T, et al. An interventional study of rice for reducing cadmium exposure in a Chinese industrial town[J]. Environment International, 2019, 122: 301-309.

      [30] Liu C J, Feng N J, Zheng D F, et al. Uniconazole and diethyl aminoethyl hexanoate increase soybean pod setting and yield by regulating sucrose and starch content[J]. Journal of the Science of Food and Agriculture, 2019, 99: 748-758.

      [31] Huang M, Jiang L G, Xia B, et al. Yield gap analysis of super hybrid rice between two subtropical environments[J]. Australian Journal of Crop Science, 2013, 7: 600-608

      [32] Lynch J P, Doyle D, Mcauley S, et al. The impact of variation in grain number and individual grain weight on winter wheat yield in the high yield potential environment of ireland[J]. European Journal of Agronomy, 2007, 87: 40-49.

      [33] 王曉燕,韋還和,張洪程,等. 水稻甬優(yōu)12產(chǎn)量13.5 t·hm-2以上超高產(chǎn)群體的生育特征[J]. 作物學(xué)報(bào),2014,40(12):2149-2159.

      Wang Xiaoyan, Wei Huanhe, Zhang Hongcheng, et al. Population characteristics for super-high yielding hybrid rice Yongyou 12 (>13.5 t·hm-2) [J]. Acta Agronomica Sinica, 2014, 40(12): 2149-2159. (in Chinese with English abstract)

      [34] 王文玉,鄭桂萍,萬(wàn)思宇,等. 15%調(diào)環(huán)酸鈣對(duì)水稻產(chǎn)量與品質(zhì)的影響[J]. 大麥與谷類科學(xué),2019,36(3):11-17.

      Wang Wenyu, Zheng Guiping, Wan Siyu, et al. Effects of 15% prohexadione calcium on rice yield and quality[J]. Barleyand Cereal Sciences, 2019, 36(3): 11-17. (in Chinese with English abstract)

      [35] 劉世平,陳后慶,陳文林,等. 不同耕作方式與秸稈還田周年生產(chǎn)力的綜合評(píng)價(jià)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2009,25(4):82-85.

      Liu Shiping, Chen Houqing, Chen Wenlin, et al. Comprehensive evaluation of tillage and straw returning on yearly productivity[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(4): 82-85. (in Chinese with English abstract)

      [36] Zhai L C, Wang Z B, Song S J, et al. Tillage practices affects the grain filling of inferior kernel of summer maize by regulating soil water content and photosynthetic capacity[J]. Agricultural Water Management, 2021, 245: 106600.

      Effects of tillage and plant growth regulators on the yield and photosynthetic characteristics of high-quality japonica rice

      Zhao Liming, Zheng Dianfeng※, Feng Naijie, Shen Xuefeng, Huang Anqi, Wang Yaxin, Jiang Wenxin

      (,,524088,)

      Continuous rotary tillage has posed a great challenge to the high yield, efficiency, and quality cultivation of japonica rice. The purpose of this study was to explore the effects of tillage methods and plant growth regulators (PGRs) on the photosynthetic characteristics and the yield of high-quality japonica rice under continuous rotary tillage. The experimental materials were selected as the Suijing18, Kendao12, and Sanjiang6 under the field conditions from 2018 to 2019. Deep tillage (DT) and Rotary Tillage (RT) were performed during three rice-growing seasons. An investigation was then made to determine the effects of two tillage practices on the yield formation of high-quality japonica rice. At the same time, three PGRs Diethylaminoethyl caproate (DA-6), 6-benzylaminoadenine (6-BA), and spermidine (Spd) were sprayed at the flag leaf expansion stage, in order to analyze the effects of PGRs on the yield formation and dry matter transport characteristics of high-quality japonica rice after the full heading stage. Clear water was used as the control. After that, an analysis was made to clarify the regulatory effects of deep tillage and PGRs on the yield formation and photosynthetic matter production characteristics of high-quality japonica rice in the middle and late growth stages. The results showed that the DT treatment significantly increased the biomass, leaf area index, population growth rate, and stem-sheath matter transport capacity after the full heading stage, while the leaf SPAD (Soil and Plant Analyzer Development) value, and net photosynthetic rate at the full heading and wax ripening stage, but prolonged the duration of green leaf area after the full heading stage, and increased the effective panicle number per square meter, grain weight per panicle, 1 000-grain mass, harvest index, and grain yieldunder different tillage practices, compared with the RT. Specifically, the yield increased by an average of 5.15%-14.54% in two years. In PGRs, the 6-BA spraying greatly contributed to the increase in yield. The reason was the increase in the net photosynthetic rate and SPAD value after the full heading stage, and the seed setting rate, harvest index, grain number per panicle, and grain weight per panicle. There was an average yield increase of 4.93%-13.88% in two years, compared with the CK. The interaction between tillage practices and PGRs presented significant effects on harvest index and yield at maturity stage. Among them, the highest yield was achieved in the treatment with DT+6-BA, in terms of the interaction effect. Therefore, the increased yield was attributed to the duration of green leaf area after full heading and increased biomass, ratio of grain to leaf, net photosynthetic rate, and SPAD value after the full heading under the premise of a higher effective panicle number. The formation of high light efficiency population after the full heading, the number of grains per ear, and harvest index all increased to varying degrees. As such, the synergy and complementarity of yield characters were realized to promote the yield. The second yield was achieved in the DT+DA-6 treatment. Furthermore, the yield of RT+6-BA treatment was 8.83%-13.88% higher than that of RT treatment with clear water in two years.To sum up, the one-time deep tillage and foliar spraying 6-BA in the continuous rotary tillage rice field can be expected to improve the photosynthetic matter production capacity and the yield of high-quality japonica rice. A sustainable tillage system and effective cultivation measures can then be taken to improve the high yield and efficient cultivation of high-quality japonica rice in this region.

      tillage; yield; plant growth regulator; high-quality japonica rice; photosynthetic characteristics

      10.11975/j.issn.1002-6819.2022.15.010

      S511.2+2

      A

      1002-6819(2022)-15-0093-11

      趙黎明,鄭殿峰,馮乃杰,等. 耕作與植物生長(zhǎng)調(diào)節(jié)劑對(duì)優(yōu)質(zhì)粳稻產(chǎn)量及光合特性的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2022,38(15):93-103.doi:10.11975/j.issn.1002-6819.2022.15.010 http://www.tcsae.org

      Zhao Liming, Zheng Dianfeng, Feng Naijie, et al. Effects of tillage and plant growth regulators on the yield and photosynthetic characteristics of high-quality japonica rice[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(15): 93-103. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2022.15.010 http://www.tcsae.org

      2022-06-17

      2022-07-29

      國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2019YFD1002205);廣東海洋大學(xué)科研啟動(dòng)經(jīng)費(fèi)資助項(xiàng)目(060302052010);湛江市創(chuàng)新創(chuàng)業(yè)團(tuán)隊(duì)引育領(lǐng)航計(jì)劃項(xiàng)目(2020LHJH01)

      趙黎明,博士,副研究員,研究方向?yàn)樗靖弋a(chǎn)高效與智控抗逆。Email:nkzlm@126.com

      鄭殿峰,博士,教授,博士生導(dǎo)師,研究方向?yàn)樽魑锘瘜W(xué)調(diào)控與高產(chǎn)高效。Email:gdouzdffnj@163.com

      猜你喜歡
      莖鞘齊穗穗數(shù)
      不同高低畦種植模式對(duì)冬小麥干物質(zhì)積累和產(chǎn)量的影響
      播期和密度對(duì)揚(yáng)麥25產(chǎn)量及產(chǎn)量構(gòu)成因子的影響
      施氮量對(duì)滴灌春小麥莖鞘NSC積累與轉(zhuǎn)運(yùn)的影響
      不同氮肥運(yùn)籌下寒地粳稻干物質(zhì)分配及產(chǎn)量形成的研究
      免耕半固態(tài)直播對(duì)水稻劍葉生理特性的影響
      浙江省水稻品種耐遲播性研究
      磷酸二氫鉀葉面肥在水稻上的應(yīng)用效果
      鹽脅迫對(duì)苗期湖南稷子K+、Na+含量與分布的影響
      雜交晚粳稻通優(yōu)粳1號(hào)產(chǎn)量及構(gòu)成因子分析
      高產(chǎn)小麥構(gòu)成要素的解析與掌握
      罗田县| 蓬安县| 繁峙县| 茶陵县| 曲松县| 双鸭山市| 松江区| 乐山市| 聂拉木县| 木里| 镇巴县| 安国市| 吴江市| 青田县| 邵阳县| 宜宾县| 塘沽区| 辉南县| 长宁区| 漳浦县| 崇仁县| 泸州市| 海阳市| 莱芜市| 德化县| 敦化市| 屯留县| 资兴市| 湖口县| 扎囊县| 通河县| 东山县| 缙云县| 津市市| 和林格尔县| 京山县| 河间市| 石景山区| 永福县| 曲沃县| 唐山市|