耿傳文,趙鵬,張曉東,曾梅花,Miroljub Vilotijevic
金剛石薄膜在第一壁材料表面的應(yīng)力研究
耿傳文1,2,趙鵬1,張曉東1,曾梅花1,Miroljub Vilotijevic1
(1.中國(guó)科學(xué)院合肥物質(zhì)科學(xué)研究院,安徽 合肥 230031;2.中國(guó)科學(xué)技術(shù)大學(xué),安徽 合肥 230026)
提出在第一壁材料(鎢穿管部件)表面沉積金剛石薄膜,并系統(tǒng)研究金剛石薄膜厚度對(duì)應(yīng)力的影響。采用數(shù)值模擬和實(shí)驗(yàn)表征方法。利用ANSYS workbench模擬軟件,在建立鎢穿管部件表面金剛石薄膜有限元模型及模型方程的基礎(chǔ)上,對(duì)影響金剛石薄膜熱殘余應(yīng)力的厚度因素進(jìn)行探討;采用微波等離子體化學(xué)氣相沉積法(MPCVD),在鎢穿管部件表面沉積不同厚度的金剛石薄膜,并利用拉曼光譜法和洛氏硬度計(jì)壓痕法對(duì)薄膜的應(yīng)力進(jìn)行表征。模擬顯示,隨著金剛石薄膜厚度增加,薄膜最大主應(yīng)力值和最大剪應(yīng)力值均呈現(xiàn)出先減少后增加趨勢(shì),在薄膜厚度為75~100 μm時(shí)處于最低,小于金剛石薄膜通常的斷裂強(qiáng)度(700 MPa),同時(shí)最大應(yīng)力落差區(qū)域出現(xiàn)在薄膜邊緣處。通過(guò)實(shí)驗(yàn)表征得到金剛石薄膜表面呈現(xiàn)出拉應(yīng)力,在薄膜厚度為(103.56±0.5)μm時(shí),金剛石薄膜中間區(qū)域應(yīng)力值最低,與VDI3198標(biāo)準(zhǔn)對(duì)比,壓痕坑達(dá)到HF1和HF2效果。鎢穿管部件表面金剛石薄膜厚度為(103.56±0.5)μm時(shí),不容易出現(xiàn)裂紋和與基底的剝離現(xiàn)象,具有較好的附著性。
金剛石薄膜;第一壁材料;應(yīng)力;等離子體;鎢穿管部件
核聚變能是解決人類能源問(wèn)題的重要途徑,利用磁約束熱核聚變反應(yīng)裝置(托卡馬克,TOKAMAK)是最有希望實(shí)現(xiàn)聚變能發(fā)電的裝置[1-2]。在托卡馬克裝置中,第一壁材料(穿管部件)由于直接面向高溫等離子體并與之相互作用(PMI),使得材料需要經(jīng)受超500 ℃的高溫、10 MW/m2的高熱通量、14 MeV的高強(qiáng)度中子輻照等極端服役環(huán)境,不僅轟擊產(chǎn)生的雜質(zhì)造成聚變堆能量損失,還會(huì)引起材料自身輻照損傷、熱腐蝕和濺射腐蝕[3-5]。鎢和碳基材料(石墨、碳纖維復(fù)合材料)是目前被認(rèn)為第一壁材料最理想的2種材料,已經(jīng)廣泛應(yīng)用于世界上大多數(shù)托卡馬克裝置中[6-7]。但鎢是高原子序數(shù)材料,在等離子體高約束模式運(yùn)行條件下容易聚芯,影響高溫等離子體穩(wěn)定運(yùn)行[8],而石墨與碳纖維復(fù)合材料由于高濺射產(chǎn)額也難以滿足第一壁材料的要求[9]。金剛石最密排的結(jié)構(gòu)使其成為自然界硬度最高和導(dǎo)熱性能最好的材料,同時(shí)具有良好的抗物理濺射及化學(xué)腐蝕的性能,耐熱沖擊性好,且可以抑制氫同位素的滲透,這些已經(jīng)在聚變堆中得到認(rèn)證[10-13]。目前,制備金剛石最常見(jiàn)的方法為化學(xué)氣相沉積法(CVD),而對(duì)比熱絲法(HFCVD)、直流法(DCPCVD)、燃燒火焰法(CFCVD)等方法,微波法(MPCVD)采用無(wú)極放電,所制備的材料雜質(zhì)低、純度高,在托卡馬克裝置應(yīng)用中具有更大優(yōu)勢(shì)。使用MPCVD方法在鎢穿管部件的面對(duì)等離子體方向表面制備金剛石薄膜,有望成為第一壁材料的新選擇。
在金剛石薄膜制備過(guò)程中不可避免會(huì)有應(yīng)力產(chǎn)生,應(yīng)力的大小及分布直接決定薄膜的性能與使用穩(wěn)定性。應(yīng)力又可分為本征應(yīng)力與熱殘余應(yīng)力,本征應(yīng)力主要與在制備過(guò)程中雜質(zhì)的引入及自身的結(jié)構(gòu)特征有關(guān),熱殘余應(yīng)力由于受薄膜與基底熱膨脹系數(shù)不匹配和薄膜厚度的影響,使得在高溫制備完畢后的冷卻過(guò)程中產(chǎn)生不均勻塑性變形。在MPCVD法制備金剛石薄膜中,熱殘余應(yīng)力的影響往往遠(yuǎn)大于本征應(yīng)力,這是導(dǎo)致金剛石薄膜產(chǎn)生開(kāi)裂破壞、與基底剝離等現(xiàn)象的主要因素[14-15]。而目前對(duì)于熱殘余應(yīng)力的研究途徑大多集中在采用基片曲率法[16]和XRD[17]等方法,這些方法受限于基底或者薄膜厚度的影響,難以得到薄膜冷卻過(guò)程中熱殘余應(yīng)力的瞬態(tài)變化。為此,首先采用有限元軟件ANSYS workbench對(duì)鎢表面金剛石薄膜的熱殘余應(yīng)力進(jìn)行模擬,研究膜厚對(duì)熱殘余應(yīng)力大小及分布的影響,確定金剛石薄膜的最佳沉積厚度范圍;其次,使用MPCVD法在鎢穿管部件表面制備與模擬結(jié)果厚度相匹配的金剛石薄膜,通過(guò)拉曼光譜法和壓痕法研究薄膜厚度對(duì)其總應(yīng)力和與基底附著力大小的影響。
薄膜厚度是影響熱殘余應(yīng)力最主要的因素之一[18-19],采用ANSYS workbench軟件對(duì)鎢穿管部件表面厚度為25~300 μm的金剛石薄膜進(jìn)行模擬,研究厚度對(duì)薄膜殘余應(yīng)力大小及分布的影響,對(duì)膜內(nèi)危險(xiǎn)位置和失效方式進(jìn)行初步分析,為金剛石薄膜的最佳制備參數(shù)的選擇提供依據(jù)。
1.1.1 模型建立及假設(shè)
鎢穿管部件(××, 26 mm×13 mm×26 mm)及金剛石薄膜有限元網(wǎng)格模型見(jiàn)圖1,網(wǎng)格采用自由劃分方式(見(jiàn)圖1a),同時(shí)為了模擬的準(zhǔn)確性,對(duì)薄膜及周?chē)鷧^(qū)域進(jìn)行局部網(wǎng)格加密(見(jiàn)圖1b)。冷卻方式設(shè)置為鎢穿管部件底部固定水冷,對(duì)流傳熱系數(shù)根據(jù)實(shí)驗(yàn)結(jié)果設(shè)定為500 W/(m2·K)。鎢穿管部件及金剛石薄膜初始溫度均設(shè)置為800 ℃,這也是最適合金剛石薄膜生長(zhǎng)的溫度[20],冷卻后的溫度為22 ℃。材料性能參數(shù)設(shè)置為:金剛石和鎢的彈性模量分別為1 000 GPa和410 GPa,泊松比分別為0.07和0.28,考慮到熱膨脹系數(shù)隨溫度的改變而變化,取值參考GA slack等[21]的研究結(jié)果。
模型假設(shè):
1)金剛石薄膜與鎢穿管部件表面之間無(wú)外力和缺陷影響。
2)金剛石薄膜初始狀態(tài)處于均勻溫度且無(wú)應(yīng)力狀態(tài)。
3)金剛石薄膜與鎢基底物理性質(zhì)為各向同性。
4)MPCVD腔體內(nèi)為低氣壓與低氣體流量,不考慮氣體熱傳導(dǎo)對(duì)結(jié)果的影響。
5)金剛石薄膜的厚度遠(yuǎn)小于其他兩個(gè)方向尺度,
故把金剛石薄膜視為表面平整模型。
1.1.2 模型方程
熱傳導(dǎo)的三維瞬態(tài)溫度場(chǎng)公式見(jiàn)式(1)—(2)[22]。
1,2,3三者的邊界條件分別見(jiàn)式(3)—(5)。
式(1)—(5)中:為比熱容;為材料密度;為熱擴(kuò)散率;是在(,,,)的場(chǎng)變量;為熱源密度;為物體的邊界,1為1邊界溫度;為各方向外法線余弦;為定流熱量;為換熱系數(shù);2為環(huán)境溫度。
熱應(yīng)力中的熱應(yīng)變是由溫度引起[22],公式見(jiàn)式(6)。
考慮到薄膜與基底之間的相互約束,其場(chǎng)變量的形變分量見(jiàn)式(7)—(9)。
在薄膜某一點(diǎn)的總形變分量見(jiàn)式(10)—(11)。
式(6)—(11)中:為彈性模量;為正應(yīng)變;為正應(yīng)力;為剪切應(yīng)變;為剪切應(yīng)力;為比例系數(shù)
圖1 鎢穿管部件及金剛石薄膜有限元網(wǎng)格模型
由于金剛石薄膜屬于脆性材料,采用第一強(qiáng)度理論,最大主應(yīng)力(1)是金剛石薄膜破壞的主要因素[23]。在不改變其他參數(shù)的前提下,僅改變金剛石薄膜的厚度,不同厚度下金剛石薄膜整體、上表面和與基底接觸底面三者區(qū)域中1最高值(max)的變化趨勢(shì)見(jiàn)圖2,可以看出max均呈現(xiàn)出先降低后上升的趨勢(shì)。當(dāng)厚度為25~35 μm時(shí),由于金剛石薄膜較薄,三者區(qū)域中1具有相近的max值;在厚度為75 μm時(shí),三者區(qū)域中1的max均達(dá)到最低值,且薄膜上表面的max低于其他區(qū)域。隨著薄膜厚度的繼續(xù)增加,max也隨之上升,同時(shí)max的最小值逐漸由金剛石薄膜的上表面轉(zhuǎn)移到與基底的接觸面。由于金剛石具有較高的導(dǎo)熱率,當(dāng)厚度較薄時(shí),金剛石薄膜具有均勻的溫度分布與變化趨勢(shì),產(chǎn)生的應(yīng)力無(wú)差異;隨著薄膜厚度的增加,由于金剛石和鎢的熱膨脹系數(shù)與導(dǎo)熱率的差異,薄膜不同部位的溫度下降逐漸具有差異性,表面下降的變化速率最快,應(yīng)力增長(zhǎng)的趨勢(shì)也相應(yīng)最快。與此同時(shí),5~100 μm厚度的max小于700 MPa,低于金剛石薄膜通常的斷裂強(qiáng)度范圍[24],避免了熱殘余應(yīng)力引起的薄膜斷裂現(xiàn)象。
圖3所示為厚度75 μm的金剛石薄膜上表面的1分布。從圖3可以看出,金剛石薄膜表面1以拉應(yīng)力為主,僅僅在角落處為壓應(yīng)力,且整個(gè)表面的1最高值與最低值都集中在角落處,可以看出,鎢穿管部件表面的金剛石薄膜在降溫時(shí)的角落處可能最容易產(chǎn)生破裂。
圖2 金剛石薄膜各部位最大主應(yīng)力σmax隨厚度變化趨勢(shì)
圖3 厚度75 μm的金剛石薄膜上表面σ1分布
薄膜與基體之間的剪切應(yīng)力是薄膜剝落的主要原因,圖4所示為不同厚度下金剛石薄膜整體、上表面和與基底接觸底面三者最大剪切應(yīng)力的最高值(max)變化趨勢(shì)。從圖4可以看出,max變化趨勢(shì)和max相同,呈現(xiàn)出先降低后上升的趨勢(shì),且在薄膜厚度為100 μm時(shí)最低,位于金剛石薄膜與基底接觸底面,有利于金剛石薄膜在鎢上的附著。結(jié)合max模擬數(shù)據(jù),當(dāng)膜厚為75~100 μm時(shí),鎢穿管部件表面的金剛石薄膜適合在第一壁材料上應(yīng)用。
圖4 金剛石薄膜各部位最大剪切應(yīng)力τmax隨厚度變化趨勢(shì)
高性能的第一壁材料對(duì)聚變堆運(yùn)行尤為重要。有限元模擬結(jié)果得到具有低熱殘余應(yīng)力值的金剛石薄膜厚度范圍,通過(guò)MPCVD法在鎢穿管部件表面制備與模擬結(jié)果厚度相匹配的金剛石薄膜,對(duì)薄膜總的應(yīng)力大小及與基底附著力的表征,是考察金剛石薄膜在第一壁材料表面能否實(shí)際應(yīng)用的關(guān)鍵所在。
采用雙基片臺(tái)壓縮波導(dǎo)式MPCVD裝置制備金剛石薄膜(見(jiàn)圖5),其工作頻率為2.45 GHz,最大輸出功率3 kW,工作中可產(chǎn)生高密度的等離子體[25],同時(shí)等離子體可以均勻覆蓋鎢穿管部件表面,可高效地制備金剛石薄膜[26]。螺旋測(cè)微儀用于測(cè)量金剛石薄膜厚度。將反復(fù)用酒精超聲清理后的鎢穿管部件放入微波腔體,通入甲烷(純度為99.9999%)與氫氣(純度為99.999%),微波激發(fā)產(chǎn)生等離子體。甲烷提供金剛石生長(zhǎng)的碳源,氫氣可以激發(fā)甲烷和刻蝕生成的石墨相,減少本征應(yīng)力。其反應(yīng)公式見(jiàn)式(12)—(15)。
在鎢穿管部件表面分別經(jīng)過(guò)8、9.5、11、12 h化學(xué)氣相沉積,沉積參數(shù)見(jiàn)表1,得到厚度分別為(55.48± 0.5)、(80.86±0.5)、(103.56±0.5)、(123.84±0.5)μm等4個(gè)金剛石薄膜,沉積后金剛石薄膜照片如圖5b所示。采用532 nm激發(fā)波長(zhǎng)的顯微共焦拉曼光譜儀(LabRAM HR Evolution)對(duì)金剛石薄膜的應(yīng)力進(jìn)行測(cè)試與分析,應(yīng)力大小計(jì)算公式見(jiàn)式(16)[27]。
式中:為測(cè)試位置的拉曼峰位;0為金剛石標(biāo)準(zhǔn)一階拉曼峰位(1 332 cm–1);= –0.567 GPa/cm–1。
同時(shí),采用洛氏硬度計(jì)壓痕法與VDI3198標(biāo)準(zhǔn)對(duì)比研究,對(duì)樣品基底和金剛石薄膜之間的結(jié)合性能進(jìn)行表征,壓痕載荷為1 470 N,每次加載時(shí)間為15 s。
表1 MPCVD制備樣品實(shí)驗(yàn)參數(shù)
Tab.1 Experimental parameters of samples prepared by MPCVD
圖6為不同厚度金剛石薄膜表面4個(gè)采集點(diǎn)位置的Raman峰值,采集點(diǎn)位置如圖5b所示。與標(biāo)準(zhǔn)金剛石一階特征峰1 332 cm–1比較可以看出,所有采集點(diǎn)Raman峰位均向低波段偏移,呈現(xiàn)出拉應(yīng)力。其中,膜厚為(103.56±0.5)μm的金剛石薄膜Raman峰位偏移最小,具有最小的拉應(yīng)力。一般認(rèn)為,CVD金剛石薄膜的晶界處產(chǎn)生拉應(yīng)力[28]。在金剛石異質(zhì)外延生長(zhǎng)初始階段,含碳前驅(qū)物形成三維島狀晶核單獨(dú)生長(zhǎng),然后彼此連接形成大量晶界,增加了薄膜的本征應(yīng)力[29-31]。隨著含碳前驅(qū)物繼續(xù)沉積,金剛石晶粒體積增大并相互合并,晶界數(shù)量的降低使得薄膜本征應(yīng)力得到緩解[32-33]。之后薄膜厚度持續(xù)增加,晶粒合并得到制約轉(zhuǎn)為縱向生長(zhǎng)[34],熱殘余應(yīng)力在總應(yīng)力中占據(jù)絕對(duì)地位,結(jié)合前述的模擬結(jié)果,隨著薄膜厚度的繼續(xù)增加總應(yīng)力隨之增大。同時(shí),在膜厚為(103.56± 0.5)μm的金剛石薄膜4個(gè)采集點(diǎn)的Raman峰位中,薄膜正中間區(qū)域的Raman峰位為1 331.75 cm–1,更接近1 332 cm–1,將其代入Raman應(yīng)力公式(12)中,得到拉應(yīng)力為141.75 MPa,而相應(yīng)邊角處拉應(yīng)力最大為635.04 MPa。因此,邊角處過(guò)高的拉應(yīng)力會(huì)導(dǎo)致裂紋的出現(xiàn)。
洛氏硬度計(jì)對(duì)材料處理后的壓痕坑可以反映薄膜性能及與基底之間的附著力[28]。將4個(gè)厚度的金剛石薄膜的4號(hào)采集點(diǎn)位置進(jìn)行洛氏硬度計(jì)壓痕,壓痕坑見(jiàn)圖7。由圖7a可以看出,厚度為(55.48±0.5)μm的金剛石薄膜壓痕坑邊緣出現(xiàn)不規(guī)則破損和與基底之間的剝離痕跡;由圖7b可以看出,厚度為(80.86±0.5)μm的金剛石薄膜壓痕坑完整性優(yōu)于圖7a;由圖7c可以看出,厚度為(103.56±0.5)μm的金剛石薄膜與圖7d厚度為(123.84±0.5)μm的金剛石薄膜的壓痕坑呈現(xiàn)出幾乎標(biāo)準(zhǔn)圓形圖案,表明薄膜性能最好,完全沒(méi)有剝離跡象??梢?jiàn),壓痕測(cè)試結(jié)果與Raman光譜表征結(jié)果相互驗(yàn)證,厚度為(103.56±0.5)μm的金剛石薄膜不容易被損壞,體現(xiàn)出最好的性能。將圖7c與VDI3198標(biāo)準(zhǔn)進(jìn)行對(duì)照,可以得到壓痕坑達(dá)到HF1和HF2等級(jí),說(shuō)明(103.56± 0.5)μm厚度金剛石薄膜與基底具有較高的附著力。
圖5 雙基片臺(tái)壓縮波導(dǎo)式MPCVD裝置制備金剛石薄膜
圖6 不同厚度金剛石薄膜4個(gè)采集點(diǎn)位置的Raman峰位
圖7 不同厚度下金剛石薄膜表面4號(hào)采集點(diǎn)位置的洛氏壓痕坑SEM圖
提出在鎢穿管部件表面制備金剛石薄膜的技術(shù)方案,可作為托卡馬克裝置第一壁材料的選擇。采用ANSYS workbench模擬軟件,對(duì)不同厚度金剛石薄膜制備完成后冷卻產(chǎn)生的熱殘余應(yīng)力進(jìn)行有限元模擬,結(jié)果表明:隨著金剛石膜厚的增加,金剛石薄膜整體的max與max呈現(xiàn)出先降低后上升的趨勢(shì),最低值在膜厚為75~100 μm處,同時(shí),薄膜邊角處具有應(yīng)力較大的變化趨勢(shì),容易出現(xiàn)破裂現(xiàn)象;使用MPCVD法在鎢穿管部件表面分別制備出厚度為(55.48±0.5)、(80.86±0.5)、(103.56±0.5)、(123.84±0.5)μm等4個(gè)金剛石薄膜,通過(guò)拉曼光譜法及洛氏硬度計(jì)壓痕法對(duì)比研究發(fā)現(xiàn),(103.56±0.5)μm厚度的金剛石薄膜具有最小的總應(yīng)力及與基底最好的附著性,滿足托卡馬克裝置第一壁材料的應(yīng)力要求最好。
[1] Venema L, Verberck B, Georgescu I, et al. The quasiparticle zoo[J]. Nature Physics, 2016, 12(12): 1085- 1089.
[2] Budnitz R J. Nuclear power: Status report and future prospects[J]. Energy Policy, 2016, 96: 735-739.
[3] Spilker B, Linke J, Pintsuk G, et al. Impact of the surface quality on the thermal shock performance of beryllium armor tiles for first wall applications[J]. Fusion Engineering & Design, 2016, 109/110/111(PT.b): 1692- 1696.
[4] Fan H, Tao S, Wu Z. Morphology and crystalline evo-lution of tungsten induced by low-energy helium ions irradiation[J]. Journal of Radioanalytical and Nuclear Chemistry, 2019, 319, 75-81.
[5] Joffrin E, Pau A. Overview of the JET preparation for Deuterium-Tritium Operation with the ITER Like-Wall [J]. Nuclear fusion, 2019, 59(11): 112021.
[6] Lemahieu N, Greuner H, Linke J, et al. Syner-gistic effects of ELMs and steady state H and H/He irradiation on tungsten[J]. Fusion Engineering and Design, 2015, 98/99: 2020-2024.
[7] Roth J, Tsitrone E, Loarer T, et al. Tritium inven-tory in ITER plasma-facing materials and tritium removalprocedures[J]. Plasma Physics & Controlled Fusion, 2008, 50(10): 103001.
[8] Sun F, Nakata M, Lee S E, et al. Synergistic effects of high energy helium irradiation and damage introduc-tion at high temperature on hydrogen isotope retention in plasma facing materials[J]. Journal of Nuclear Materials, 2020, 533: 152122.
[9] 龍海川, 邱長(zhǎng)軍, 鄭鵬飛, 等. 面向等離子體壁材料的腐蝕行為與涂層防護(hù)綜述[J]. 表面技術(shù), 2021, 50(2): 123-133.
LONG Hai-chuan,QIU Chang-jun,ZHENG Peng-fei, et al. Review on the corrosion behavior and coating protec-tion of plasma facing materials[J]. Surface Technology, 2021, 50(2): 123-133.
[10] Deslandes A, Guenette M C, Corr C S, et al. Deuterium retention and near-surface modification of ion-irradiated diamond exposed to fusion-relevant plasma[J]. Nuclear Fusion, 2014, 54(7): 073003.
[11] Guenette M C, Deslandes A, Thomsen L, et al. D and D/He plasma interactions with diamond: Surface modification and D retention[J]. Diamond & Related Materials, 2014, 49: 103-110.
[12] Porro S, Temmerman G D, Lisgo S, et al. Nano-crystalline diamond coating of fusion plasma facing components[J]. Diamond & Related Materials, 2009, 18(5): 740-744.
[13] Dunn A R, Duffy D M, Stoneham A M. A mole-cular dynamics study of diamond exposed to tritium bombardment for fusion applications[J]. Nuclear Inst & Methods in Physics Research B, 2011, 269(14): 1724-1726.
[14] Liu J, Wang Y, Costil S, et al. Numerical and ex-perimental analysis of molten pool dimensions and resi-dual stresses of NiCrBSi coating treated by laser post- remelting[J]. Surface and Coatings Technology, 2017, 318(25): 341-348.
[15] Yu Q M, Cen L. Residual stress distribution along in-ter-faces in thermal barrier coating system under thermal cycles[J]. Ceramics International, 2016, 43(3): 3089-3100.
[16] FENG Z B, CHAYAHARA A, YAMADA H, et al. Surface stress mea-surement with interference microscopy of thickho-moepitaxial single-crystal diamond layers[J]. Dia-mond and Related Materials, 2010, 19(12): 1453-1456.
[17] Chiu K A, Wu P H, Peng C Y, et al. Homoepitaxial growth and stress analysis of (111) diamond films with embedded gold islands[J]. Vacuum, 2015, 118: 104-108.
[18] 肖來(lái)榮, 聶艷春, 趙小軍,等. MoSi2涂層殘余應(yīng)力和結(jié)合強(qiáng)度的有限元分析[J]. 表面技術(shù), 2020, 49(8): 7.
XIAO Lai-rong, NIE Yan-chuna, ZHAO Xiao-jun, et al. Finite Element analysis of residual Stress and bonding strength of MoSi2coating[J]. Surface Technology, 2020, 49(8): 7.
[19] Seidl W M, Bartosik M, Kolozsvári S, et al. Influence of coating thickness and substrate on stresses and mechanical properties of (Ti,Al,Ta)N/(Al,Cr)N mul-ti-layers[J]. Surface & Coatings Technology, 2018, 347: 92-98.
[20] 耿傳文, 夏禹豪, 趙洪陽(yáng),等. 單晶金剛石邊緣表面傾斜角度對(duì)同質(zhì)外延生長(zhǎng)的影響[J]. 物理學(xué)報(bào), 2018, 67(24): 245-251.
GENG Chuan-wen, XIA Yu-hao, ZHAO Hong-yang, et al. Effect of edge inclination of single crystal diamond on homoepitaxial growth[J]. Acta Phys. Sin, 2018, 67(24): 245-251.
[21] Slack G A, Bartram S F. Thermal expansion of Some Diamondlike Crystals[J]. Journal of Applied Physics, 1975, 46(1): 89-98.
[22] 嚴(yán)宗達(dá), 王洪禮. 熱應(yīng)力[M]. 北京: 高等教育出版社, 1993: 78-89.
YAN Zong-da, WANG Hong-li. Thermal stress[M]. Beijing: Higher Education Press, 1993: 78-89.
[23] 唐達(dá)培. 直流電弧等離子體噴射金剛石膜殘余應(yīng)力及開(kāi)裂破壞研究[D]. 成都: 西南交通大學(xué), 2009: 60-62.
TANG Da-pei. Study on the residual stresses and crac-king of diamond film produced by DC arc plasma jet[D]. Chengdu: Southwest Jiaotong University, 2009: 60-62.
[24] Zhang H, Tian J, Tang W, et al. Correlationbetween fracture strength and crystal orientation of freestanding diamond films[J]. Carbon, 2003, 41(3): 603-606.
[25] Ma Z, Chao W, Wang J, et al. Development of a plate- to-plate MPCVD reactor configuration for diamondsyn-thesis[J]. Diamond and Related Materials, 2016, 66: 135- 140.
[26] Geng C, Zhao P, Zeng M, et al. Synthesis of diamond films on W mono-blocks by MWCVD for modification of fusion materials[J]. Surface and Coatings Technology, 2021, 421: 127392.
[27] Gruen D M, Liu S, Krauss A R, et al. Buckyball microwave plasmas: Fragmentation and diamond-films growth[J]. Journal of Applied Physics, 1994, 75(3): 1758- 1763.
[28] Fan Q H , Grácio J, Pereira E . Residual stresses in chemical vapour deposited diamond films[J]. Diamond & Related Materials, 2000, 9(9/10): 1739-1743.
[29] 龍芬. Mo箔基體上金剛石薄膜的制備及殘余應(yīng)力的研究[D]. 長(zhǎng)沙: 中南大學(xué), 2014:38-45.
LONG Fen. Study of preparation and residual stress of diamond films on Mo foil [D]. Changsha:Central South University, 2014: 38-45.
[30] 盧文壯. CVD金剛石涂層刀具的制備及其切削性能研究[D]. 南京: 南京航空航天大學(xué), 2008: 23-26.
LU Wen-zhuang. Deposition techniques and dry machining properties of CVD diamond coated cutting tool on WC- Co cemented carbide[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2008: 23-26.
[31] 任瑛. 熱絲化學(xué)氣相沉積法制備納米金剛石薄膜[D]. 大連: 大連理工大學(xué), 2009: 44-45.
REN Ying. Nanocrystalline diamond films deposited by hot filament CVD[D]. Dalian: Dalian University of tech-no-logy, 2009: 44-45.
[32] Freund L B , Suresh S. Thin film materials: stress, defect formation, and surface evolution[J]. Cambridge University Press, 2005, 43: 922-923.
[33] Woehrl N, Buck V. Influence of hydrogen on the residual stress in nanocrystalline diamond films[J]. Dia-mond & Related Materials, 2007, 16/(4/5/6/7): 748-752.
[34] 王啟亮. MPCVD法制備多晶和單晶金剛石及性質(zhì)研究[D]. 長(zhǎng)春: 吉林大學(xué), 2009: 15.
WANG Qi-liang. Preparation and properties of polycrys-talline and single-crystal diamond by MPCVD[D]. Chang-chun: Jilin University, 2009: 15.
[35] Vidakis N, Antoniadis A, Bilalis N. The VDI 3198 indentation test evaluation of a reliable qualitative control for layered compounds[J]. Journal of Materials Processing Technology, 2003, 143/144(1): 481-485.
The Stress of Diamond Films on the Surface of the First Wall Material
1,2,1,1,11
(1. Hefei Institutes of Physical Science, Chinese Academy of Sciences, AnHui Hefei 230031, China;2. University of Science and Technology of China, AnHui Hefei 230026, China)
This paper proposes to deposit a diamond films on the surface of the first wall material (W mono-blocks), and through numerical simulation and experimental characterization, the effect of diamond films thickness on stress is systematically studied. In this paper, the finite element software ANSYS workbench is first used to simulate the thermal residual stress of the diamond films on the tungsten surface, and the influence of the films thickness on the size and distribution of the thermal residual stress is studied, and the optimal deposition thickness range of the diamond films is confirmed. High-performance first wall materials are particularly important for the operation of fusion reactors. The finite element simulation results obtained the diamond films thickness range with low thermal residual stress value. The diamond films was prepared on the surface of the tungsten pipe through the microwave plasma chemical vapor deposition (MPCVD) method to match the thickness of the simulation result. The total stress of the films and the adhesion to the substrate are characterized the key to investigating whether the diamond films can be applied on the surface of the first wall material is the key. A MPCVD method was used to prepare a diamond films with a thickness matching the simulation result on the surface of the tungsten pipe component. Raman spectroscopy and indentation were used to study the thickness of the films and its total stress and its correlation with the simulation results. The influence of substrate adhesion.
The simulation results show that as the thickness of the diamond films increases, the maximum principal stress and maximum shear stress of the films first decrease and then increase, from 75-100 μm to the lowest, which is less than the normal fracture strength of the diamond films, and the maximum stress reduction area appears at the edge of the films. Diamond films with thicknesses of (55.48±0.5), (80.86±0.5), (103.56±0.5) μm, and (123.84±0.5) μm were prepared on the surface of the substrate by the MPCVD method. Through Raman characterization, the first-order characteristic peaks of the four samples were all lower than 1 332 cm–1, the surface has tensile stress. At the same time, among the Raman peak positions of the four collection points of the diamond films with a films thickness of (103.56 ±0.5) μm, the Raman peak position in the middle region of the films is 1 331.75 cm–1, which is closer to 1 332 cm–1, which is substituted into the Raman stress formula. The tensile stress is 141.75 MPa, and the maximum tensile stress at the corresponding corners is 635.04 MPa, so excessively high tensile stress at the corners will cause cracks to appear. The center positions of the four thickness diamond films were indented by Rockwell hardness tester. It can be seen that the indentation test results and the Raman spectrum characterization results are mutually verified. Therefore, the diamond films with a thickness of (103.56±0.5) μm is not easy to be damaged, showing the best performance. Comparing with the VDI3198 standard, the indentation pits can reach the HF1and HF2level, indicating that the diamond films with a thickness of (103.56±0.5) μm has a high adhesion to the substrate, which provides a theoretical basis for the application of the diamond films on the surface of the first wall material.
diamond films; the first wall material; stress; plasma; W mono-blocks
O343.6; O484.1
A
1001-3660(2022)10-0243-07
10.16490/j.cnki.issn.1001-3660.2022.10.025
2021–10–10;
2022–01–11
2021-10-10;
2022-01-11
國(guó)家自然科學(xué)基金(11775271)
National Natural Science Foundation of China (11775271)
耿傳文(1992—)男,博士,主要研究方向?yàn)槲⒉ǖ入x子體物理及金剛石制備。
GENG Chuanwen (1992-), male, postdoctoral, research interests are microwave plasma physics and diamond preparation.
趙鵬(1978—),女,博士,副研究員,主要研究方向?yàn)榈蜏氐入x子體物理及相關(guān)材料制備。
ZHAO Peng (1978-), female, doctor, associate researcher, research direction is low-temperature plasma physics and related material preparation.
耿傳文, 趙鵬, 張曉東, 等.金剛石薄膜在第一壁材料表面的應(yīng)力研究[J]. 表面技術(shù), 2022, 51(10): 243-249.
GENG Chuan-wen, ZHAO Peng, ZHANG Xiao-dong, et al. The Stress of Diamond Films on the Surface of the First Wall Material[J]. Surface Technology, 2022, 51(10): 243-249.
責(zé)任編輯: