• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    POINTWISE SPACE-TIME BEHAVIOR OF A COMPRESSIBLE NAVIER-STOKES-KORTEWEG SYSTEM IN DIMENSION THREE*

    2022-11-04 09:07:12XiaopanJIANG姜曉盼ZhigangWU吳志剛

    Xiaopan JIANG (姜曉盼) Zhigang WU (吳志剛)

    Department of Mathematics,Donghua University,Shanghai 201620,China

    E-mail: 1783685777@qq.com;zgwu@dhu.edu.cn

    Abstract The Cauchy problem of compressible Navier-Stokes-Korteweg system in R3 is considered here.Due to capillarity effect of material,we obtain the pointwise estimates of the solution in an H4-framework,which is different from the previous results for the compressible Navier-Stokes system in an H6-framework [24,25].Our result mainly relies on two different descriptions of the singularity in the short wave of Green’s function for dealing initial propagation and nonlinear coupling respectively.Our pointwise results demonstrate the generalized Huygens’ principle as the compressible Navier-Stokes system.As a corollary,we have an Lp estimate of the solution with p >1,which is a generalization for p ≥2 in [33].

    Key words Navier-Stokes-Korteweg system;Green’s function;Large time behavior

    1 Introduction

    The compressible fluid model of Korteweg type was introduced by Korteweg [20] and deduced rigorously in Dunn and Serrin [9].The model governs the motions of the compressible isothermal viscous capillary fluids and is formulated as

    Here the unknownsρ(x,t),u(x,t) are the density and velocity of fluid,respectively.The pressurep=p(ρ) satisfiesp′(ρ)>0 forρ >0.The constantsμ >0 andν≥0 are the viscosity coefficients,andκ >0 is the capillary coefficient.

    There are a lot of mathematical studies on the compressible Navier-Stokes-Korteweg system(1.1),including on the weak solution in [2,11],the existence in Besov spaces in [3],the local existence of strong solutions in [21] and the global existence of strong solutions in [32],the maximalLp-Lqregularity in [28],the global existence of a smooth solution in [12] and theL2-decay rate of the smooth solution in [10,33].With regard to the nonisothermal case,we refer to [15] and [16] for the global existence and the decay rate of the smooth solution with small initial energy,respectively,and [17] for the vanishing capillarity limit.

    We were interested in space-time estimates on the wave propagation of the smooth solution.Since the conservative structure of the system on the densityρand momentumm=ρuis needed when dealing the nonlinear convolution estimates,we supplement the system with initial data

    The large time behavior of the compressible Navier-Stokes system is one of the most important topics in studying fluid models;see [7,8,18,19,22,27] and references therein.Nevertheless,L2estimates can only exhibit the dissipative properties of solutions;cannot reveal the behavior on wave propagation.In order to explicitly describe the wave propagation,one needs to consider the space-time pointwise estimates.The pioneering works were Zeng [39] for the isentropic Navier-Stokes system and Liu and Zeng [26] for quasilinear hyperbolic-parabolic systems in dimension one.For three dimensional case,Hoffand Zumbrun [14] and Liu and Wang[25] studied the pointwise estimates of Green’s function and the pointwise estimates of the solution for the nonlinear problem for the isentropic Navier-Stokes system,respectively.Later on,there appeared a series of efforts on these kinds of estimates for other models,including on the Euler system with damping [30,36],refined estimates for the isentropic and non-isentropic Navier-Stokes system [4,5,24],the Navier-Stokes-Poisson system and the Navier-Stoke-Maxwell system [6,31,34,35],thermal non-equilibrium flow and the Boltzmann equation [23,37,38].

    The aim in this paper is to investigate the capillarity effect of material and look for the difference betweenκ >0 (NSK) andκ=0 (NS) when deducing the pointwise estimates by using Green’s function method.Whenκ=0,the pointwise estimates in [4,24,25] are established in theH6-framework due to the singularity of Green’s function and the quasi-linearity of the system.For NSK here,the Korteweg termκρ?Δρhas the third order derivative;it seems that one needs higher regularity assumption on the initial data to close the ansatz on the pointwise estimates due to the quasi-linearity of NSK.However,we can derive the pointwise results in theH4-framework for NSK.The outline of the proof is as follows:

    Step 1We give the representation of the Fourier transform of Green’s function and get the approximate expansions for the eigenvalues in the short wave and the long wave.

    Step 2We divide the space-time domain into two parts: inside the finite Mach number region |x| ≤3Mc(1 +t) and outside the finite Mach number regionwith the basic sound speedand some suitably large constantM >1.

    Step 3When |x| ≤3Mc(1 +t),we give the detailed analysis on the long wave,short wave and the middle part of Green’s function to obtain the pointwise estimates of the Green’s function by using complex analysis.When,we use the weighted energy method to obtain exponential pointwise estimates of Green’s function.

    Step 4We deduce the pointwise estimates of the solution for the nonlinear problem through the representation of the solution from Duhamel’s principle.Some convolution estimates on different wave patterns are used to control the initial propagation and nonlinear coupling.

    In order to facilitate interpretation,we first state the Fourier transform of Green’s function for the system (1.1) as

    with the eigenvalues

    Hereξis the variable in the space of the Fourier transform.As we know,there exist singularities in the short wave for the previous results on NS mentioned above.One of these is from the eigenvalueλ(ξ)~-|ξ|2which is like a heat kernel when |ξ| ?1,and it leads to the short wave behaving in a pointwise sense as(denoted byGS1).Obviously,this is singular whent=0.The other one is from the eigenvalue satisfying -C1≤λ(ξ) ≤-C2with positive constantsC1andC2when |ξ| ?1;this causes the short wave to behave as a Diracδ-function or aδ-like function with an exponential decay rate denoted byGS2.Since NS is quasi-linear,to close the ansatz on the pointwise estimates one needs to use the method of Green’s function together with the energy method.In fact,the pointwise estimates for the solution are based on utilizing the representation of the solution from Duhamel’s principle and Green’s function.Thus,we need to develop the ansatz assumption concerning the pointwise estimates of the lower order derivatives and theL∞-estimates of the higher order derivatives for the solution.For the initial propagation,one has to put all of the derivatives on the initial data due to these two singularities.For the nonlinear interplay,the different singularities ofGS1andGS2in the short wave mean that one has to put all the derivatives on the nonlinear terms when estimating the convolution ofGS2and the nonlinear terms,and one can only put one derivative onGS1when estimating the convolution betweenGS1and the nonlinear terms.

    A question that arises is,how can we minimize the requirement on the regularity of the initial data for NSK? First of all,from (1.3)–(1.4),we find that all of the eigenvalues for NSK behave asλ(ξ)~-|ξ|2when |ξ| ?1,which is different from NS.Based on this,we can relax the regularity condition on the initial data by developing two different descriptions on the short wave of NSK.On the one hand,to replace the exponential decay assumption of the initial data on the spacial variablexand its derivatives for NS [4] by the algebraic decay assumption on the spacial variablexfor NSK here,the singular partGS1cannot be used when dealing with the convolution of the short wave and the initial data.In fact,the exponential decay in space of the initial data is used to avoid the singularity ofGS1att=0 when dealing with the convolution of the short wave and the initial data;at this time one needs to separate the space-time domain and use the weight energy estimates.To relax the exponential decay assumption on the initial data,we replace the previous descriptionGS1by a new one,which is similar toGS2.That is,we useδ(x) orDxδ(x) to describeGS1.This will help us to avoid using the exponential decay assumption onx.At the same time,this new description is also used to estimate Green’s function outside a finite Mach number regionto obtain the regular estimate,since this description of singularity for the short wave is regular when |x| ≥1.

    On the other hand,we consider the nonlinear coupling.Notice that the convolution on the interplay of the Huygens’ waves in the long wave determines that we require the pointwise ansatz ofdue to the nonlinear term of the capillarity effect when deriving the pointwise estimate of the solution (ρ,m).To minimize the requirement on the regularity,we want to put more derivatives on Green’s function when estimating the nonlinear convolutions due to the quasi-linearity of the system.Hence,in this situation,we use the description of the short wave asGS1such that one can take the integral by parts once,since the nonlinear convolution is on both spatial and temporal variables.With these preparations,we can close the pointwise ansatz in theH4-framework.We believe that using different descriptions for the singularity of the short wave to deal with initial propagation and nonlinear coupling,respectively,could also be applied to the other hyperbolic-parabolic systems.

    The following is the main result in this paper:

    Theorem 1.1Assume that the initial data (ρ0,m0) satisfying:=ε0are small and the background density>0.Then there exists a unique,global,classical solution (ρ,m) to the Cauchy problem (1.1)–(1.2).If,furthermore,for 0 ≤k≤2,

    Remark 1.2The estimate (1.6) shows that NSK also exhibits the generalized Huygens’principle as NS.Compared to the previous space-time estimates for NS in theH6-framework in [24,25],we obtain the similar pointwise result for NSK under a relaxed condition: theH4-framework.Here the capillarity effect of material is so crucial that we can freely use these two different descriptions for the short wave as required.

    Corollary 1.3(Lpestimates) Under the assumptions in Theorem 1.1,we have the followingLp(R3) estimates of the solution:

    Throughout the paper,CandCidenote positive generic constants that may vary at different places.is theαorder derivative of a smooth functionf,and sometimes we also useto denote thek-order derivative offwith |α|=k.We useLpandWm,pto denote the usual Lebesgue and Sobolev spaces on RnandHm=Wm,2,with norms ‖ · ‖Lp,‖ · ‖Wm,p,‖ · ‖Hm,respectively.

    The rest of this paper is arranged as follows: in Section 2,we give the pointiwse estimates of Green’s function by the decomposition of the long and short waves together with the decomposition of the space-time domain.In Section 3 we deduce the pointwise estimates of the solution for the nonlinear problem by some convolution estimates.In Appendix,we give some lemmas that are used in Sections 2 and 3.

    2 Green’s Function

    This section is devoted to giving the pointwise description of Green’s function.

    2.1 Preliminaries

    In this section,we consider the Cauchy problem for the linearized Navier-Stokes-Korteweg system of the reformulated nonlinear problem:

    HereG(x,t) is Green’s function and its Fourier transform is

    The representation above holds for |ξ|0.

    To derive the pointwise estimates of Green’s functionG(x,t),we will use the decomposition of the long wave and short wave forG(x,t) as follows:

    After direct computations,we can get the following estimates for the spectrumsλ±(ξ):

    Lemma 2.1Whenη2-4κ′c=0 and |ξ| ?1,it holds that

    Whenη2-4κ′c0 and |ξ| ?1,it holds that

    Whenη2-4κ′c >0 and |ξ| ?1,it holds that

    Whenη2-4κ′c <0 and |ξ| ?1,it holds that

    Note that for all of the cases above,the spectrums are analytic when |ξ| ?1,otherwise the complex variable technique cannot be applied.

    2.2 Pointwise estimate of Green’s function

    In this section,we shall derive pointwise estimates of Green’s functionG(x,t),to this end,we first study its Fourier transform ?G(ξ,t) by the decomposition of the long and short wave.Additionally,since there exists Riesz transform and the Huygens’ wave in Green’s function,to analyse it clearly,we also decompose the temporal and spatial region inside the finite Mach number region |x| ≤3Mc(1 +t),and outside the finite Mach number region |x| ≥Mc(1 +t),whereM >1 is a suitably large positive constant to be determined later.

    2.2.1 Inside the finite Mach number region |x| ≤3Mc(1 + t)

    First,we consider the long wave,that is,|ξ| ?1.After direct computations,we get

    whereβis an analytic function in |ξ|2andβ(0)=0.

    To overcome the singularity of the Riesz operator inin (2.15) when |ξ| ?1,we should rewriteas follows:

    The estimate for the inverse Fourier transforms ofI1,I2,I3can be deduced as Lemma 4.5 in [5],through complex analysis for the long wave inside the finite Mach number region,which shows that they behave as the heat kernel:

    Here the additional decay rate forI1,I2,I3is from the factorξξτcompared with that ofI6.Then,by using Lemma A.1,we have that

    For the Riesz waveI4,one can also deduce the following estimate from Lemma 4.7 in [5]:

    Finally,the Riesz waveI5can be estimated with the following process:

    In summary,we have the pointwise estimate for the long wave ofG22(x,t):

    The other terms ofχ1(D)G(x,t) can be treated similarly.For simplicity,we just state these estimates in a conclusion.

    Lemma 2.2For any |α| ≥0,the estimates of the long waveχ1(D)G(x,t) inside the finite Mach number region |x| ≤3Mc(1 +t) are

    We find that the estimates forχ1(D)G11(x,t) andχ1(D)G12(x,t) only contain the Huygens’wave.This is the basis on which one can obtain that the pointwise estimate of the density is better than that of the momentum;see (1.6).

    Next,we study the short wave,which contains the singularity from the initial singularityδ(x) att=0.The capillarity effect causes all of the eigenvalues for the short wave of the Navier-Stokes-Korteweg system to behave asλ±(ξ)=-θ|ξ|2with some constantθ >0.This is the biggest difference in the short waves between the Navier-Stokes equations and the Navier-Stokes-Korteweg system.In particular,from Lemma 2.1 and the representation of ?G(ξ,t),we can conclude that

    To minimize the regularity condition on the initial data,we need the ensuing lemmas to describe the short wave.

    whereδ(x) is the Dirac function.Furthermore,for any |α| ≥0 and any positive integerN,,‖f2‖L1≤C,suppf2(x) ?{x: |x|<2η0},withη0being sufficiently small.

    On the other hand,by the Hausdorf-Young inequality and a similar procedure of the proof in Proposition 4.3 in [14],we have

    Lemma 2.4Suppose that(ξ,t)=χ3(ξ)(ξ)e-θ|ξ|2t(θ >0) is smooth onξand satisfies

    Then,for any |α| ≥0 and any positive constantN >0,it holds that

    Combining these two lemmas and (2.22)–(2.23),we have the pointwise estimates for the short wave of Green’s functionχ3(D)G(x,t).

    Lemma 2.5a) The short wave of Green’s functionχ3(D)G(x,t) satisfies

    whereδ(x) is the Dirac function.Furthermore,for any |α| ≥0 and any integerN >0,we have that

    withη0being sufficiently small.

    b) For any |α| ≥0 and any integerN >0,the short waveχ3(D)G(x,t) also satisfies

    Remark 2.6The first estimate (2.26) implies that the singularity is only atx=0,which can help us to derive the regular estimates outside the finite Mach number region |x| ≥Mc(1 +t).Additionally,we also use (2.26) to estimate the initial propagation in the last section.On the other hand,we use the second estimate (2.27) to deal with the nonlinear interplay,since at this time one can put a derivative on the short wave when dealing with the convolution of the short wave and the nonlinear terms,such that one can reduce the requirement of the regularity of the initial data.

    Finally,the procedure for estimating the middle part of Green’s function is standard,since the difficulties from |ξ| ?1 and |ξ| ?1 do not exist any longer;see [5,24].For simplicity,we give the following estimate without proof:

    Lemma 2.7For any |α| ≥0,the estimate of the middle partχ2(D)G(x,t) inside the finite Mach number region |x| ≤3Mc(1 +t) is

    In summary,Lemma 2.2,Lemma 2.5 and Lemma 2.7 yield the pointwise estimate for Green’s function inside the finite Mach number region.

    Proposition 2.8For any |α| ≥0,Green’s functionG(x,t) in the finite Mach number region |x| ≤3Mc(1 +t) satisfies

    whereχ3(D)Gij(x,t) satisfies the estimate in Lemma 2.5.

    2.2.2 Outside the finite Mach number region|x| ≥Mc(1 +t)

    We should use the estimate of Green’s function inside the finite Mach number region to give the estimate outside the finite Mach number region as in [29].To this end,we consider the homogeneous initial condition and non-homogeneous boundary value problem:

    We are going to use the weighted energy method to derive the estimate of the problem (2.31).Thus,we introduce the weight functionw(x,t)=eδ(|x|-Lt)with a small positive constantδand a large positive constantL,which will be determined later.It is easy to see,and,?tw=-δLw.Then we have the following:

    Lemma 2.9For,there exists a constantC >0 independent of |x| andtsuch that Green’s function satisfies,for any |α| ≥0,

    Here the boundary terms are from the Divergence theorem and the Co-area formula.We denote all the boundary terms byI2,for convenience.

    I1can be estimated as follows by using integration by parts and the Schwarz inequality:

    Then,by choosing a suitably large constantL >0 and a suitably small constantδ >0,and noticing,we know that there exists a constantC1>0 such that

    ForI2,we need the information of the variables (ρ,m) and their derivatives on the boundary?Dtfrom Proposition 2.8.Notice that the second term in (2.30) disappears when |x|>c(1+t).Hence,we know that there exists a constantC2>0 such that

    where we have also used the assumption,which excludes the singularity at|x|=0 in (2.26) in Lemma 2.5.Then,(2.34),together with the smallness ofδin the weight functionw(x,t),suffices to imply that

    From (2.33) and (2.35),we can obtain,by using the Grnwall’s inequality,

    Next,in order to apply the Sobolev inequality to obtain the pointwise estimate,we need the higher order derivative of the solution (ρ,m) for (2.31).The process is similar to that above,we omit it for simplicity.Finally,we have the following estimate for any positive integerl:

    Then,by using the Sobolev embedding theorem,we immediately get that

    By using the smallness ofδagain,we can immediately get (2.32). □

    In conclusion,we obtain the following pointwise estimates forG(x,t):

    Proposition 2.10For any |α| ≥0,Green’s functionG(x,t) satisfies

    3 Pointwise Estimates of the Nonlinear System

    Since there exists a Huygens’ wave in Green’s function,to derive the pointwise estimates for the nonlinear system,we have to use the conservative structure of the nonlinear system,due to the convolution estimates in the Appendix.To this end,we rewrite the capillary term

    The linearized system is given by

    whereμ′,ν′,κ′are defined as in Section 2.1.

    Then,we give the representation of the solution (ρ,m) of (3.2) by Duhamel’s principle as follows:

    3.1 Initial propagation

    We first study the propagation of the initial data.The assumption on the initial data is

    By Proposition 2.10,the Assumption (3.4) and Lemma A.3,we immediately get that

    In the same way,we can get,for 0 ≤k≤1,that

    Here the second term on the right hand side of (3.8) is from the convolution of the Riesz wave in the long wave ofG22and the initial data.

    3.2 Nonlinear coupling

    First of all,it is easy to see the nonlinear term

    To derive the pointwise estimates for the solution of the nonlinear system,we shall give the following ansatz for 0 ≤k1≤2 and 0 ≤k2≤1:

    In what follows,we mainly prove thatM(T) ≤C.Since the Navier-Stokes-Korteweg system is quasi-linear,one needs the a priori estimates of the higher derivatives of the solutions in [33]for the closure of the nonlinearity.

    We only consider the nonlinear couplingfor the momentumm,since N1can be treated similarly.In fact,

    Because there is no singularity inGHandGR,we can put all the derivatives ontoGHandGRwhen estimatingIn these cases,the estimates fork=1 are just the same as the case fork=0.We focus on the convolution containing the nonlinear term

    since this nonlinear term has the highest order of the derivative of the unknown variableρ.In particular,this term determines the highest order of the derivative ofρin the ansatz (3.10).In fact,based on the convolution estimates for the coupling of these wave patterns in Lemma A.4,we know that we need the pointwise estimates forto get the pointwise estimate for (ρ,m).This is the reason that we give the ansatz (3.10) in the pointwise sense where the order of the derivatives of the densityρis from 0 to 2.The second term N22can be estimated similarly.

    where we have used the fact thatwhich is based on theL2-decay rate of the solution and its derivatives in [10,33] and the Sobolev inequality.This determines that we need the regularity assumption of the initial data to be in theH5×H4-framework.Note that the convolutions in (3.15) are not included in Lemma 4.4 given in the Appendix,however,we can estimate them in the same way as in [24].In fact,for the long time 0<t0≤τ <twith suitablet0,J1andJ2have been estimated in [24] even for the case without the factorFor the short time 0 ≤τ <t0<t,the authors of [24] obtained that

    Obviously,the nonlinear terms inJ1andJ2have worse pointwise information on the spacial variablexthan those in (3.16) and (3.17).However,forJ1andJ2in the short time,the additional factorwill provide the exponential decay rate.Hence,one can also get the same pointwise estimates forJ1andJ2as in (3.16) and (3.17).The proof is tedious but direct,we omit the details.

    Then,combining the above estimates forwithi=1,2,3,we have

    This together with the initial propagation (3.8) forand the representation (3.3),yields that

    Simultaneously,noticing the better estimates for both the long wave and the short wave ofG11(x,t) andG12(x,t) compared with those ofG21(x,t) andG22(x,t) in Section 2,it also holds that

    These two estimates give thatM(T) ≤C(ε0+M2(T)) with a positive constantCindependent ofT,which together with the smallness ofε0and the continuity ofM(T),implies thatM(T) ≤C.Thus,we have closed the ansatz (3.10) and completed the proof of Theorem 1.1.

    Appendix: Some Useful Estimates

    The first lemma is used to derive the Huygens’ wave for the long waves of NS and NSK.

    Lemma A.1(see [5]) Letw(x,t) be the wave operator such that its inverse Fourier transformation is.Then one has

    We also need the following lemma when describing the singular part of the short wave:

    Lemma A.2(see [30]) If supp(ξ) ?OK=: {ξ,|ξ| ≥K >0},and(ξ) satisfies

    then there exist distributionsf1(x) andf2(x) and a constantC0such that

    whereδ(x) is the Dirac function.Furthermore,for any |α| ≥0 and any positive integerN,we have that

    withη0being sufficiently small.

    The next two lemmas are used to deal with initial propagation and nonlinear coupling,respectively.

    Lemma A.3(see [34]) There exists a constantC >0 such that

    Lemma A.4(see [24]) There exists a constantC >0 such that

    精品一区二区三区四区五区乱码| 老司机福利观看| 别揉我奶头~嗯~啊~动态视频| 1024视频免费在线观看| 交换朋友夫妻互换小说| 人成视频在线观看免费观看| 亚洲精品中文字幕一二三四区| 久久国产精品大桥未久av| 大香蕉久久网| 美女高潮喷水抽搐中文字幕| 两个人免费观看高清视频| 深夜精品福利| 日韩精品免费视频一区二区三区| 免费黄频网站在线观看国产| 国产精品综合久久久久久久免费 | 超碰成人久久| 99国产精品99久久久久| 男男h啪啪无遮挡| 久久人妻av系列| 国产99久久九九免费精品| 一级毛片高清免费大全| 一区二区三区国产精品乱码| 亚洲欧美一区二区三区久久| 午夜福利影视在线免费观看| 美女国产高潮福利片在线看| 久热爱精品视频在线9| 热re99久久精品国产66热6| 亚洲五月色婷婷综合| 欧美精品亚洲一区二区| 欧美精品亚洲一区二区| 三上悠亚av全集在线观看| 国产精品国产av在线观看| 男女之事视频高清在线观看| av网站在线播放免费| 国产在视频线精品| 午夜两性在线视频| 国产蜜桃级精品一区二区三区 | 国产精品国产高清国产av | 久久久久精品国产欧美久久久| 欧美性长视频在线观看| 亚洲国产看品久久| 久久天躁狠狠躁夜夜2o2o| 91麻豆av在线| 欧美 亚洲 国产 日韩一| 18禁观看日本| 一个人免费在线观看的高清视频| 精品久久久久久电影网| 91九色精品人成在线观看| 好男人电影高清在线观看| 亚洲久久久国产精品| 18禁裸乳无遮挡免费网站照片 | 91字幕亚洲| 午夜福利,免费看| 又大又爽又粗| 国产精品一区二区免费欧美| 美女视频免费永久观看网站| 国产一区二区激情短视频| 别揉我奶头~嗯~啊~动态视频| 国产成人av激情在线播放| 亚洲中文字幕日韩| 在线免费观看的www视频| 亚洲aⅴ乱码一区二区在线播放 | 水蜜桃什么品种好| a级片在线免费高清观看视频| 欧美精品人与动牲交sv欧美| 搡老乐熟女国产| av免费在线观看网站| 精品一品国产午夜福利视频| 视频在线观看一区二区三区| 久久久久精品国产欧美久久久| 国产精品98久久久久久宅男小说| 在线免费观看的www视频| 丝袜人妻中文字幕| 精品一区二区三区av网在线观看| 午夜精品国产一区二区电影| 久久亚洲精品不卡| 黑丝袜美女国产一区| 欧美日韩亚洲综合一区二区三区_| 丁香欧美五月| 成人av一区二区三区在线看| 欧美日韩黄片免| 久久国产精品男人的天堂亚洲| 丰满的人妻完整版| 日本黄色日本黄色录像| 在线看a的网站| 两性夫妻黄色片| 中出人妻视频一区二区| www.熟女人妻精品国产| 欧美久久黑人一区二区| 亚洲午夜理论影院| 免费在线观看影片大全网站| 精品亚洲成国产av| 十八禁高潮呻吟视频| 99久久人妻综合| 成年动漫av网址| av有码第一页| 国产欧美日韩一区二区三| 一区二区三区激情视频| 999精品在线视频| videos熟女内射| 人妻一区二区av| 一夜夜www| 波多野结衣一区麻豆| 久久草成人影院| 狂野欧美激情性xxxx| 丰满的人妻完整版| 日本精品一区二区三区蜜桃| 亚洲成人国产一区在线观看| 亚洲午夜理论影院| 一二三四在线观看免费中文在| 亚洲精品在线美女| 久久久久久免费高清国产稀缺| 三上悠亚av全集在线观看| 亚洲精品国产一区二区精华液| 国产精品秋霞免费鲁丝片| 大码成人一级视频| xxxhd国产人妻xxx| 亚洲欧美精品综合一区二区三区| 国产无遮挡羞羞视频在线观看| 两个人免费观看高清视频| 69av精品久久久久久| 99热网站在线观看| 精品少妇久久久久久888优播| 精品少妇久久久久久888优播| 久久久久国产精品人妻aⅴ院 | 精品人妻在线不人妻| 热99久久久久精品小说推荐| 女人久久www免费人成看片| 亚洲黑人精品在线| 制服诱惑二区| 精品亚洲成国产av| 人妻一区二区av| 国产有黄有色有爽视频| 男人操女人黄网站| 大片电影免费在线观看免费| 亚洲 欧美一区二区三区| 成人精品一区二区免费| 黄片小视频在线播放| 嫁个100分男人电影在线观看| 黄色a级毛片大全视频| 国产视频一区二区在线看| 在线免费观看的www视频| 99精品久久久久人妻精品| 热re99久久国产66热| 亚洲伊人色综图| 精品免费久久久久久久清纯 | 午夜福利,免费看| 国产欧美日韩一区二区精品| 日韩免费高清中文字幕av| 午夜福利乱码中文字幕| 99香蕉大伊视频| 人妻丰满熟妇av一区二区三区 | 在线观看午夜福利视频| 亚洲色图综合在线观看| 女人高潮潮喷娇喘18禁视频| 中国美女看黄片| 怎么达到女性高潮| 巨乳人妻的诱惑在线观看| 视频在线观看一区二区三区| 王馨瑶露胸无遮挡在线观看| 午夜福利一区二区在线看| 两性夫妻黄色片| 少妇猛男粗大的猛烈进出视频| 亚洲美女黄片视频| 精品福利永久在线观看| 精品久久久久久久久久免费视频 | 日韩成人在线观看一区二区三区| 中亚洲国语对白在线视频| 精品第一国产精品| 午夜福利视频在线观看免费| 亚洲五月婷婷丁香| 香蕉久久夜色| 精品人妻熟女毛片av久久网站| 日韩有码中文字幕| 成年版毛片免费区| 一个人免费在线观看的高清视频| 亚洲欧洲精品一区二区精品久久久| 久久婷婷成人综合色麻豆| 露出奶头的视频| 校园春色视频在线观看| 亚洲熟女毛片儿| 19禁男女啪啪无遮挡网站| 一区在线观看完整版| 一级毛片精品| 91字幕亚洲| 交换朋友夫妻互换小说| 一区二区三区国产精品乱码| 国产不卡av网站在线观看| 国产国语露脸激情在线看| 久久久久国产精品人妻aⅴ院 | 亚洲欧美一区二区三区久久| 国产精品二区激情视频| 一级片'在线观看视频| 国产99白浆流出| 99精国产麻豆久久婷婷| 精品久久久久久久久久免费视频 | 黄色女人牲交| 久久久久久亚洲精品国产蜜桃av| 999精品在线视频| 中文字幕人妻丝袜制服| 50天的宝宝边吃奶边哭怎么回事| 精品久久久久久,| 国产精品久久久久久人妻精品电影| 搡老乐熟女国产| 午夜精品国产一区二区电影| 天天操日日干夜夜撸| 黄色a级毛片大全视频| 在线视频色国产色| 色精品久久人妻99蜜桃| 无限看片的www在线观看| 亚洲第一青青草原| 国产成人欧美在线观看 | tocl精华| 色综合欧美亚洲国产小说| 国产成人一区二区三区免费视频网站| 操美女的视频在线观看| 欧美日韩亚洲综合一区二区三区_| 嫁个100分男人电影在线观看| 亚洲色图 男人天堂 中文字幕| 99久久精品国产亚洲精品| 我的亚洲天堂| 手机成人av网站| 国产深夜福利视频在线观看| 18禁国产床啪视频网站| 香蕉丝袜av| 久久香蕉激情| 欧美大码av| 一边摸一边抽搐一进一出视频| 飞空精品影院首页| 国产精品香港三级国产av潘金莲| 午夜福利免费观看在线| 日韩欧美免费精品| 女人精品久久久久毛片| 精品高清国产在线一区| 国产亚洲精品久久久久久毛片 | 成在线人永久免费视频| 叶爱在线成人免费视频播放| 亚洲精品中文字幕一二三四区| 嫁个100分男人电影在线观看| 99热国产这里只有精品6| 国产男女内射视频| 午夜日韩欧美国产| 两性午夜刺激爽爽歪歪视频在线观看 | 一区在线观看完整版| 国产高清videossex| 国产乱人伦免费视频| 久久国产精品男人的天堂亚洲| videosex国产| 欧美黄色淫秽网站| 国产亚洲精品一区二区www | 日韩视频一区二区在线观看| 老司机影院毛片| www.精华液| 欧美日韩av久久| 国产精品国产av在线观看| 午夜福利免费观看在线| 欧美人与性动交α欧美精品济南到| 国产高清国产精品国产三级| 两性午夜刺激爽爽歪歪视频在线观看 | 免费在线观看视频国产中文字幕亚洲| 日韩中文字幕欧美一区二区| 国产一区有黄有色的免费视频| 亚洲精品国产精品久久久不卡| 又大又爽又粗| 亚洲欧洲精品一区二区精品久久久| 亚洲午夜精品一区,二区,三区| 韩国精品一区二区三区| 日本黄色日本黄色录像| 国产成人影院久久av| 一级毛片女人18水好多| av在线播放免费不卡| 久久九九热精品免费| 无限看片的www在线观看| 91麻豆精品激情在线观看国产 | av网站在线播放免费| 国产精品亚洲一级av第二区| 午夜亚洲福利在线播放| 国产精品电影一区二区三区 | 国产成人影院久久av| 一区二区三区国产精品乱码| a级片在线免费高清观看视频| 婷婷丁香在线五月| 亚洲欧美精品综合一区二区三区| 欧美在线黄色| 成年人黄色毛片网站| 亚洲精品国产色婷婷电影| 国产成人免费无遮挡视频| 国产欧美日韩一区二区三区在线| 亚洲精品美女久久久久99蜜臀| 欧美乱妇无乱码| 9色porny在线观看| 中文字幕精品免费在线观看视频| 国产在线一区二区三区精| 人人妻人人爽人人添夜夜欢视频| 69av精品久久久久久| 久久久精品国产亚洲av高清涩受| 精品欧美一区二区三区在线| 国精品久久久久久国模美| 亚洲熟女毛片儿| 老熟女久久久| 啦啦啦 在线观看视频| 国产精华一区二区三区| 欧美日韩亚洲国产一区二区在线观看 | 亚洲欧美一区二区三区黑人| 国产国语露脸激情在线看| av天堂久久9| 黄网站色视频无遮挡免费观看| 国产免费av片在线观看野外av| 一边摸一边抽搐一进一小说 | 国产不卡av网站在线观看| 欧美日韩一级在线毛片| 亚洲午夜理论影院| 日韩制服丝袜自拍偷拍| 日本精品一区二区三区蜜桃| 夜夜爽天天搞| 18禁裸乳无遮挡动漫免费视频| 精品卡一卡二卡四卡免费| 妹子高潮喷水视频| 久久久精品免费免费高清| 久久精品人人爽人人爽视色| 嫁个100分男人电影在线观看| 国产精品欧美亚洲77777| 免费在线观看视频国产中文字幕亚洲| 国产精品久久久av美女十八| 国产欧美亚洲国产| 国产欧美日韩综合在线一区二区| 色播在线永久视频| 国产在线一区二区三区精| 亚洲av电影在线进入| 免费不卡黄色视频| 免费在线观看视频国产中文字幕亚洲| a级片在线免费高清观看视频| 亚洲一卡2卡3卡4卡5卡精品中文| av一本久久久久| 亚洲精华国产精华精| 日韩欧美三级三区| av有码第一页| 99热国产这里只有精品6| 久久 成人 亚洲| 女人高潮潮喷娇喘18禁视频| 高清黄色对白视频在线免费看| 久久精品国产99精品国产亚洲性色 | 建设人人有责人人尽责人人享有的| av在线播放免费不卡| 亚洲熟妇熟女久久| 日本a在线网址| 免费久久久久久久精品成人欧美视频| 久久精品亚洲av国产电影网| 欧美丝袜亚洲另类 | 色婷婷av一区二区三区视频| 国产成+人综合+亚洲专区| 亚洲第一av免费看| 精品福利永久在线观看| 夫妻午夜视频| 一边摸一边做爽爽视频免费| videos熟女内射| 久久中文字幕人妻熟女| 男人的好看免费观看在线视频 | 美国免费a级毛片| 国产99久久九九免费精品| 12—13女人毛片做爰片一| 欧美午夜高清在线| 两性夫妻黄色片| 啦啦啦在线免费观看视频4| 老熟妇仑乱视频hdxx| 老熟女久久久| www日本在线高清视频| ponron亚洲| 亚洲精品一二三| 一进一出抽搐动态| 在线观看舔阴道视频| 久久香蕉精品热| 国产精品免费一区二区三区在线 | 成人亚洲精品一区在线观看| 国产欧美日韩一区二区精品| 中文字幕高清在线视频| 十八禁高潮呻吟视频| 日韩欧美免费精品| 亚洲国产中文字幕在线视频| 久久精品亚洲精品国产色婷小说| 99国产极品粉嫩在线观看| 中文字幕人妻丝袜一区二区| 最近最新免费中文字幕在线| 久久久久国产一级毛片高清牌| 亚洲国产精品合色在线| 国产欧美日韩一区二区三| 制服诱惑二区| 真人做人爱边吃奶动态| 亚洲国产精品sss在线观看 | www日本在线高清视频| 成人亚洲精品一区在线观看| 久久久国产成人精品二区 | 欧美日韩精品网址| 成人亚洲精品一区在线观看| 免费在线观看日本一区| 宅男免费午夜| 免费av中文字幕在线| 精品一品国产午夜福利视频| 日本vs欧美在线观看视频| 精品一品国产午夜福利视频| 久久天躁狠狠躁夜夜2o2o| 亚洲午夜精品一区,二区,三区| 叶爱在线成人免费视频播放| 免费一级毛片在线播放高清视频 | 久久人人爽av亚洲精品天堂| 久久精品国产亚洲av香蕉五月 | 在线观看一区二区三区激情| 久久这里只有精品19| 老汉色∧v一级毛片| 大型av网站在线播放| 亚洲欧美一区二区三区久久| 国产精品.久久久| 免费观看精品视频网站| 精品人妻在线不人妻| 久久草成人影院| 乱人伦中国视频| 久久久久精品人妻al黑| www.熟女人妻精品国产| 国产精品免费一区二区三区在线 | 热99国产精品久久久久久7| 可以免费在线观看a视频的电影网站| 建设人人有责人人尽责人人享有的| a级毛片在线看网站| 国产精品国产高清国产av | 国产精品国产高清国产av | 老司机午夜十八禁免费视频| 飞空精品影院首页| 男人的好看免费观看在线视频 | 亚洲精品国产一区二区精华液| 亚洲一区二区三区不卡视频| 亚洲性夜色夜夜综合| 高潮久久久久久久久久久不卡| 精品人妻在线不人妻| 精品第一国产精品| 美女视频免费永久观看网站| 精品福利永久在线观看| 18在线观看网站| 黄片大片在线免费观看| 亚洲国产中文字幕在线视频| 亚洲精品成人av观看孕妇| 极品教师在线免费播放| 欧美成人免费av一区二区三区 | 成人国产一区最新在线观看| 男女下面插进去视频免费观看| 91麻豆av在线| 国产99白浆流出| 人人妻人人澡人人爽人人夜夜| 99热国产这里只有精品6| 窝窝影院91人妻| 久久久国产欧美日韩av| 这个男人来自地球电影免费观看| 制服人妻中文乱码| 身体一侧抽搐| 电影成人av| 国产人伦9x9x在线观看| 自线自在国产av| 麻豆av在线久日| av国产精品久久久久影院| tube8黄色片| 1024视频免费在线观看| 国产精品久久久久成人av| 亚洲片人在线观看| 两性夫妻黄色片| 午夜两性在线视频| 天堂√8在线中文| 人妻久久中文字幕网| 国产精品影院久久| 久久久久视频综合| 精品国产一区二区三区四区第35| 十八禁人妻一区二区| 777久久人妻少妇嫩草av网站| 他把我摸到了高潮在线观看| xxx96com| 在线免费观看的www视频| 中文字幕av电影在线播放| 亚洲中文av在线| 一本综合久久免费| 国产成人精品久久二区二区91| 看黄色毛片网站| 精品国产美女av久久久久小说| 日本a在线网址| 亚洲aⅴ乱码一区二区在线播放 | 亚洲一区高清亚洲精品| 水蜜桃什么品种好| 狠狠狠狠99中文字幕| 日日摸夜夜添夜夜添小说| 18禁观看日本| 亚洲国产欧美一区二区综合| 咕卡用的链子| 亚洲第一青青草原| 天天操日日干夜夜撸| 日韩免费高清中文字幕av| 亚洲av电影在线进入| 午夜免费鲁丝| 久久亚洲精品不卡| 人妻久久中文字幕网| 久久久国产欧美日韩av| 国产成人免费观看mmmm| 婷婷成人精品国产| 国产成人精品久久二区二区91| 成人永久免费在线观看视频| 精品一品国产午夜福利视频| 国产成人一区二区三区免费视频网站| 亚洲色图av天堂| 露出奶头的视频| 久久久久久久久免费视频了| 精品亚洲成国产av| 丝袜人妻中文字幕| 咕卡用的链子| 国产一区二区三区综合在线观看| 国产精品欧美亚洲77777| 国产xxxxx性猛交| 女警被强在线播放| 在线观看免费视频日本深夜| 久久人妻福利社区极品人妻图片| 脱女人内裤的视频| 午夜福利一区二区在线看| 国产区一区二久久| 国产亚洲一区二区精品| 成人免费观看视频高清| 啦啦啦在线免费观看视频4| 午夜福利一区二区在线看| 首页视频小说图片口味搜索| 亚洲精品国产区一区二| 亚洲一区高清亚洲精品| 啦啦啦免费观看视频1| 亚洲熟女精品中文字幕| 一进一出抽搐gif免费好疼 | 免费少妇av软件| av天堂久久9| 一a级毛片在线观看| 9色porny在线观看| 亚洲,欧美精品.| av国产精品久久久久影院| 最近最新中文字幕大全免费视频| 妹子高潮喷水视频| 99久久国产精品久久久| 亚洲精品中文字幕在线视频| 午夜老司机福利片| 欧美性长视频在线观看| a在线观看视频网站| ponron亚洲| aaaaa片日本免费| 午夜福利乱码中文字幕| 50天的宝宝边吃奶边哭怎么回事| 日韩视频一区二区在线观看| 欧美国产精品va在线观看不卡| 久久天躁狠狠躁夜夜2o2o| 久久婷婷成人综合色麻豆| 18在线观看网站| 91成人精品电影| 中出人妻视频一区二区| 欧美黑人欧美精品刺激| 看免费av毛片| 亚洲av欧美aⅴ国产| 丰满饥渴人妻一区二区三| 老司机午夜十八禁免费视频| 天天影视国产精品| 欧美中文综合在线视频| 91精品三级在线观看| 18禁裸乳无遮挡动漫免费视频| 欧美 日韩 精品 国产| 80岁老熟妇乱子伦牲交| 亚洲av电影在线进入| 亚洲情色 制服丝袜| 999久久久国产精品视频| 最新在线观看一区二区三区| 欧美日韩av久久| 欧美日韩中文字幕国产精品一区二区三区 | 日韩欧美一区二区三区在线观看 | 欧美久久黑人一区二区| 亚洲,欧美精品.| 久久ye,这里只有精品| av视频免费观看在线观看| 一级片'在线观看视频| 黄片小视频在线播放| 亚洲情色 制服丝袜| 欧美午夜高清在线| 法律面前人人平等表现在哪些方面| 久久精品国产a三级三级三级| 一区在线观看完整版| 99国产精品一区二区三区| 大型av网站在线播放| xxxhd国产人妻xxx| 久久精品国产亚洲av香蕉五月 | 人人妻,人人澡人人爽秒播| 欧美乱妇无乱码| 欧美+亚洲+日韩+国产| 中文欧美无线码| 午夜精品国产一区二区电影| 香蕉国产在线看| 999精品在线视频| 在线观看日韩欧美| av中文乱码字幕在线| 老司机午夜十八禁免费视频| 国产高清视频在线播放一区| 精品久久久久久电影网| 身体一侧抽搐| 精品福利永久在线观看| av免费在线观看网站| 一边摸一边抽搐一进一小说 | 亚洲国产精品一区二区三区在线| 欧美人与性动交α欧美软件| 精品视频人人做人人爽| 精品久久久久久久久久免费视频 | 69精品国产乱码久久久| 波多野结衣av一区二区av| 精品一区二区三区四区五区乱码| 亚洲成人免费电影在线观看| 精品免费久久久久久久清纯 | 好男人电影高清在线观看| 日韩有码中文字幕| 亚洲国产欧美日韩在线播放| aaaaa片日本免费| 欧美+亚洲+日韩+国产|