• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    THE ASYMPTOTIC BEHAVIOR AND SYMMETRY OF POSITIVE SOLUTIONS TO p-LAPLACIAN EQUATIONS IN A HALF-SPACE*

    2022-11-04 09:07:20

    School of Science,Nantong University,Nantong 226007,China

    E-mail: nttccyj@ntu.edu.cn

    Lei WEI (魏雷)

    School of Mathematics and Statistics,Jiangsu Normal University,Xuzhou 221116,China

    E-mail: wlxznu@163.com

    Yimin ZHANG (張貽民)?

    Center for Mathematical Sciences,Wuhan University of Technology,Wuhan 430070,China

    E-mail: zhangym802@126.com

    Abstract We study a nonlinear equation in the half-space with a Hardy potential,specifically, where Δp stands for the p-Laplacian operator defined by ,p >1,θ >-p,and T is a half-space {x1 >0}.When λ >Θ (where Θ is the Hardy constant),we show that under suitable conditions on f and θ,the equation has a unique positive solution.Moreover,the exact behavior of the unique positive solution as x1 →0+,and the symmetric property of the positive solution are obtained.

    Key words p-Lapacian;Hardy potential;symmetry;uniqueness;asymptotic behavior

    1 Introduction

    In this work,we investigate the existence,uniqueness,asymptotic behavior and symmetry of positive solutions to a class ofp-Lapacian equation,

    where Δpstands for thep-Laplacian operator defined by Δpu=div(|?u|p-2?u) (p >1),andT={x=(x1,x2,· · ·,xN) :x1>0} (N≥2),θ >-p.The first term on the right-hand side of (1.1) contains a singular potentialwhich is a well-known Hardy potential.In the second term,the weight function is,which is degenerate on?Twhenθ >0,and singular on?Twhenθ <0.

    For when the potential function has no singularity,problem (1.1) has drawn a lot of attention;for this,we refer readers to [5,6,8–10,18].

    Note that if Ω is a bounded smooth domain in RN(N≥2),1<p <∞,the well-known Hardy inequality is (see [12,13])

    Here and in what follows,d(x)=d(x,?Ω).The issue of finding the best constant which is called a Hardy constant is naturally associated with the variational problem of determining

    When the dimensionN=1 or when Ω is a convex domain,the Hardy constant is given by (see[1] or [12])

    As we know,equation (1.1) serves as ap-Laplacian model for a more general problem in a domain Ω ?RN(N≥2),

    whereq >1,θ >-2.For when Ω is a bounded smooth domain,Bandle,Moroz and Reichel in[3] gave some classification of positive solutions to (1.2) for the caseλ≤1/4 (the Hardy constant forp=2),whereas,Du and Wei in [7] considered the caseλ >1/4,and obtained the uniqueness and the exact behavior of positive solutions.For when the domain is a half-space,Wei,in [16],studied the case ofλ >1/4 and established that (1.2) has a unique positive solution which depends only onx1,and they obtained the exact blow-up rate.Moreover,Bandle,Marcus and Moroz in [2] considered (1.2) withθ=0,λ <1/4,and they obtained the existence,uniqueness,nonexistence and the estimate at the boundary of positive solutions.A similar problem with singular potential can be seen in [11,17].

    Motivated by the works [7,16],our objective in this paper is to extend the results of [16]to thep-Laplacian equations.We have to overcome some extra difficulties stemming from the nonlinearity of thep-Lalacian operator.In fact,the argument for proving the uniqueness in[16],where the convexity condition offand the linearity of the operator are used,is invalid for thep-Laplacian problem.In addition,the method need to establish the exact blow-up rate in this paper is different from that of [16],and it appears to be new.

    We first give the definition of positive solutions of (1.1),which means the following:

    Definition 1.1A functionuis said to be a positive solution (subsolution,supersolution)of (1.1) ifu(x) ∈C1(T) withu(x)>0 inT,and for all functions (non-negative functions)φ(x)in(T),

    Throughout this paper,we always assume thatand that the following conditions hold:

    (f1)f∈C1([0,∞)) andu-(p-1)f(u) is increasing in (0,∞);

    (f2),wherer >p-1 anda >0;

    (f3),whereq >p-1 andb >0.

    We always assume thatθ >-p,unless otherwise specified.

    For convenience,denote that

    In order to give some information ragarding positive solutions of (1.1),as the arguments in [16] do,we need to establish some key results for the corresponding ordinary differential equation

    This is given by the following theorem:

    Theorem 1.2Suppose thatθ >-p,α,σ,A(a,r,α) andA(b,q,σ) are defined in (1.3).Then the following results hold:

    (i) Equation (1.4) has a minimal positive solutionω0and a maximal positive solutionω∞,and any positive solutionωof it satisfies that

    (ii) Ifθ≥0,then (1.4) has a unique positive solutionω,and there are positive constantsC1,C2,s*,S*such that

    (iii) Ifθ≥0,the unique positive solutionωof (1.4) satisfies that

    Corollary 1.3Suppose thatθ≥0,c >0 andr >p-1>0.Then

    has a unique positive solutionu.Moreover,u(s)=A(c,r,α)sα,whereA(c,r,α) is defined in(1.3).

    For a wide class of nonlinear termsf(u),Du and Guo [6] studied the quasilinear equation

    withu|?T=0,whereTis defined as in (1.1).They showed that any positive solution onTmust be a function ofx1only.We can show that this result also holds for problem (1.1).The conclusion can be given by the following theorem:

    Theorem 1.4Suppose thatθ≥0.Then,there exists a unique positive solutionW(x)of problem (1.1).Moreover,Wis a function ofx1and satisfies that

    whereα,A(a,r,α) andA(b,q,σ) are given in (1.3).

    The rest of this paper is organized as follows: in Section 2,we give some preparations,which include two comparison principles and some relations between the Hardy constant and the first eigenvalue.We establish some estimates of positive solutions of (1.4) and prove Theorem 1.2(i) and (ii) in Section 3.Section 4 is devoted to establishing the exact behavior of the unique positive solution to (1.4) and the proof of Theorem 1.2 (iii).In Section 5,we prove Theorem 1.4;that is,we give the existence,uniqueness,asymptotic behavior and symmetry of positive solutions to (1.1).

    2 Preparations

    2.1 Comparison Principle

    First,we cite a comparison result for a class of quasilinear equations ([5,Proposition 2.2]).It is noteworthy that the comparison principle is never obvious for quasilinear operators.

    Lemma 2.1Suppose thatDis a bounded domain in RN,and thatα(x) andβ(x)are continuous functions inDwith ‖α‖L∞(D)<∞andβ(x) ≥0,β(x)0 forx∈D.Letu1,u2∈C1(D) be positive inDand satisfy,in the sense of distribution,that

    For the unbounded region,if the subsolution has a suitable estimate,then we also have the following comparison principle:

    Lemma 2.2Forτ >0,let (f1) hold,and letu1andu2be,respectively,a positive supersolution and a subsolution of

    If there are positive constantsCandSsuch that

    thenu1(s) ≥u2(s) in (τ,∞).

    ProofLetφ1,φ2be nonnegative functions in(τ,∞).Sinceu1is a supersolution andu2is a subsolution of (2.1),a simple calculation gives that

    For any∈>0,denote that

    The condition (2.2) implies thatv1,v2are zero nears=τ,andv1,v2are also zero whensis sufficiently large.Hence,v1andv2belong tofor some Ωτ?(τ,∞),and are zero outside Ωτ.By an approximate method,v1andv2can be test functions.

    Denote that

    For convenience,this expression can be simplified by using

    A calculation as the proof of Proposition 2.2 in [5] shows that there isc:=c(p)>0 such that

    Denote the right hand side of the inequality (2.5) byJ(∈).We claim thatJ(∈) →0 as∈→0.For anyδ >0,we denote that

    By the condition (2.3),whenδis sufficiently small,there isC >0 independent ofδsuch that

    From the definition ofD(∈),it is clear that

    Due toq >p-1>0,we have that.For anyη >0,we may first fix a sufficiently smallδ >0 such that,for sufficiently small∈>0,

    Clearly,M(∈) →0 as∈→0.Taking this together with (2.6),we obtainJ(∈) →0 as∈→0.

    As the final proof of Proposition 2.2 in [5],J(∈) →0 implies thatD(0)=?.Furthermore,it holds thatu1(s) ≥u2(s) whens≥τ.□

    2.2 Relation Between the Hardy Constant and the First Eigenvalue

    Now we give some relations between the Hardy constant and the first eigenvalue.Assume thatλ1[(δ,L),1/sp] is the first eigenvalue of

    Assume that Ω ?RN(N≥2) is bounded and thatλ1[Ω,α(x)] is the first eigenvalue of

    Hereα(x) is a positive continuous function over Ω.Set

    ProofThe conclusions (i) and (iii) can be obtained by the method used in [16,Lemma 2.2].Here,we only give the proof of the conclusion (ii).For a givenδ >0 and small∈>0,suppose thatφ1(s)>0 is the first eigenfunction with respect toλ1[(∈,1),1/sp];that is,thatφ1(s) satisfies

    3 Some Estimates and the Uniqueness of Positive Solutions to (1.4)

    3.1 The Minimal Positive Solution and the Maximal Positive Solution to (1.4)

    In this subsection,the existence of the minimal positive solution and the maximal positive solution of (1.4) will be proved.

    Proposition 3.1Equation (1.4) has a minimal positive solutionω0and a maximal positive solutionω∞.

    ProofAssuming thatn,mare positive integers,consider problems

    Sinceλ >Θ,in view of Lemma 2.3,there existn0andm0such that,for anyn≥n0andm≥m0,one hasλ >λ1[(1/n,m),1/sp].From [15,Theorem 9.6.2],there is a unique positive solutionωn,mof (3.1) whenn≥n0andm≥m0.Using Lemma 2.1,we can deduce thatωn,mis nondecreasing inmandn,respectively.Sincefsatisfies (f1) and (f2),we know that (3.2)has a unique solutionun,m(see [4,5]).Using Lemma 2.1,we know thatun,mis non-increasing with respect tomandn,respectively.For 0<≤nand 0<≤m,Lemma 2.1 also implies that

    Letφbe an arbitrary positive solution to (1.4).For anys∈(1/n,m),Lemma 2.1 indicates thatun,m(s) ≥φ(s).Then,φ(s) ≤ω∞(s) in (0,∞),by lettingn→∞andm→∞.Hence,ω∞must be the maximal positive solution of (1.4).By a method similar to that used above,we can prove thatω0is the minimal positive solution of (1.4). □

    Next,we will consider the behaviors ofω0andω∞near the origin and infinity.

    Proposition 3.2Assume thatω0is the minimal positive solution of (1.4).Then,(s) ≤0.Moreover,ω0blows up at the origin.

    ProofFrom Proposition 3.1,to show(s) ≤0,it suffices to prove that

    whereωmsatisfies that

    The strong maximal principle [14] implies that(m)<0.In view of the continuity of(s)with respect tos,(s)<0 holds whens <mis close tom.Set

    We claim thatτ0=0.By contradiction,we assume thatτ0∈(0,m).

    Case 1If there isτ1∈(0,τ0) such that,(τ1)<0,then there existsτ1<s1<s2≤τ0such that

    hold.In fact,if (3.5) or (3.6) is not true,then there exists a positive constantδsuch thats1+2δ <s2,and

    If (3.7) holds,by integrating the equation in (3.4) froms1tos1+δ,we have that

    Thus,we can see a contradiction.Similarly,if (3.8) holds,by integrating the equation in (3.4)froms2-δtos2,we have that

    which is a contradiction.

    On the other hand,when (3.5) and (3.6) hold,bys1<s2and -(p+θ)<0,we have that

    From (f1),the above formulation contradicts with the fact thatωm(s1)<ωm(s2).Therefore,Case 1 does not apply.

    Case 2If,for almost alls∈(0,τ0),(s) ≥0 holds,then,

    Usingθ >-p,(f1) and (f3),we can deduce that

    Hence,fromλ >Θ,there is?∈(0,m) such that

    Clearly,for any∈<?,ωmis a strictly positive supersolution of

    Then,for all∈∈(0,?),which contradicts with the fact thatλ1[(∈,?),1/sp] →Θ as∈→0+.

    Finally,we will prove thatω0blows up ats=0.If this were not the case,then,for alls >0,it would follow from(s) ≤0 that∈(0,∞).As such,a contradiction is obtained. □

    Remark 3.3Sinceω0is the minimal positive solution of (1.4) andω0(s) →∞ass→0+,any positive solutionuof (1.4) blows up at the origin.

    Proposition 3.4Assume thatω∞is the maximal positive solution of (1.4).We have

    ProofBy arguing indirectly,we suppose thatω∞(s) ∈(0,∞].

    Since(s) always exists for alls∈(0,∞),by virtue of the convexity and the concavity,there ares2>s1>0 such thatω∞(s1)<ω∞(s2),(s) is nondecreasing nears1,and(s) is nonincreasing nears2.Thus we have that

    In fact,by the argument for (3.5) and (3.6),we obtain (3.10),which implies that

    Using (f1),the above formulation contradicts with the fact thatω∞(s1)<ω∞(s2).

    Fors∈(-1,1),lett1>2s0and define.A calculation gives that

    Assuming thatφ∞(s) is the unique positive solution of the problem (see [5]),

    Forθ≥0 ands∈(-1,1),using the comparison principle,we can deduce thatφ(s) ≤φ∞(s).Takings=0,we get that

    Then,forθ≥0,fromα <0 and the arbitrariness oft1,one has that,which is a contradiction.The caseθ <0 can been obtained by a similar proof.Then,holds. □

    Proof of Theorem 1.2 (i)By Propositions 3.1–3.4,we can directly see that Theorem 1.2 (i) holds. □

    3.2 Some Estimates and the Uniqueness of Positive Solutions of (1.4)

    In this subsection,some estimates of positive solutions of (1.4) will be given.First,we establish the existence and uniqueness results of the following auxiliary problem:

    Proposition 3.5Suppose thatL >0 andθ≥0.Then,the problem

    has a unique positive solutionu=ω(s),where,s∈(0,L),andv[γ,L](s)is the unique positive solution of the problem

    Moreover,there ares*andC >0 such that

    ProofFor a givenλ >Θ,by Lemma 2.3,there existsγ0∈(0,L/2) such that,for anyγ∈(0,γ0],we have thatλ >λ1[1/sp,(γ,L)].Thus,for suchγ,problem (3.12) has a unique positive solutionv[γ,L].We denote bythe minimal positive solution of the problem

    are the minimal and maximal positive solutions,respectively,of (3.11) in (0,L].As in the proof of Proposition 3.2,we can obtain thatω(s) →∞ass→0+.

    In order to show the uniqueness of positive solutions of (3.11),we only need to show that,for any positive solutionωLof (3.11),ωL(s) ≥Φ(s) holds in (0,L].SinceωLis positive in(0,L),we have thatωL(L-γ)>ωL(L).Define an auxiliary function

    which implies the uniqueness of the positive solutions.

    For any∈∈(0,γ0) ands∈(∈,L∈/γ0),set

    Then,the function Ψ satisfies the problem

    Moreover,we can deduce thatω(s) is a positive supersolution of problem (3.15),and it follows that for anys∈(∈,L∈/γ0),Ψ(s) ≤ω(s).Fromγ0<L/2,we can know that 3∈/2 ∈(∈,L∈/γ0).Then,for∈∈(0,γ0),we have that

    Proposition 3.6Letω0be the minimal positive solution of (1.4).Then,there areC >0,s*andS*>0 such that

    whereαandσare defined as in (1.3).

    ProofUsing (i) of Theorem 1.2 and (f2),there are? >0 andc*>0 such that

    Hence,we have that

    Sinceω0is a supersolution of (3.12) withLreplaced byl,from the proof of Proposition 3.5 and(3.13),it follows that (3.16) holds.

    Using Proposition 3.4 and (f3),there areL >0 andc2>0 such thatf(ω0(s)) ≤in (L,∞).This indicates that

    From (i) of Lemma 2.3,for a givenγ >0,there ist0∈(0,γ/2) such thatλ >λ1[(t,γ),1/sp] for anyt∈(0,t0].Using standard arguments,there is a unique positive solution for the problem

    denoted byUt,γ.Set.Forr >r*andL≤s≤r,let

    By calculating,Ψris a solution of the problem

    Then,(3.19) indicates thatω0is a supersolution of problem (3.21).It follows from the comparison principle that,for alls∈(L,r),

    Then,for arbitraryr >r*=max{2L,r*} ands=r/2,it follows from (3.22) that

    Fors=r/2 andis nondecreasing with respect tor,we can obtain that

    In view of the arbitrariness ofrand takingS*=r*,(3.17) holds. □

    Proposition 3.7 There existC2>0,s*andS*>0 such that

    whereαandσare defined as in (1.3).

    Proof Using (i) of Theorem 1.2,(f2) and (f3),there are? >0,C >0 andL >0 such thatf(ω∞(s)) ≥Cω∞(s)rass∈(0,?) andf(ω∞(s)) ≥Cω∞(s)qass∈(L,∞).Then,fors∈(0,?),we have that

    For anys0∈(0,?/2),setW(s0)={s∈(0,∞): |s-s0|<s0/2}.It is easy to know thatW(s0) ?(0,?).Fors∈(-1,1),set

    Ifθ≥0,it follows from (3.25) that

    By [5],we know that there exists a unique positive solutionQ∞,rto the following boundary blow-up problem:

    Then,the comparison principle shows that,for alls∈(-1,1),it holds thatQ(s) ≤Q∞,r(s).Ifs=0,we have that

    From the arbitrariness ofs0and lettings*=?/2,we can get (3.23).If -p <θ <0,a similar proof indicates that (3.23) holds.

    Let? >2L,and fors∈(-1,1),.Ifθ≥0,we can deduce that,fors∈(-1,1),

    Using the comparison principle,it follows froms=0 thatQ∞,q(0) ≥r-σω∞(?).TakeS*=2L.Then (3.24) holds,in view of the arbitrariness of?.If -p <θ <0,a similar proof indicates that (3.24) holds. □

    Proof of Theorem 1.2 (ii)For any positive solution of (1.4),it follows from Propositions 3.6–3.7 that the inequalities (1.5) and (1.6) hold.

    Now we prove the uniqueness of the positive solutions of (1.4).It suffices to show that

    From inequality (3.24) in Proposition 3.7 and Lemma 2.2,it follows that

    Furthermore,lettingτ→0+,we obtain (3.28). □

    Note that Corollary 1.3 can be derived by Theorem 1.2 (ii).

    4 Exact Behaviors of the Unique Positive Solution to (1.4)

    Proposition 4.1Suppose thatλ >Θ,r >p-1>0,θ≥0,candLare positive constants.Letu0be the unique positive solution of (3.11) and letu∞be the maximal positive solution of

    ProofWe first show that (4.1) has a maximal positive solution.By the standard arguments,letunbe the unique positive solution of (see [5])

    The comparison principle implies thatunis nonincreasing inn.As the proof of Proposition 3.1,we can show thatis the maximal positive solution of (4.1).

    Then a simple calculation shows that

    It is not difficult to prove that {U∈} is nonincreasing in∈and that {V∈} is nondecreasing in∈.Moreover,we have that

    The regularity theory implies that bothUandVare positive solutions of (1.8).In view of Corollary 1.3,for any 0<δ <K,it follows that

    Furthermore,we have that

    which implies (4.2). □

    Remark 4.2For anyL >0,let0be the minimal positive solution of

    We first show the existence of the minimal positive solution of (4.4) and the maximal positive solution of (4.5).By Lemma 2.3 (ii),we can take a largeL0>Lsuch thatλ >λ1[(L,l),1/sp]holds for anyl >L0.From the standard arguments of logistic equations,it follows that,for anyl >L0,

    has a unique positive solutionl.By the arguments of the boundary blow-up problems (see[5]),for anyn >L+1,the problem

    has a unique positive solutionn.As the proof of Proposition 3.1,we obtain thatis the minimal positive solution of (4.4),and thatis the maximal positive solution of (4.5).

    Then we have that

    As the proof of Proposition 4.1,similarly,we can obtain that

    Furthermore,we have that

    Proof of Theorem 1.2 (iii)Since the unique positive solutionwof (1.4) blows up at the origin,for any∈>0,by (f2) there is a positive constantLsuch that

    Using the comparison principle,it holds that

    whereu0(s;∈) is the minimal positive solution of (3.11) withc=a-∈,andv∞(s;∈) is the maximal positive solution of (4.1) withc=a+∈.By Proposition 4.1,we have that

    In view of the arbitrariness of∈,we can derive the first equality in (1.7).

    Similarly,the second equality in (1.7) can be obtained by using Remark 4.2. □

    5 The Proof of Theorem 1.4

    Proof of Theorem 1.4The process of this proof is similar to that of [16,Theorem 1.2].□

    此物有八面人人有两片| 亚洲五月婷婷丁香| 美女高潮的动态| 麻豆一二三区av精品| 欧美日韩综合久久久久久 | 麻豆成人午夜福利视频| 高潮久久久久久久久久久不卡| 亚洲午夜精品一区,二区,三区| 亚洲 欧美 日韩 在线 免费| 亚洲色图av天堂| 亚洲av片天天在线观看| 精品久久久久久久久久久久久| 法律面前人人平等表现在哪些方面| 九色国产91popny在线| 日日摸夜夜添夜夜添小说| 欧美最黄视频在线播放免费| 老熟妇仑乱视频hdxx| 岛国视频午夜一区免费看| 18美女黄网站色大片免费观看| 精品午夜福利视频在线观看一区| 91在线观看av| 国产精品久久久久久亚洲av鲁大| 成人特级av手机在线观看| 亚洲成av人片免费观看| 中文在线观看免费www的网站| 欧美日韩瑟瑟在线播放| 最新中文字幕久久久久 | 老汉色∧v一级毛片| 国产三级在线视频| 麻豆国产97在线/欧美| 香蕉国产在线看| 久99久视频精品免费| x7x7x7水蜜桃| 国产69精品久久久久777片 | 久久国产乱子伦精品免费另类| 日韩成人在线观看一区二区三区| 村上凉子中文字幕在线| 午夜福利免费观看在线| 夜夜夜夜夜久久久久| 搡老熟女国产l中国老女人| 成人国产一区最新在线观看| 精品国产美女av久久久久小说| 国产成人精品久久二区二区91| 又爽又黄无遮挡网站| 欧美乱码精品一区二区三区| 国产精品综合久久久久久久免费| 亚洲自拍偷在线| 久久99热这里只有精品18| 国产私拍福利视频在线观看| 久久久久久久午夜电影| 精品免费久久久久久久清纯| 岛国在线免费视频观看| 最近最新中文字幕大全免费视频| 国产精华一区二区三区| 国产真实乱freesex| 美女高潮的动态| 91在线观看av| 天天躁狠狠躁夜夜躁狠狠躁| 观看美女的网站| 成人鲁丝片一二三区免费| 欧美乱码精品一区二区三区| 一区福利在线观看| 国产精品久久视频播放| 黑人欧美特级aaaaaa片| 999久久久国产精品视频| 久久久水蜜桃国产精品网| 成人av在线播放网站| 高潮久久久久久久久久久不卡| 老汉色∧v一级毛片| 久久精品影院6| 久久久国产成人免费| 国产探花在线观看一区二区| 亚洲成人久久性| 老汉色av国产亚洲站长工具| 在线看三级毛片| 9191精品国产免费久久| 国产一区二区在线观看日韩 | 亚洲精品久久国产高清桃花| 国产综合懂色| 日韩免费av在线播放| 久久香蕉国产精品| 国产单亲对白刺激| 成人高潮视频无遮挡免费网站| 丁香欧美五月| 高清毛片免费观看视频网站| 真人做人爱边吃奶动态| 亚洲欧美日韩无卡精品| 久久天躁狠狠躁夜夜2o2o| 伦理电影免费视频| 免费在线观看影片大全网站| 淫秽高清视频在线观看| 日本黄色片子视频| 白带黄色成豆腐渣| 亚洲精品美女久久av网站| 99精品久久久久人妻精品| 国内精品久久久久精免费| 日本黄大片高清| 19禁男女啪啪无遮挡网站| 国产成人aa在线观看| 看片在线看免费视频| 亚洲专区中文字幕在线| 制服丝袜大香蕉在线| 日本撒尿小便嘘嘘汇集6| 午夜日韩欧美国产| 男女下面进入的视频免费午夜| 久久精品91无色码中文字幕| 国产激情偷乱视频一区二区| 亚洲精品一区av在线观看| 免费看美女性在线毛片视频| 成人18禁在线播放| 午夜福利高清视频| 性色av乱码一区二区三区2| 午夜福利成人在线免费观看| 999久久久精品免费观看国产| 变态另类丝袜制服| 老司机福利观看| 国语自产精品视频在线第100页| 香蕉av资源在线| 欧美成狂野欧美在线观看| 国产精品电影一区二区三区| av国产免费在线观看| 色精品久久人妻99蜜桃| 国产精品电影一区二区三区| 亚洲国产看品久久| 1024手机看黄色片| 91在线观看av| 午夜福利欧美成人| av女优亚洲男人天堂 | 亚洲狠狠婷婷综合久久图片| 欧美日韩乱码在线| 一进一出抽搐动态| 久久久久精品国产欧美久久久| 搡老熟女国产l中国老女人| 成人av一区二区三区在线看| av在线天堂中文字幕| 欧美成人免费av一区二区三区| 国产精品99久久99久久久不卡| 在线免费观看的www视频| 99精品久久久久人妻精品| 日韩欧美在线乱码| 精品国产美女av久久久久小说| 1024手机看黄色片| 欧美激情久久久久久爽电影| 久久精品影院6| e午夜精品久久久久久久| 久久久久免费精品人妻一区二区| 身体一侧抽搐| 巨乳人妻的诱惑在线观看| 露出奶头的视频| 91久久精品国产一区二区成人 | 叶爱在线成人免费视频播放| 欧美成狂野欧美在线观看| av片东京热男人的天堂| 淫妇啪啪啪对白视频| 久久人人精品亚洲av| 黄色女人牲交| 91av网站免费观看| 99在线视频只有这里精品首页| 校园春色视频在线观看| 国产午夜精品论理片| 久久久久久人人人人人| 亚洲av免费在线观看| 99riav亚洲国产免费| 午夜精品一区二区三区免费看| www.自偷自拍.com| 亚洲精品久久国产高清桃花| 亚洲av中文字字幕乱码综合| 日韩 欧美 亚洲 中文字幕| 国产亚洲精品久久久com| 真人做人爱边吃奶动态| 国产91精品成人一区二区三区| 成人性生交大片免费视频hd| 精品福利观看| 国产精品爽爽va在线观看网站| 91麻豆av在线| 亚洲成人久久性| 性色av乱码一区二区三区2| 日韩欧美国产在线观看| 亚洲av成人不卡在线观看播放网| 国模一区二区三区四区视频 | a级毛片a级免费在线| 国产v大片淫在线免费观看| av天堂中文字幕网| 天天添夜夜摸| 在线播放国产精品三级| 亚洲专区中文字幕在线| 18禁裸乳无遮挡免费网站照片| 国产激情偷乱视频一区二区| 午夜免费观看网址| 精品久久蜜臀av无| 国产高潮美女av| 亚洲欧美一区二区三区黑人| 亚洲欧美日韩高清在线视频| 亚洲欧美日韩无卡精品| 日韩有码中文字幕| 变态另类成人亚洲欧美熟女| 九九热线精品视视频播放| 亚洲欧美激情综合另类| 午夜福利在线观看免费完整高清在 | 亚洲国产欧美网| 热99在线观看视频| 国内精品久久久久久久电影| 在线观看免费视频日本深夜| 狠狠狠狠99中文字幕| 国产精品一区二区免费欧美| 美女午夜性视频免费| 一本一本综合久久| 国产乱人伦免费视频| 琪琪午夜伦伦电影理论片6080| 国产v大片淫在线免费观看| 日本黄大片高清| 精品免费久久久久久久清纯| 成人一区二区视频在线观看| 丰满的人妻完整版| 亚洲欧美精品综合久久99| 日本黄色视频三级网站网址| 亚洲黑人精品在线| 9191精品国产免费久久| 哪里可以看免费的av片| 亚洲第一电影网av| 97人妻精品一区二区三区麻豆| 毛片女人毛片| h日本视频在线播放| 国产亚洲欧美在线一区二区| 最近最新中文字幕大全电影3| 神马国产精品三级电影在线观看| 禁无遮挡网站| 亚洲精品一卡2卡三卡4卡5卡| 国产精品爽爽va在线观看网站| 级片在线观看| 男女下面进入的视频免费午夜| 亚洲成人久久爱视频| 亚洲色图av天堂| 九九热线精品视视频播放| 国产av一区在线观看免费| 此物有八面人人有两片| 国产成人精品无人区| 精品久久蜜臀av无| 国产av在哪里看| 久久中文字幕一级| svipshipincom国产片| 伊人久久大香线蕉亚洲五| 国模一区二区三区四区视频 | 这个男人来自地球电影免费观看| 日韩国内少妇激情av| 亚洲精品色激情综合| 精品日产1卡2卡| 国产高清视频在线播放一区| 久久性视频一级片| 精品福利观看| 成人午夜高清在线视频| 亚洲成av人片在线播放无| 亚洲精品色激情综合| 特大巨黑吊av在线直播| 亚洲真实伦在线观看| 国产精华一区二区三区| 久久国产精品影院| 两个人视频免费观看高清| 99久久精品一区二区三区| 久久亚洲精品不卡| 又爽又黄无遮挡网站| 日韩免费av在线播放| 亚洲精品久久国产高清桃花| 国产乱人伦免费视频| 成在线人永久免费视频| 可以在线观看毛片的网站| 日本 av在线| 精品一区二区三区四区五区乱码| 成人av一区二区三区在线看| 欧美成狂野欧美在线观看| 曰老女人黄片| 亚洲av熟女| 小蜜桃在线观看免费完整版高清| 十八禁网站免费在线| 欧美国产日韩亚洲一区| 最新中文字幕久久久久 | 悠悠久久av| 母亲3免费完整高清在线观看| 9191精品国产免费久久| 亚洲无线在线观看| 免费一级毛片在线播放高清视频| 99精品欧美一区二区三区四区| 午夜福利成人在线免费观看| 搡老岳熟女国产| 狂野欧美白嫩少妇大欣赏| 日本成人三级电影网站| 狠狠狠狠99中文字幕| 亚洲午夜理论影院| 久久久国产精品麻豆| 黑人欧美特级aaaaaa片| 欧美午夜高清在线| 在线播放国产精品三级| 九九久久精品国产亚洲av麻豆 | 国产三级中文精品| 成人性生交大片免费视频hd| 悠悠久久av| 日韩高清综合在线| 变态另类成人亚洲欧美熟女| 国产精品 国内视频| 国产伦一二天堂av在线观看| 国产精品av久久久久免费| 中文字幕久久专区| www.999成人在线观看| 在线播放国产精品三级| 黄色女人牲交| 高清在线国产一区| 国产精品久久久人人做人人爽| 99久国产av精品| 亚洲av成人不卡在线观看播放网| 无人区码免费观看不卡| 成人特级黄色片久久久久久久| 国产欧美日韩精品亚洲av| 免费在线观看日本一区| 真实男女啪啪啪动态图| 精品国产亚洲在线| 国产三级黄色录像| 99久国产av精品| 又紧又爽又黄一区二区| 国产欧美日韩精品亚洲av| 97超级碰碰碰精品色视频在线观看| 757午夜福利合集在线观看| 男女下面进入的视频免费午夜| 欧美在线一区亚洲| 精品国产乱子伦一区二区三区| 婷婷精品国产亚洲av在线| 91av网站免费观看| 欧美中文综合在线视频| 欧美三级亚洲精品| 亚洲性夜色夜夜综合| 亚洲男人的天堂狠狠| 亚洲国产高清在线一区二区三| 琪琪午夜伦伦电影理论片6080| 91麻豆av在线| 女同久久另类99精品国产91| 波多野结衣高清作品| 可以在线观看的亚洲视频| 亚洲国产精品合色在线| 99精品欧美一区二区三区四区| aaaaa片日本免费| 一级黄色大片毛片| 听说在线观看完整版免费高清| 国产成人啪精品午夜网站| 成年女人看的毛片在线观看| 午夜免费激情av| 手机成人av网站| 日本a在线网址| 久久精品亚洲精品国产色婷小说| 性色av乱码一区二区三区2| 欧美日韩国产亚洲二区| 我要搜黄色片| 欧美乱色亚洲激情| 搡老妇女老女人老熟妇| 日本熟妇午夜| 欧美在线一区亚洲| 亚洲午夜精品一区,二区,三区| 日日干狠狠操夜夜爽| 无限看片的www在线观看| 俄罗斯特黄特色一大片| 国产精品99久久久久久久久| 日本免费a在线| 一本综合久久免费| а√天堂www在线а√下载| 国产成+人综合+亚洲专区| 亚洲九九香蕉| 少妇熟女aⅴ在线视频| 制服丝袜大香蕉在线| 又黄又粗又硬又大视频| 精品免费久久久久久久清纯| www日本在线高清视频| 九九热线精品视视频播放| 小蜜桃在线观看免费完整版高清| 成在线人永久免费视频| 两性午夜刺激爽爽歪歪视频在线观看| 精品免费久久久久久久清纯| 少妇熟女aⅴ在线视频| 日本免费a在线| 免费在线观看视频国产中文字幕亚洲| 99国产精品一区二区蜜桃av| 麻豆成人av在线观看| 日日干狠狠操夜夜爽| 99国产精品一区二区三区| 亚洲狠狠婷婷综合久久图片| 一个人看视频在线观看www免费 | 好男人在线观看高清免费视频| 精品国产亚洲在线| 欧美日韩一级在线毛片| 久久精品人妻少妇| 美女高潮的动态| 少妇人妻一区二区三区视频| 精品久久久久久成人av| 精品国产美女av久久久久小说| 一本精品99久久精品77| 国产私拍福利视频在线观看| 免费观看精品视频网站| 噜噜噜噜噜久久久久久91| 国产成人精品久久二区二区免费| 国产精品精品国产色婷婷| 欧美日韩国产亚洲二区| 欧美在线一区亚洲| 在线a可以看的网站| 一本久久中文字幕| 我的老师免费观看完整版| 国产欧美日韩一区二区精品| 欧美又色又爽又黄视频| 欧美一级毛片孕妇| 国产主播在线观看一区二区| 男女那种视频在线观看| 久久精品综合一区二区三区| 又黄又粗又硬又大视频| 观看美女的网站| 国产毛片a区久久久久| 男女视频在线观看网站免费| 精品国产超薄肉色丝袜足j| 久9热在线精品视频| 久久精品人妻少妇| 亚洲精品456在线播放app | 脱女人内裤的视频| 最近视频中文字幕2019在线8| 熟妇人妻久久中文字幕3abv| 亚洲黑人精品在线| 精品一区二区三区视频在线观看免费| 国产麻豆成人av免费视频| 久久欧美精品欧美久久欧美| 99久久综合精品五月天人人| 欧美午夜高清在线| 可以在线观看毛片的网站| or卡值多少钱| 天天一区二区日本电影三级| 国产熟女xx| 午夜亚洲福利在线播放| 国语自产精品视频在线第100页| 这个男人来自地球电影免费观看| 1000部很黄的大片| 亚洲成a人片在线一区二区| 美女大奶头视频| 国产精品久久电影中文字幕| 99精品欧美一区二区三区四区| 国产欧美日韩精品一区二区| 制服丝袜大香蕉在线| 成年版毛片免费区| 一本一本综合久久| 日韩精品青青久久久久久| 日本黄色片子视频| 九九久久精品国产亚洲av麻豆 | 国产伦精品一区二区三区视频9 | 一本综合久久免费| 亚洲五月天丁香| 动漫黄色视频在线观看| 十八禁人妻一区二区| 国产精品一区二区精品视频观看| 18禁美女被吸乳视频| 中文字幕高清在线视频| 国产三级黄色录像| 亚洲自偷自拍图片 自拍| a级毛片在线看网站| 欧美日韩黄片免| 狂野欧美白嫩少妇大欣赏| 亚洲自拍偷在线| 久久伊人香网站| 亚洲av免费在线观看| 成人精品一区二区免费| а√天堂www在线а√下载| 又紧又爽又黄一区二区| 熟女人妻精品中文字幕| 国产成人系列免费观看| 天堂影院成人在线观看| 国产一区二区在线av高清观看| 中文资源天堂在线| 色播亚洲综合网| 成年女人看的毛片在线观看| 免费在线观看成人毛片| avwww免费| 亚洲在线观看片| 一个人免费在线观看的高清视频| 亚洲av五月六月丁香网| 久久久国产成人免费| 午夜影院日韩av| 色尼玛亚洲综合影院| 国产高清视频在线观看网站| 黑人操中国人逼视频| 欧美激情在线99| 午夜福利在线观看免费完整高清在 | 久久久水蜜桃国产精品网| 一本综合久久免费| 性色avwww在线观看| 国产爱豆传媒在线观看| 91麻豆av在线| 国产高清视频在线观看网站| 亚洲专区字幕在线| 久久久久国内视频| 色尼玛亚洲综合影院| 长腿黑丝高跟| 国产免费男女视频| 国产精华一区二区三区| 国产男靠女视频免费网站| 亚洲精品乱码久久久v下载方式 | 成人性生交大片免费视频hd| 一区二区三区高清视频在线| 成人av在线播放网站| 亚洲成人久久性| 毛片女人毛片| 女人高潮潮喷娇喘18禁视频| 日本三级黄在线观看| 久久中文看片网| 99国产精品99久久久久| 男女视频在线观看网站免费| 日韩免费av在线播放| 老司机福利观看| 国产精品一区二区三区四区久久| 又黄又粗又硬又大视频| 久久九九热精品免费| 亚洲精品在线观看二区| 99久久成人亚洲精品观看| 久久久久久久午夜电影| 欧美绝顶高潮抽搐喷水| 亚洲欧美一区二区三区黑人| 在线观看舔阴道视频| 淫秽高清视频在线观看| 一本综合久久免费| 日本a在线网址| 亚洲国产精品合色在线| 99久久无色码亚洲精品果冻| 一个人看的www免费观看视频| 99riav亚洲国产免费| 亚洲精品在线观看二区| 亚洲天堂国产精品一区在线| 久久中文字幕人妻熟女| 一区二区三区激情视频| 国产精品亚洲av一区麻豆| 99热只有精品国产| 国产伦一二天堂av在线观看| 国产亚洲精品久久久com| 村上凉子中文字幕在线| 91老司机精品| 亚洲欧美一区二区三区黑人| 成人av一区二区三区在线看| 亚洲avbb在线观看| 国产亚洲欧美在线一区二区| 亚洲精品一卡2卡三卡4卡5卡| 国产成人一区二区三区免费视频网站| 亚洲片人在线观看| 中文字幕av在线有码专区| 免费搜索国产男女视频| 成人国产一区最新在线观看| 精品久久久久久久久久久久久| 国产一区二区三区在线臀色熟女| 国产亚洲精品久久久久久毛片| 夜夜夜夜夜久久久久| 在线免费观看的www视频| 国产精品亚洲美女久久久| 毛片女人毛片| 国产一区在线观看成人免费| 99热精品在线国产| 母亲3免费完整高清在线观看| 成人国产一区最新在线观看| 亚洲欧洲精品一区二区精品久久久| 国产精品精品国产色婷婷| 日本黄色视频三级网站网址| 99久国产av精品| 国产一区二区在线av高清观看| h日本视频在线播放| 亚洲人成伊人成综合网2020| 国产不卡一卡二| av黄色大香蕉| 波多野结衣高清作品| 精品久久久久久久人妻蜜臀av| 久久久久久大精品| 91九色精品人成在线观看| 精品免费久久久久久久清纯| 国产伦在线观看视频一区| 一夜夜www| 曰老女人黄片| 精品久久久久久久末码| 日本黄色视频三级网站网址| 男人的好看免费观看在线视频| 亚洲成人免费电影在线观看| 久久久色成人| 日韩精品青青久久久久久| 成人鲁丝片一二三区免费| 亚洲国产精品999在线| 午夜福利成人在线免费观看| 丰满的人妻完整版| 91老司机精品| 欧美性猛交黑人性爽| 国产熟女xx| 免费人成视频x8x8入口观看| 九九在线视频观看精品| tocl精华| 久久久久亚洲av毛片大全| 成年女人毛片免费观看观看9| avwww免费| 高潮久久久久久久久久久不卡| 90打野战视频偷拍视频| 在线十欧美十亚洲十日本专区| 欧美成人一区二区免费高清观看 | 蜜桃久久精品国产亚洲av| 听说在线观看完整版免费高清| 国产一区二区三区视频了| 欧美日韩亚洲国产一区二区在线观看| 90打野战视频偷拍视频| 成年女人看的毛片在线观看| 校园春色视频在线观看| 久久久精品欧美日韩精品| 国产一区二区三区视频了| 欧洲精品卡2卡3卡4卡5卡区| 国内毛片毛片毛片毛片毛片| 国产精品综合久久久久久久免费| 亚洲欧洲精品一区二区精品久久久| 性色av乱码一区二区三区2| 男人舔女人的私密视频| 久久人妻av系列| 亚洲欧美日韩卡通动漫| 日本五十路高清| 99热精品在线国产| 这个男人来自地球电影免费观看|